高三数学培优资料用泰勒公式和拉格朗日中值定理来处理高中函数不等式问题
- 格式:doc
- 大小:492.00 KB
- 文档页数:6
以高等数学中有关定理(公式)为背景的高考题例析高等数学中有关定理和公式是高考中不可忽视的重要内容,它们直接影响着考生的成绩。
下面以一些高等数学中常见的定理和公式为例子,来分析一下高考中可能会涉及的相关题目。
1.拉格朗日中值定理在高等数学中,拉格朗日中值定理是一个重要的定理。
它的含义是,如果函数f(x)在[a,b]内连续,在(a,b)内可导,则存在一个c∈(a,b),使得f(b)-f(a)=f'(c)(b-a)。
在高考中,常会考察这个定理的应用。
例题:函数f(x)=ln(x+1),x∈[0,1]。
证明:|f(x)-f(y)|≤|x-y|,其中x,y∈[0,1]。
解析:因为f(x)在[0,1]内连续,在(0,1)内可导,所以根据拉格朗日中值定理,对于任意的x,y∈[0,1],存在c∈(x,y),使得f(x)-f(y)=f'(c)(x-y)。
由于f'(x)=1/(x+1)>0,所以f(x)在[0,1]上单调递增。
因此,|f(x)-f(y)|=|f'(c)||x-y|≤1|x-y|=|x-y|。
因此,原命题得证。
2.泰勒公式泰勒公式是高等数学中一个非常重要的公式,它可以将函数在某个点附近展开成一个无穷级数。
在高考中,考生需要掌握泰勒公式的基本形式和应用。
例题:设f(x)=ln(x+1),Pn(x)为f(x)在x=0处的n阶泰勒多项式,求当n趋于无穷大时,Pn(1)-f(1)的极限。
解析:由于f(x)在x=0处的泰勒级数为f(x)=x-x^2/2+x^3/3-...,因此它的n阶泰勒多项式为Pn(x)=x-x^2/2+...+(-1)^(n-1)x^n/n。
因此,Pn(1)-f(1)=1/2-1/3+1/4-1/5+...+(-1)^(n-1)/n-(ln2-1)。
根据莱布尼兹判别法可知,当n趋于无穷大时,Pn(1)-f(1)的极限为ln2-1。
3.极限定义极限是高等数学中的一个重要概念,它与函数的连续性及导数的求解密切相关。
拉格朗日中值定理在高中数学不等式证明中的巧妙运用作者:左代丽来源:《新校园(下)》2016年第03期摘要:本文首先介绍了拉格朗日中值定理在高中数学中的主要应用形式和应用范围,对拉格朗日中值定理予以三种方式证明,并结合相关证明不等式例题,介绍了拉格朗日中值定理在高中不等式证明中的巧妙运用。
关键词:拉格朗日中值定理;不等式;证明;应用拉格朗日中值定理是微积分中值定理(包含罗尔定理、柯西定理以及拉格朗日定理)中的一种,对于微积分理论构造有重要的作用。
不等式的证明作为高中数学中较为常见的题型,也是高考中较为常见的题型。
对于不等式证明的解题方式有很多,利用中值定理解不等式是一种常见的方式。
但高中生并没有深入学习微积分,对此种方法的理解不够深入,应用起来稍显笨拙。
一、拉格朗日中值定理在高中数学中的主要应用1.极限问题的求解。
极限问题是高中数学中极限学习的考察重点,在高中数学教学中,许多教师都向学生介绍了洛必达法则、夹逼定理、泰勒公式等解题方式。
这些解题方式原理简单,解题思路顺畅,解题效果较好,极容易被学生吸收。
而利用拉格朗日中值定理来求解极限问题的教学比较少见,一方面,拉格朗日中值定理相对复杂,通常用来解决复杂的极限问题,另一方面,学生对于复杂的极限题目往往具有畏难心理,常常在解题过程中选择放弃。
实际上,利用拉格朗日中值定理来解决复杂的极限问题,其实质在于分解题目,实现对题型的转变,运用拉格朗日中值定理求极限的时候要把握好拉格朗日中值定理与极限问题之间的关联,寻找两者之间的连接点,做好式子的简化,这样才能快速解题。
2.不等式证明的求解。
不等式证明题是不等式教学中最基本的题型之一,解决不等式证明的常规方法有许多,例如:数形结合、导数法等。
利用拉格朗日中值定理来解决不等式证明题,其核心在于对函数的构建,以及进一步探索导数与构建的函数之间的关系,利用这种关系,进一步确定在特定条件下函数成立,继而证明不等式。
常规方法证明较复杂的不等式需要耗费大量的演算时间,且容易在求解过程中产生思维冲突,不利于正确解题,但直接运用拉格朗日中值定理非常简单,能够快速求解。
泰勒中值定理和拉格朗日中值定理示例文章篇一:《泰勒中值定理和拉格朗日中值定理》嘿,同学们,今天咱们来聊聊数学里超厉害的泰勒中值定理和拉格朗日中值定理。
先来说说拉格朗日中值定理吧。
想象一下,你在一条弯弯曲曲的小路上走路,这小路就像一个函数图像。
拉格朗日中值定理就好像在说呢,在这条小路上啊,总能找到那么一个点,在这个点的地方,它的切线斜率就跟你从路的这头走到那头的平均速度一样。
这多神奇呀!比如说,有一次我和小伙伴比赛走路,从A点走到B点,路是弯弯曲曲的,那肯定有的地方走得快,有的地方走得慢。
拉格朗日中值定理就告诉我们,中间肯定有个瞬间,那时候的速度就和平均速度一样呢。
我有个同学小明,他就特别聪明。
有次数学老师讲拉格朗日中值定理的时候,他就举手问老师:“老师,这个定理在生活里除了走路,还有啥例子呀?”老师就笑着说:“你看,汽车在一段路上行驶,速度也是忽快忽慢的,那在这段路程里肯定有个时刻,它的瞬时速度就等于平均速度。
