高速双体船RCS运动分析
- 格式:pdf
- 大小:3.05 MB
- 文档页数:29
⾼速穿浪双体船船型及性能研究_何义(1)⾼速穿浪双体船船型及性能研究*何义赵连恩(哈尔滨⼯程⼤学船舶与海洋⼯程系,哈尔滨150001)摘要穿浪双体船(WPC)是在⼩⽔线⾯双体船和⾼速双体船的基础上发展起来的⼀种新型⾼性能船,它保留了SWATH 船型的低阻⾼速、甲板⾯积宽敞等优点,同时融合了深V 船型优良耐波性作者对穿浪双体船的船型及阻⼒和耐波性等⽅⾯进⾏了研究关键词穿浪双体船;耐波性;阻⼒分类号 U 661.3Study of Form and Performance of High SpeedWave Piercing CatamaranHe Yi Zhao Lianen(Dept.of Naval Architecture and Ocean Eng.,Harbin Eng ineering U niversity ,Harbin 150001)Abstract Wave piercing catamaran is a new type of high speed multi-hull ship w hich is different from conventional high speed catamaran.In this paper the hydrody -namic research of w ave piercing catamaran is described.It includes the study of resis -tance and seakeeping perform ance.The results are compared w ith those of round-bilge and deep-Vee hulls.Key words wave piercing catamaran;seakeeping;resistance图1 艇体型线图0 引⾔穿浪双体船(WPC)是80年代在⼩⽔线⾯双体船(SWATH)和⾼速双体船的基础上发展起来的⼀种新型⾼性能船,它保留了SWATH 船型的低阻⾼速、甲板⾯积宽敞等优点,同时融合了深V 船型优良耐波性,克服了SWATH 船⽚体⽆储备浮⼒和空间⼩等缺点因此WPC 具有⾼效节能,综合性能优良,建造⼯艺简单,使⽤成本低,技术风险⼩等特点,已为许多先进国家所采⽤[1]收稿⽇期:1996-05-31* 船舶⼯业国防科技预研基⾦资助项⽬责任编辑:刘⽟明第18卷第4期哈尔滨⼯程⼤学学报 Vol.18, .41997年8⽉ Journal of H arbin Engineering University Aug.,19971 性能与船型1.1 主尺度及⽚体形状在排⽔量已确定的情况下,选择穿浪双体船的长宽⽐L /B ,或确定修长系数L / 1/3,应以付⽒数F 为根据,在F =1.0~3.0的过渡航态范围,其修长系数越⼤则对阻⼒性能越有利,因此相应的长宽⽐L /B 值就越⼤穿浪双体船的容积付⽒数通常在1.5~2.5的范围,较⼤的修长系数可获得较好的阻⼒性能⽚体采⽤深V 形的横剖⾯形状,艏部龙⾻甚⾄可下沉到基线以下,以增加V 形的程度,形成极深V 形,可避免艇艏底部出⽔,从⽽减⼩波浪的拍击⽔线进⾓,根据付⽒数和结构⽅⾯的允许,取得越⼩越好对⾼速轻型穿浪双体船艉底横向斜升⾓,可以根据阻⼒性能和耐波性能来确定,通常采⽤较⼩的的值可获得较⼤的动升⼒,能提⾼艇的快速性能,同时有利于采⽤喷⽔推进器但对于航速较低、排⽔量较⼤的⼤型穿浪双体船,采⽤使后体变平来产⽣有效升⼒的⽅法是不可取的,这是因为升⼒正⽐于尺度的平⽅⽽排⽔量正⽐于尺度的⽴⽅这不仅不能获得所谓的滑⾏特性,改善阻⼒性能,反⽽会使耐波性恶化因此,对于此类船可以采⽤较⼩的艉端收缩系数和较⼤的艉底部横向斜升⾓ 1.2 浮体⼲舷与常规双体船相⽐,WPC 具有较⼩浮体⼲舷,尤其在艏艉两端,⼲舷⼤幅度减⼩,甚⾄为负值,这使得浮体的储备浮⼒沿船长具有合理的纵向分布,以减⼩船体对波浪运动的响应,避免发⽣失速这使穿浪双体船在波浪中具有较⾼的航速,提⾼耐波能⼒,改善船体运动性能,在较⾼的海情下减⼩晕船率,能正常使⽤和发挥武备的威⼒1.3 