”我们听了都觉得好有道理呢。
那泰勒中值定理呢?这泰勒中值定理可就更厉害了。
它就像是一个魔法,能把一个复杂的函数变成一个由好多项组成的式子。
就好比把一个超级复杂的大怪兽,拆成了一个个小怪兽。
我记得我在做一道数学题的时候,那个函数长得可吓人了,我都不知道从哪儿下手。
这时候老师就说,咱们可以用泰勒中值定理呀。
然后就把那个函数按照泰勒中值定理展开,一下子就变得清楚多了。
我还有个朋友小红,她在学习泰勒中值定理的时候可费劲了。
她就跟我说:“这泰勒中值定理就像一团乱麻,我怎么都理不清。
”我就跟她说:“你看啊,就把它想象成搭积木。
每个项就是一块积木,我们按照泰勒中值定理的规则把这些积木搭起来,就可以得到原来那个复杂的函数了。
”她听了之后好像有点开窍了,说:“哦,原来是这样啊,好像没那么难了呢。
”泰勒中值定理和拉格朗日中值定理虽然都很厉害,但是它们也有不同的地方。
拉格朗日中值定理更侧重于那种平均速度和瞬时速度的关系这种比较直观的东西,就像我们走路、开车的速度问题。
0) + R 02012 级高三数学培优资料(教师版)泰勒公式与拉格朗日中值定理在证明不等式中的简单应用泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。
泰勒公式的重点就在于使用一个 n 次多项式 p n (x ) ,去逼近一个已知的函数 f ( x ) ,而且这种 逼近有很好的性质: p n (x ) 与 f ( x ) 在 x 点具有相同的直到阶 n 的导数[1-3] .所以泰勒公式能很好的集中体现高等数学中的“逼近”这一思想精髓。
泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。
但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法.泰勒公式知识:设函数 f ( x ) 在点 x 0 处的某邻域内具有 n +1阶导数,则对该邻域内异于 x 0 的任意点 x ,在 x 0 与 x 之间至少存在一点,使得:f ( x ) = f ( x 0 ) + f ' ( x 0 ) (x - x 0) +f'' ( x 0 ) (x - x 0)2 +⋅⋅⋅ + f (n ) ( x 0) (x - x n ( x ) ,f (n +1) ()2!n +1n!n其中 R n ( x ) =(n +1)!( x - x 0 ) 称为余项,上式称为 n 阶泰勒公式;若 x 0 = 0,则上述的泰勒公式称为麦克劳林公式,即 f ( x ) = f (0) + f '(0) x + f'' (0) 2! x 2 +⋅⋅⋅ + f (n )(0) n !x n + 0(x n) .利用泰勒公式证明不等式:若函数 f (x ) 在含有 x 0 的某区间有定义,并且有直到(n -1) 阶的各阶导数,又在点 x 处有 n 阶的导数 f (n ) (x ) ,则有公式f '(x ) f ' (x ) f (n ) (x ) f (x ) = f (x ) + 0 (x - x ) + 0 (x - x )2+ + 0 (x - x )(n ) + R (x )0 1! 0 2! 0 n ! 0 n 在上述公式中若 R n (x ) ≤ 0 (或 R n (x ) ≥ 0 ),则可得f '(x ) f ' (x ) f (n ) (x ) f (x ) ≥ f (x ) + 0 (x - x ) + 0 (x - x )2 + + 0 (x - x )(n ) 0 1! f '(x ) 0 2! 0 f ' (x ) n !0 f (n ) (x )或 f (x ) ≤ f (x 0 ) + 0 (x - x 1! 0 ) + 0 (x - x 2! 0 )2 + + 0 (x - x n !0 )(n )1+ x 1+ - 41、 证明: ln(1 + x ) ≤ x - x 2 x 3, 3(-1 < x < 1).证明 设 f (x ) = ln(1 + x )(-1 < x < 1) 则 f (x ) 在 x = 0 处有带有拉格朗日余项三阶泰勒公式ln(1 + x ) = x - x 2+ x 33 - x4 4(1 +)4(-1 < < 1)x ∴ x 2 x 3-4(1 +)4≤ 0ln(1 + x ) ≤ x -+23由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点 x 0 在 x 0 处展开,然后判断余项 R n (x ) 的正负,从而证明不等式.对于欲证不等式中含有初等函数、三角函数、超越函数与幂函数结合的证明问题, 要充分利用泰勒公式在 x 0 = 0 时的麦克劳林展开式,选取适当的基本函数麦克劳林的的展开式,对题目进行分析、取材、构造利用. 2、 证明不等式: x - 1x 3 ≤ sin x .62、不等式左边是三次二项式的初等函数,右边是三角函数,两边无明显的大小关系 。