连接桥和中央船体的形状连接桥和中央船体的形状与船舶在波浪中的运动性能有密切关系连接桥的形状关系到储备排⽔量的分布,因此影响到穿浪双体船的航态控制和耐波性能连接桥的⽔线⾯尖瘦,能提供的附加储备浮⼒很⼩,特别是在靠近艏艉端部连接桥采⽤拱形的横剖⾯形状,有利于减⼩波浪对船体的冲击作⽤,也有利于船体的横向强度中央船体在艏部的龙⾻采⽤下垂的形式,横剖⾯呈深V 形,可缓和在⼤波浪中中央船体艏底部所受到波浪的砰击,同时提供附加的储备浮⼒在⼀般海情下,中央船体不与波浪接触,只有在很⼤的海浪中,其图2 剩余阻⼒系数曲线附加的储备浮⼒可防⽌由于浮体的储备浮⼒不⾜,⽽使船艏过于陷⼊波涛中,以⾄甲板上浪或发⽣埋艏现象1.4 浮体间距浮体间距增⼤,当F r <0.5时,对于静⽔阻⼒的影响,规律性不太明显;当F r >0.5时,⼀般对静⽔阻⼒有利,对耐波性也有利,间距越⼤对艇在横浪中的运动越有利,可使其横向和纵向加速度明显减⼩,特别是在较短横波长的情况下更为有利同时,使甲板⾯积增⼤,有利于舱室布置9 第4期何义等:⾼速穿浪双体船船型及性能研究图3 阻⼒⽐较和甲板载货但是过⼤的浮体间距对船体的横向强度不利,使艇的结构重量增加2 船模试验及结果2.1 船模尺⼨及试验状态试验模型为玻璃钢材料制作,外观光滑平顺,尺度为船模总长1.740m ,⽔线长1.560m ,总宽0.744m ,⽚体宽0.136m ,吃⽔0.036m ,型线图见图1 2.2 试验数据处理2.2.1 阻⼒试验及数据处理阻⼒试验在静⽔中进⾏,试验前对模型重量、吃⽔和浮态等参数进⾏了严格调整,完成了三种排⽔量时,不同航速下阻⼒的测量试验结果见图2 将阻⼒曲线换算成600t 实船的阻⼒曲线,并与同吨位单体船进⾏⽐较,见图32.2.2 耐波性试验及数据处理试验前对重⼼位置和纵横向惯性矩进⾏了仔细调整和校验,完成了迎浪航⾏三种航速不同波长的试验,同时测量记录了纵摇、升沉、艏加速度、艉加速度、波浪增阻,还完成了正横波浪中静⽌横摇试验,测量记录了横摇、升沉值,试验结果见图4,其它结果见⽂献[2] 为了解实船在⼀定海情下的耐波性,需将船模在⽔池规则波试验结果换算成不规则波条件的运动响应,采⽤ITTC 单参数谱,根据试验值可确定幅频响应函数,从⽽计算出不同有义波⾼和航速下对应的运动有义值,计算通过编程在微机上完成图4 耐波性试验曲线3 理论计算由于穿浪双体船⽚体间距⽐较⼤,如计算迎浪情况,可忽略⽚体间的相互影响,细长的⽚体较好地满⾜了切⽚理论的假设,可采⽤切⽚理论进⾏耐波性计算10 哈尔滨⼯程⼤学学报第18卷(a +A 11) Z +A 12 Z +A 13Z +A 12 +A 13 +A 14 =F Zc cos e t +F Zs sin e t(J +A 21) Z +A 22 Z +A 23Z +A 22 +A 23 +A 24 =M c cos e t +M s sin e t⽅程两边除2,满⾜(a +A 11) Z /2+A 12 Z /2+A 13Z /2+A 12 /2+A 13 /2+A 14 /2=F Zc cos e t /2+F Zs sin e t /2(J +A 21) Z /2+A 22 Z /2+A 23Z /2+A 22 /2+A 23 /2+A 24 /2=M c cos e t/2+M s sin e t /2式中, Z Z Z 分别为升沉加速度、速度、位移;分别为纵摇⾓加速度、⾓速度、⾓度;a 船本⾝的质量;J 船本⾝的纵向转动质量;F =F Zc cos e t +F Zs sin e t 是分解成余弦项和正弦项的升沉波浪扰动⼒;M =M c cos e t +M s sin e t 是分解成余弦项和正弦项的纵摇波浪扰动⼒矩;系数A 11,A 12 ,A 21,A 22 是流体动⼒系数,与频率有关其它符号说明参见⽂献[3]由于两⽚体完全对称,因此可按单体船的切⽚理论进⾏⽔动⼒系数计算及求解,但当对该船计算时应做湿表⾯修正,此修正应根据试验进⾏另外,由于艏部的特殊性,也应特殊处理程序说明见⽂献[4] 本计算在单体计算的基础上计算其耐波性能,包括纵摇、升沉、艏艉加速度、波浪增阻等理论计算及试验⽐较见表1表1 穿浪双体船理论计算与试验⽐较(浪⾼2.0m )纵摇/( )升沉/m 艏加/g艉加/g波浪增阻速度/kn 18301830183018301830理论2.331.300.760.700.400.440.160.251.441.85试验2.481.440.850.730.600.450.240.300.951.51理论计算结果接近试验结果,可以作为迎浪时的耐波性预报4 结果分析及结论(1)由剩余阻⼒系数曲线可知(见图2),此船的阻⼒峰现象明显 F r =0.5时不利⼲扰相互叠加,剩余阻⼒达到峰值,阻⼒⽐同吨位单体船⾼10%,⽆效⼲扰点F r 0据有关资料分析,此类船为0.7附近当F r >F r 0以后,剩余阻⼒曲线明显平坦,所以对于⾼速双体船设计状态取在0.7以后与⼀般单体船⽐较,低速时阻⼒性能稍差⼀些,⾼速时阻⼒性较优(2)通过计算600t 穿浪双体船在航速18kn 和30kn ,波⾼为2.0m (4级海情)和3.5m (5级海情)下的耐波性,并与常规圆舭船及深V 船的⽐较可知(见表2,表3):低速时,由于不11 第4期何义等:⾼速穿浪双体船船型及性能研究能充分有效发挥其穿浪性能,因此耐波性较差;当⾼速时,由于船型发挥了穿浪性能,⽚体象尖⼑⼀样穿过波浪,⼩的⽚体⼲舷更增加了其过浪性能,其运动性能除升沉外,普遍优于⼀般船型表2 穿浪双体船耐波性(浪⾼2.0m )纵摇/( )升沉/m 艏加/g艉加/g波浪增阻速度/kn 18301830183018301830穿浪船2.481.440.850.730.600.450.240.300.951.51深V 船2.172.100.430.570.410.580.240.372.483.06圆舭船2.752.560.650.820.620.740.300.422.632.92表3 穿浪双体船耐波性(浪⾼3.5m )纵摇/( )升沉/m 艏加/g艉加/g波浪增阻速度/kn 18301830183018301830穿浪船5.253.871.842.060.830.820.370.573.317.30深V 船4.334.541.141.470.641.030.390.655.439.08圆舭船5.135.331.461.920.831.330.450.745.779.23(3)波浪增阻在各种速度海情下均优于⼀般船型,因此,该船在波浪中可保持⾼航速通过研究表明,穿浪双体船在⾼速时是⼀种耐波性优良的船型,特别适合于车客渡船和其它对耐波性要求较⾼的船型因此,作者认为穿浪双体船是我国⾼速船发展的重要⽅向,具有⼴阔的应⽤前景参考⽂献1 赵连恩⾼性能穿浪双体船的发展与军事应⽤前景 94⾼性能船学术会论⽂西安,19942 哈尔滨⼯程⼤学新型船舶研究室穿浪双体船模型试验报告哈尔滨⼯程⼤学,19933 李积德船舶耐波性哈尔滨:哈尔滨⼯程⼤学出版社,19924 戴遗⼭船舶适航性计算⽅法船⼯科技,1977,(1)12 哈尔滨⼯程⼤学学报第18卷。
第21卷 第2期1998年12月 交通部上海船舶运输科学研究所学报JOU RNAL O F SSSR I V o l .21N o.2D ec .1998高速双体船“飞翼”轮研制综述许统铨 杨春勤 谢克振(运输系统部)摘 要 介绍该船的船型概况,船型设计优化,航行性能评价以及其它关键因素,可供研究设计与推广应用该类船型参考。
关键词 高速双体船;船型设计;航行性能19982421收稿.序言“飞翼”轮是一艘铝合金高速双体船,按内河A 级航区设计,主要航行于长江口吴淞至崇明、长兴、横沙三岛。
1995年完成设计,1996年建造,1997年初投入营运,1997年7月29日通过交通部科技成果暨新产品鉴定。
该轮研制成功结束了我国铝合金高速双体船长期依赖进口的局面。
本文介绍该船的船型概况,主要的研究成果及达到的主要技术经济指标,可供研究设计与推广应用此类船型时参考。
高速双体船具有甲板面积大,布置宽敞,稳性好,吃水浅,操纵灵活,没有水翼船或气垫船那样的易损或复杂部件,使用可靠,维修方便等优点。
近20年该船型发展迅速,在国际高速客船市场上雄踞首位,据统计全球高速船订货总数中高速双体船约占一半。
我国自80年代中期以来的10年中已进口了近百艘高速双体船,大多数分布在珠江三角洲,此外长江三角洲及渤海湾也有若干艘进口双体船在营运。