拉格朗日中值定理与高考数学拉格朗日中值定理在高考数学中是一个重要的定理,它可以用来证明一些不等式和求函数的最值等问题。
首先,拉格朗日中值定理的表述是:若函数f满足在闭区间[ a。
b]上连续,在开区间(a。
b)内可导,则在a,b内至少存在一点x,使得f(b)-f(a)=(b-a)f'(x)。
举个例子,比如2007年高考全国卷I第20题,要求证明函数f(x)=e^x+2x的导数为f'(x)=e^x+2,以及对于所有x,都有f(x)>=ax,求a的取值范围。
其中,证明f(x)的导数为f'(x)可以直接求导得到。
而对于a的取值范围,我们可以将不等式f(x)>=ax变形为e^x>=ax-2x,然后根据拉格朗日中值定理,得到a的取值范围为(0,2]。
另外,有些题目需要运用多次拉格朗日中值定理来证明,比如2004年四川卷第22题,要求证明函数g(x)=ln(x+1)-lnx在区间[1,2]上满足不等式g(a)+g(b)>=2g((a+b)/2),其中a,b属于[1,2]。
我们可以先对不等式两边分别应用拉格朗日中值定理,得到g(a)+g(b)=2g((a+b)/2)+g'(c)(b-a),然后再对g'(c)应用拉格朗日中值定理,得到g'(c)=(1/(c+1)-1/c)/(c-(c+1)/2),化简后得到g'(c)=2ln2/(c^2-c-2),代入原式中,得到不等式g(a)+g(b)>=2g((a+b)/2)+2ln2,进一步化简可得g(a)+g(b)>=2g((a+b)/2)+ln2,即所求不等式成立。
x) = 2cos(x)。
根据题意,当a=1时,有f'(x) = -2sin(x),对于任意的x1和x2,根据拉格朗日中值定理,存在c∈(x1,x2),使得f(x2)-f(x1) = f'(c)(x2-x1)。
拉格朗日中值定理在高考数学中的应用拉格朗日中值定理是高中数学中的一项重要定理,它不仅具有理论意义,还能在实际问题中得到广泛应用。
在高考数学中,拉格朗日中值定理经常被用来解决函数极值、最大值最小值、证明函数单调性等问题。
首先,我们来了解一下拉格朗日中值定理的定义。
对于连续函数f(x)在区间[a,b]上可导,且a<b,则存在一个介于a和b之间的数c,使得f(b)-f(a)=f'(c)(b-a)。
这个定理表明,对于一段区间上的函数,它的两个端点之间的变化量等于该函数在某点处的导数与自变量的差的乘积。
在实际问题中,我们经常会遇到需要求出函数的最大值和最小值的情况。
根据拉格朗日中值定理,若函数f(x)在区间[a,b]上可导且恰有一个极值点c,则f(x)在点c处取得最大值或最小值。
因此,我们可以通过求导数、解方程来求出函数的极值点,在这些点处比较函数值,进而得到函数的最大值和最小值。
此外,拉格朗日中值定理还可以用来证明函数的单调性。
若函数f(x)在区间[a,b]上可导,则f(x)在该区间上单调递增,当且仅当对于任意的x1、x2∈[a,b],都有f(x2)-f(x1)=f'(c)(x2-x1),其中c ∈(x1,x2)。
同理,若f(x)在区间[a,b]上可导,则f(x)在该区间上单调递减,当且仅当对于任意的x1、x2∈[a,b],都有
f(x1)-f(x2)=f'(c)(x1-x2),其中c∈(x2,x1)。
综上所述,拉格朗日中值定理在高考数学中的应用十分广泛。
通
过运用这个定理,我们可以更加深入地理解函数的特性,进而更加熟练地解决各种数学问题。
泰勒公式在证明不等式中的应用
泰勒公式是高等数学中的一个重要定理,它可以将一个函数在某一点附近展开成一个无限项的多项式,从而方便我们对函数进行研究和计算。
在不等式的证明中,泰勒公式也有着重要的应用。
我们来看一个简单的例子。
假设我们要证明如下不等式:
$$e^x \geq 1 + x$$
其中,$x$为任意实数。
我们可以使用泰勒公式将$e^x$在$x=0$处展开,得到:
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
将这个式子代入原不等式中,得到:
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \geq 1 + x$$
化简可得:
$$\frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \geq 0$$
显然,左边的式子恒大于等于0,因此原不等式成立。
这个例子展示了泰勒公式在不等式证明中的应用。
我们可以将一个函数在某一点附近展开成一个多项式,然后通过比较多项式的系数来证明不等式的成立。
当然,泰勒公式的应用不仅限于这个简单的例子。
在实际的数学研究中,我们常常需要证明各种各样的不等式,而泰勒公式可以为我们提供一个有力的工具。
泰勒公式在不等式证明中的应用是非常广泛的。
通过将一个函数在某一点附近展开成一个多项式,我们可以方便地对函数进行研究和计算,从而证明各种各样的不等式。
因此,掌握泰勒公式的应用是非常重要的。