本船是国内建造的第一艘航速25kn 以上的铝合金双体船。
1 船型概况1.1 船舶主尺度本船属双机双桨铝合金双体船型,船舶主尺度如下:总长31.5m 设计水线长28.8m 总宽9.30m 型宽9.0m 型深3.20m 设计吃水1.35m 片体宽2.52m 设计排水量98.0m 最大航速25.0kn 服务航速23.0kn 旅客总数205名船员定额8名1.2 船舶总体布置船舶总体布置见图1。
全船以主甲板为分舱甲板,其下设置4道水密横舱壁,把每个片体图1 “飞翼”轮总布置简图划分为5个舱,即舵机舱,主机舱,辅助设备舱,船员舱和首尖舱。
海上高速双体风电维护船结构方案及其强度分析随着全球对清洁能源的需求不断增加,风电成为了一种广泛应用的清洁能源。
但随之而来的维护难题也愈发凸显,因此海上高速双体风电维护船就应运而生。
这种船可以快速到达风电场,对风力发电设备进行维护和修理。
本文将介绍海上高速双体风电维护船的结构方案及其强度分析。
1. 结构方案海上高速双体风电维护船是一种具有双体结构的船舶,它由上部和下部两个船体组成。
下部船体负责船体稳定性和浮力提供,上部船体则负责机器设备的安装和操作。
下部船体是一个宽厚的双漂浮体,可以提供足够的浮力和稳定性,减少在风力发电设备维护时的晃动。
双漂浮体中间采用空腔设计,确保船只在任何情况下都能保持浮力平衡,同时增加了防波性能。
上部船体采用全天候船舶的设计,主要用于设备的安装和操作。
上船体在工作时需要稳定,因此在设计上采用了抵抗动力的方式来增加防倾斜性能。
船体内部结构设计合理,便于机器设备的安装,大大提高了船体的适应性。
2. 强度分析为了保证海上高速双体风电维护船的强度和稳定性,在设计时需要对其进行强度分析。
下面将从以下两个角度进行分析。
2.1. 船体受力分析在设计海上高速双体风电维护船时,需要考虑船体所承受的一个最大载荷,即在航行过程中,船体所受的最大作用力。
常见的船体载荷有惯性载荷、水动力载荷、风载荷和重力载荷等。
强度分析的目的就是为了确定船体在承受这些载荷时是否稳定,承受能力是否足够,并在此基础上选择合适的材料和结构。
2.2. 船体安全性分析海上高速双体风电维护船有着复杂的船体结构,在进行设计时需要考虑安全因素。
对于海上高速双体风电维护船而言,涉及到的主要安全因素有抗风能力、防波性能、抗倾斜能力等。
在安全性方面的分析主要是为了保证海上高速双体风电维护船在工作过程中保持平稳、稳定的状态,避免出现意外情况。
综上所述,通过良好的结构设计,并加上恰当的强度及安全性分析,可以保障海上高速双体风电维护船在风力发电设备维护时的安全性和可靠性,同时也可以提高工作效率,减少维护成本。
The mechanics analysis of the catamaran A Physics Thesis Present By Qian TaoDepartment of biology scienceToSchool of Intensive Instruction for Sciences and Arts In partial fulfillment ofThe course University PhysicsNanjing University2004-5Postal code 210089Student ID:双体船原理之力学分析【摘要】双体船是属于排水量型的高性能船舶,这种船型具有高耐波性、优良的操纵性、甲板宽敞、高速等优势. 而双体船之所以具有良好的稳定性和较高的速度与其独特的双体结构有着很大的关系.本文主要通过对双体船的力学分析来阐明双体船上述特点的原理.