利用导数证明不等式的四种方法在初等数学中证明不等式的常用方法有比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法.但是当不等式比较复杂时,用初等的方法证明会比较困难,有时还证不出来.如果用函数的观点去认识不等式,利用导数为工具,那么不等式的证明就会化难为易.本文通过举例阐述利用泰勒公式, 中值定理,函数的性质, Jensen 不等式等四种方法证明不等式,说明了导数在证明不等式中的重要作用.一、利用泰勒公式证明不等式若函数)(x f 在含有0x 的某区间有定义,并且有直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0)(x fn ,则有公式)()(!)()(!2)()(!1)()()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥或)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤例1 证明: ).11(,32)1ln(32<<-+-≤+x x x x x 证明 设)11)1ln()(<<-+=x x x f ( 则)(x f 在0=x 处有带有拉格朗日余项三阶泰勒公式)11()1(432)1ln(4432<<-+-+-=+ξξ x x x x x0)1(444≤+-ξx 32)1ln(32x x x x +-≤+∴ 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x 在0x 处展开,然后判断余项)(x R n 的正负,从而证明不等式.二、利用中值定理证明不等式微分)(Lagrange中值定理: 若)(x f 满足以下条件:(1) )(x f 在闭区间],[b a 内连续 (2) )(x f 在开区间),(b a 上可导则 ab a f b f f b a --='∍∈∃)()()(),(ξξ 例2 若)()(1,011y x py y x y x py p x y p p p p -<-<-><<--则 分析 因为,0x y <<则原不等式等价于11--<--<p p p p px yx y x py)1(>p .令p t x f =)(,则我们容易联想到Lagrange 中值定理yx y f x f y x f --=-)()())(('ξ.证明 设p t t f =)(,显然],[)(x y t f 在满足Lagrange 中值定理的条件则 ,)()()(),(y x y f x f f x y --='∍∈∃ξξ 即yx y x p ppp ---=1ξ111,),(---<<∴<<∴∈p p p px p py x y x y ξξξ )()(11y x py y x y x py p p p p -<-<-∴-- 例3 设)(x f 在],[b a 上连续可导,且,0)()(==b f a f 则dx x f a b x f babx a ⎰-≥≤≤)()(4)(max 2'证明 设)(max 'x f M bx a ≤≤=则由中值公式,当),(b a x ∈时,有))(())(()()(11a x f a x f a f x f -'=-'+=ξξ ))(())(()()(22b x f b x f b f x f -'=-'+=ξξ其中).,(),,(21b x x a ∈∈ξξ由此可得)()()()(x b M x f a x M x f -≤-≤及所以4)()()()()()(22222a b M dx x b M dx a x M dxx f dx x f dx x f b a abb a bab a a bb a -=-+-≤+=⎰⎰⎰⎰⎰++++ 即⎰-≥badx x f a b M )()(42所以 dx x f a b x f babx a ⎰-≥'≤≤)()(4)(max 2积分第二中值定理]1[ 若在区间f ],[b a 上f 为非负的单调递减函数,而g 是可积函数,则存在],[b a ∈ξ,使得⎰⎰=ξabag a f fg )(例4 设⎰+=12sin )(x xdt t x f ,则0>x 时xx f 1)(<特别地:当2003=x 时机为2003年浙江省高等数学竞赛试题(工科、经管类)证明 令u t =,则由积分第二中值定理xudu x udu ux f xx x 1sin 212sin )(2221≤=⎰⎰+ξ =又因为⎰⎰⎰+++-++-⎥⎥⎦⎤⎢⎢⎣⎡++-=222222)1(2322)1(2322)1(cos 41)1cos()1(21cos 21cos 21)1(cos 1212sin )(x x x x x xu udu x x x x u udu x x u u udu ux f = =于是,0>x 时xx x x x duu x x x f x x 1)111(21)1(212141)1(2121)(22)1(23=-+-+++++<⎰+- =由上可见利用中值定理证明不等式,通常是首先构造辅助函数和考虑区间,辅助函数和定义区间的选择要与题设和结论相联系,然后由中值定理写出不等式,从而进行证明.三、利用函数的单调性证明不等式定理1 如果函数)(),(x g x f 满足以下条件:(1) )(),(x g x f 在闭区间],[b a 内连续(2) )(),(x g x f 在开区间),(b a 可导,且有)()(x g x f '>'(或)()(x g x f '<') (3) )()(a g a f =则 在),(b a 内有)()(x g x f >(或)()(x g x f <令)()()(x g x f x F -=由于0)(0)()()()(≤⇔≤-⇔≤x F x g x f x g x f 所以证明)()(x g x f ≤⇔证明0)(≤x F 则相应地有推论1 若)(x f 在],[b a 上连续,在),(b a 内可导,c a f =)(且0)('>x f (或0)('<x f )则在),(b a 内有c x f >)((或c x f <)().例5 证明:当1>x 时,有).2ln(ln )1(ln 2+⋅>+x x x分析 只要把要证的不等式变形为)1ln()2ln(ln )1ln(++>+x x x x ,然后把x 相对固定看作常数,并选取辅助函数xx x f ln )1ln()(+=.则只要证明)(x f 在),0(+∞是单调减函数即可. 证明 作辅助函数xx x f ln )1ln()(+= )1(>x于是有xx x x x x x x x x x x x f 22ln )1()1ln()1(ln ln )1ln(1ln )(+++-=+-+=' 因为 ,11+<<x x 故)1ln(ln 0+<<x x 所以 )1ln()1(ln ++<x x x x因而在),(∞+1内恒有0)('<x f ,所以)(x f 在区间),1(+∞内严格递减.又因为x x +<<11,可知)1()(+>x f x f即)1ln()2ln(ln )1ln(++-+x x x x 所以 ).2ln(ln )1(ln 2+⋅>+x x x例6 证明不等式x x x x <+<-)1ln(22,其中0>x .分析 因为例6中不等式的不等号两边形式不一样,对它作差)2()1ln(2x x x --+,则发现作差以后不容易化简.如果对)1ln(x +求导得x+11,这样就能对它进行比较.证明 先证 )1ln(22x x x +<-设 )2()1l n ()(2x x x x f --+= )0(>x则 00)01l n ()0(=-+=f xx x x x f +=+-+=1111)(2'0>x 即 0012>>+x x 01)(2>+='∴x x x f ,即在),0(+∞上)(x f 单调递增0)0()(=>∴f x f 2)1ln(2x x x ->+∴ 再证 x x <+)1ln(令 x x x g -+=)1l n ()( 则 0)0(=g 111)(-+='xx g10<+∴>xx 11x x x g <+∴<'∴)1ln(0)( x x x x <+<-∴)1ln(22定理1将可导函数的不等式)()(x g x f <的证明转化为)()(x g x f '<'的证明,但当)(x f '与)(x g '的大小不容易判定时,则有推论2 设)(x f ,)(x g 在[b a ,]上n 阶可导, (1))()()()(a g a f k k = 1,2,1,0-=n k (2))()()()(x g x f n n > (或)()()()(x g x f n n <)则在(b a ,)内有)()(x g x f > (或)()(x g x f <)例7 证明:331x x tgx +>,)2,0(π∈x .分析 两边函数类型不同,右边多项式次数较高,不易比较,对它求一阶导数得.1)31(,sec )(232x x x x tgx +='+='仍然不易比较,则我们自然就能想到推论2.证明 设tgx x f =)(331)(x x x g +=则 (1)0)0()0(==g f(2)1)0()0(),1()(),(sec )(22='='+='='g f x x g x x f (3)1)0()0(,2)(,cos sec 2)(2=''=''=''=''g f x x g xxx f(4)2)(),31)(1(2)(22='''++='''x g x tg x tg x f 显然有 )()(x g x f '''>'''由推论2得,231x x tgx+> (20π<<x ).利用函数的单调性证明不等式我们都是先构造函数.然后通过对函数求导,来判定函数的增减性,从而达到证明不等式的目的.四、利用Jensen(琴森)不等式证明不等式定义]1[ 如果),()(b a x f 在内存在二阶导数)("x f 则(1) 若对,.0)(),(>''∈∀x f b a x 有则函数)(x f 在),(b a 内为凸函数.(2) 若对,.0)(),(<''∈∀x f b a x 有则函数)(x f 在),(b a 内为凹函数.若函数),()(b a x f 在内是凸(或凹)函数时,对),(,,,21b a x x x n ∈∀ 及∑==ni i 11λ,有Jensen(琴森)不等式∑∑∑∑====⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛n i ni i i n i i i i i n i i i x f x f x f x f 1111)()( 或 λλλλ 等号当且仅当n x x x === 21时成立.例8 证明下列不等式),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ .分析 上式只要能证明),2,1,0(2121n i a na a a a a a i nnn =>+++≤⋅ ,如果此题用前面所述的几种方法来证明显然不合适,因为对它求导后不等式会更复杂.而这里的i a 可以看作是同一函数的多个不同函数值,设x x f ln )(=那么就可以用Jensen 不等式来证明它.然后只要令xx f 1ln)(=,同理可得n n na a a a a a n 2121111⋅≤+++.证明 令)0(ln )(>=x x x f 因为 01)(2<-=''x x f ,所以),0()(+∞在x f 是凹函数 则对),0(,,,21+∞∈∀na a a 有[])()()(1)(12121n n a f a f a f na a a n f +++≥⎥⎦⎤⎢⎣⎡+++即 []n n a a a na a a n ln ln ln 1)(1ln 2121+++≥⎥⎦⎤⎢⎣⎡+++ 又因为[]n n n a a a a a a n2121ln ln ln ln 1⋅=+++ 所以 na a a a a a nnn +++≤⋅ 2121 令 xx f 1ln)(=, 则同理可得n n na a a a a a n 2121111⋅≤+++所以),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ 例9 设)(x f 二次可微,且对一切x ,有0)(≥''x f ,而)(t u 在],0[a 上连续,则⎰⎰≥a adt t u af dt t u f a 00])(1[)]([1 分析 上述不等式在形式上很像Jensen 不等式,且当t 取不同的值时,)]([t u f 就是同一函数的不同函数值,则可以用琴森不等式进行证明.证明 由)(x f 及)(t u 的连续性,保证了可积性.并且∑⎰-=∞→=100)]([1lim )]([1n K n a n Ka u f n dt t u f a ⎰∑-=∞→=a n K n n Ka u n dt t u a 010)(1lim )(1因0)(≥''x f ,故)(x f 为凸函数,在Jensen 不等式)()()(112211n n n n x f q x f q x q x q x q f ++≤+++ )1,,,(2121=+++n n q q q q q q 均为正,且中,取) ( n i nq a n i u x i i ,3,2,11),1(==-= 即得∑∑-=-=≤1010)]([1])(1[n K n K nKa u f n n Ka u n f 由)(x f 的连续性,在上式取∞→n 即得所要证的结论.由以上证明可知应用Jensen 不等式证明不等式,首先是构造适当的函数并判断它的凹凸性,然后用Jensen 不等式证明之.本文所述四种用导数证明不等式的四种方法充分说明了导数在不等式证明中的独到之处.在证明不等式时,应用导数等知识往往能使复杂问题简单化,从而达到事半功倍的效果.需要指出的是利用导数证明不等式,除上述四种方法外还有不少方法.如用极值、最值等来证明不等式.由于受篇幅之限,这里不再详述.参考文献[1] 华东师范大学数学系,数学分析[M]第三版,北京:高等教育出版社,2001. [2] 裘单明等,研究生入学考试指导,数学分析[M],济南:山东科学技术出版社,1985.[3] 胡雁军,李育生,邓聚成,数学分析中的证题方法与难题选解[M],开封:河南大学出版社,1987.Four Usual Methods to Prove Tthe Inequality by UsingDerivativeYang Yuxin(Department of Mathematics Shaoxing College of Arts and Sciences, Shaoxing Zhejiang,312000) Abstract:Examplisies four methods to prove the Inequality by using Derivative to show the imporpance of using derivative to crove the inequalityKey words:Derivative; Monotonicity; Theorem of mean; Taylor formula; Jensen Inequality。
2012级高三数学培优资料(教师版)泰勒公式与拉格朗日中值定理在证明不等式中的简单应用泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。
泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数]31[-.所以泰勒公式能很好的集中体现高等数学中的“逼近”这一思想精髓。
泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。
但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 泰勒公式知识:设函数()f x 在点0x 处的某邻域内具有1n +阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:()f x =()0f x +()0'f x 0(x -x )+()0f''x 2!02(x -x )+⋅⋅⋅+ ()()0n f x n!0n (x -x )+()n R x ,其中()n R x =()(1)(1)!n f n ξ++10)(+-n x x 称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式,即()f x = ()0f +()0'f x +()02!f''2x +⋅⋅⋅+()()0!nf n nx +0()n x . 利用泰勒公式证明不等式:若函数)(x f 在含有0x 的某区间有定义,并且有直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0)(x fn ,则有公式)()(!)()(!2)()(!1)()()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=Λ在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥Λ或)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤Λ1、 证明: ).11(,32)1ln(32<<-+-≤+x x x x x 证明 设)11)1ln()(<<-+=x x x f ( 则)(x f 在0=x 处有带有拉格朗日余项三阶泰勒公式 )11()1(432)1ln(4432<<-+-+-=+ξξ x x x x x 0)1(444≤+-ξx Θ 32)1ln(32x x x x +-≤+∴ 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x 在0x 处展开,然后判断余项)(x R n 的正负,从而证明不等式.对于欲证不等式中含有初等函数、三角函数、超越函数与幂函数结合的证明问题,要充分利用泰勒公式在00x =时的麦克劳林展开式,选取适当的基本函数麦克劳林的的展开式,对题目进行分析、取材、构造利用. 2、 证明不等式:316x x -≤sin x . 2、不等式左边是三次二项式的初等函数,右边是三角函数,两边无明显的大小关系 。
这时我们可用sin x 在00x =的二阶麦克劳林公式表示出来,然后进行比较判断两者的大小关系。
证明31()sin 6f x x x x =-+,(0)0f =,21'()cos 12f x x x =-+,'(0)0f =,''()sin f x x x =-+,''(0)0f =,'''()cos 1f x x =-+,'''()cos 1f ξξ=-+ 当3n =时,()f x 的泰勒展式为:331()000(1cos )()3!f x x x o x θ=+++-⋅+ ⇒()f x =331(1cos )()6x x o x θ-+≥0 (x ≥0, ξ≤x θ,0<ϕ<1)所以x ≥0,,有 316x x -≤sin x . 在含有无理函数与幂函数结合的不等式证明问题中,它们之间没有明显的大小关系。
如果用常规方法(放缩法、比较法,代换法等),我们很难比较它们之间的大小关系,但这时用泰勒公式却能轻易解答.3、 证明不等式:2128x x +-(x >0). 对于此题,若我们对不等式两边同时平方,虽可以去掉根号,但x 的次数却提高了2次,这还是难以比较他们之间的大小关系,但若用泰勒公式却可以轻易解答.证明 设()f x =(0)1f =,121'()(1)2f x x -=+,1'(0)2f =,321''()(1)4f x x -=-+,1''(0)4f =-,523'''()(1)8f x x -=+代入0x =02x - 28x +5331(1)16x x θ-+ (0<θ<1)∵ x >0, ∴ 531(1)16x θ-+3x >0 所以 2128x x +-x >0).在不等式的证明问题中,若题目中出现了一阶导数、二阶导数、初等函数、三角函数或超越函数等与幂函数结合时,可优先考虑泰勒公式在0x =0时的麦克劳林表达式。
当然能做好此类题的前提条件是要对一些基本函数的麦克劳林表达式熟悉.微分)(Lagrange 中值定理: 若)(x f 满足以下条件:(1) )(x f 在闭区间],[b a 内连续 (2) )(x f 在开区间),(b a 上可导 则 ab a f b f f b a --='∍∈∃)()()(),(ξξ 4、 若)()(1,011y x py y x y x py p x y p p p p -<-<-><<--则 分析 因为,0x y <<则原不等式等价于11--<--<p p p p px yx y x py)1(>p .令p t x f =)(,则我们容易联想到Lagrange 中值定理yx y f x f y x f --=-)()())(('ξ.证明 设p t t f =)(,显然],[)(x y t f 在满足Lagrange 中值定理的条件则 ,)()()(),(y x y f x f f x y --='∍∈∃ξξ 即yx y x p p p p ---=1ξ111,),(---<<∴<<∴∈p p p px p py x y x y ξξξ Θ )()(11y x py y x y x py p p p p -<-<-∴-- 5、已知函数xxx x f +-+=1)1ln()(, 的极小值求)()1(x f ; abb a b a -≥->1ln ln ,0,2求证:)若(2)1()(),1)()1(5x xx f x f +='∞+-,的定义域为(函数、.0)0()(0==f x f x 取得极小值时,函数易得当(2))0(1ln ,1)1ln(11>-≥+≥+->x xx x x x x x 可得时,)知,当由( )0(11ln >-≥x x x 即,因为b ab a b a ln ln ln ,0,=->所以abb a -≥1ln 。
故得证 (也可用Lagrange 中值定理来证)6、已知函数的最大值;求函数x x f x g x x f -+==)1()()1(,ln )(22)(2)()(02ba ab a a f b f b a +->-<<时,求证:)当( 解:x x x x f x g -+=-+=)1ln()1()(),1((+∞-∈xxxx x g +-=-+='1111)( 0)(,0,0)(,01<'>>'<<-x g x x g x 时当当 0.)(0为取得最大值,且最大值时,故当x g x =)0(1ln ),0(1ln ),1()1ln(12>-≥->-≤->≤+x x x x x x x x x 得)知)由((bab b a b a b a x -=-≥-=1ln ,得令 0)())(()()(2))(()(2222222222>+--=+--+-=+---b a b b a a b b a b a b ab b a a b b a a b a b a b 2222)(2)()(.)(2ba ab a a f b f b a a b a b a b +->-+->-故所以评注:本题得到不等式)1()1ln(->≤+x x x 与不等式)1)(1ln(1->+≤+x x x x构成经典不等式,即)1()1ln(1->≤+≤+x x x x x.7、已知2ln )()2(2)()(0,0,ln )(a b ba gb g a g b a x x x g -<+-+<<<=求证:设 解析:)2ln(22ln ln )2(2)()(ba b a b b a a b a g b g a g ++⋅-+=+-+ba bb b a a a +++=2ln2ln由经典不等式),01()1ln(≠->≤+x x x x 且 及021,02,0<-<->-<<bba a ab b a 得因此,2)21ln(2ln 2ln a ab a a b a b a b a a -->-+-=+-=+,2)21ln(2ln 2ln a a b b b a b b a b a b -->-+-=+-=+ 故022)2()2(2ln 2ln=-+-=--⋅+--⋅>+++ab b a b b a b a a b a b a b b b a a a 又2ln 2ln )(2ln 2ln 2ln 2ln ,22a b b a b a b b a b b b b a a b a b b b a a a b b a b a a -<+-=+++<++++<+ 综上所述,得2ln )()2(2)()(0a b ba gb g a g -<+-+< .)()1.(1ln )(8的最大值求、已知x f x x x f +-=()),2()1(2)12)(1(ln 33ln 22ln 2*222222N n n n n n n n ∈≥++-<+++Λ求证:(1)略(2))0(11ln )0(01ln 1>-≤>≤+-x xx x x x x ,)知由( 所以22222322211311211ln 33ln 22ln nn n -++-+-<+++ΛΛ))1(1431321()1()13121()1(222+++⨯+⨯--<+++--=n n n n n ΛΛ )1(2)12)(1()1121()1(++-=+---n n n n n ),2(*N n n ∈≥9、求证:)()211()811)(411)(211(*2222N n e n ∈<++++Λ要证明原不等式,就要证明1)]211()411)(211ln[(222<+++nΛ 即1)211ln()411ln()211ln(222<+++++n Λ构造函数[])0()()(,1,0,)1ln()(2f x f x f x x x x f <∈-+=递减,故易得则有x x <+)1ln(2。