【关键词】质心、傅汝德数、波浪阻力THE MECHANICS ANALYSIS OF THE CATAMARAN【Abstract】 T he catamaran is a kind of high performance ship that belong to the displacement type .This kind of ship can bear high wave ,can be manipulated much easier. Of course,its deck is spacious,and its speedis high etc. The reason why this kind of ship has so good stability and so high speed is mostly determined by it’s special construction . This text is mainly discuss the mechanics analysis of the catamaran and enucleate the elements of all these characteristics.【Key Words】center of mass 、 Fn 、wave resistance当今社会,交通运输飞速发展,船舶也不再仅仅具有运量大的特点了,随着一批新型船舶的出现,现代舰船的速度得到很大的提高.双体船便是其中的典范,虽说双体船的思想早在19世纪便已提出,但它真正得到飞速发展却是现在.双体船因其优越的性能而得到人们的青睐,下面我将分析双体船的构造特点.以加深对它的理解.一、双体船的良好稳定性之力学分析:1、单体尖底船只航行时保持平衡的条件.已知,船只之所以能够漂浮在水上,是因为它所排出的液块的重量等于它所受的浮力(阿基米德原理)且恰等于船只本身的重量,船只达到受力平衡的缘故.如图所示,船只所受浮力可看成作用在船只所排开的同体积液块的质心(重心)上,这个点称为浮体的浮心.只有浮心B高于浮体的质心(重心)C时,浮体的姿态才能保持稳定.显然,单体船需要将足够的重量安置在底舱,以利于船只稳定.在著名电影”波塞冬号”里那艘著名的客轮――波塞冬号,便是因为压舱物不足而在海啸中倾覆的.2.双体船优良稳定性之分析在这里,为简化条件,减少讨论中的变量,将海面理想化,认为其完全静止.双体船是以两个独立的船体漂浮于水中,其作用效果类似于具有宽阔船体的平底船.当其倾斜时向下倾斜的一侧排水量增多,浮心向该方向移动,这时,浮力与重力组成的力矩将使船体恢复平衡.将双体船进一步简化,抽象成两个完全相同的单体船,两船体之间连以忽略质量的高强度钢板,如图所示:G是质心,两船所受浮力分别为F’,F’’根据上面的分析,有力矩(mg—f")X’和(f’—mg)X’.使船体恢复平衡,这无疑使双体船具有优于单体船的良稳定性.二、.双体船高速之原理分析,首先,同样将海面理想化.假设海面平静.如图,一长50米吃水深度为7米, 船外侧倾角为15°的双体船以80千米每小时的速率航行,.海水的密度为103千克/米3.可知两船体之间的水流快,压强低,,两船体外缘水将产生巨大压力.设海面出为标准大气压P。
第37卷 第3期江苏船舶Vol.37 No.3 2020年6月JIANGSUSHIPJun.202029.6m高速双体风电运维船有限元强度分析周 成1,王志永2,程海刚1(1.无锡东方船研高性能船艇工程有限公司,江苏无锡214082;2.陆军装备部驻沈阳地区军事代表局驻哈尔滨地区第二军事代表室,黑龙江哈尔滨150000)摘 要:以29.6m高速双体运维船结构为研究对象,根据中国船级社(CCS)《海上高速船入级与建造规范》(2015),运用有限元分析法对主船体和连接桥结构的总横强度和扭转强度进行强度评估。
建模时,采用局部嵌入细化网格的模式,即对应力较小区域处采用常规的板格,而对应力集中处采用细化网格,网格大小不超过50mm×50mm,并逐步过渡到常规网格。
通过整船建模以及对局部嵌入细化网格的校核,优化了双体船的结构,为控制船体总重提供了依据。
关键词:双体船连接桥;嵌入局部细化网格;结构优化;有限元分析;风电运维船中图分类号:U661.43文献标志码:ADOI:10.19646/j.cnki.32 1230.2020.03.0030 引言海上风力发电作为可再生资源开发的重要方向之一,已成全球关注的焦点。
随着海上风电设施不断的投入运营,运维船作为专门用于风电场日常维护的船舶,需求量将逐渐增加[1 2]。
目前,国内市场上风电运维船以专业双体船较为适用。
该船型具有兴波阻力小、甲板面积大、稳性好等优点。
与单体船相比,双体船不仅要承受纵向弯曲力矩,同时在连接桥与片体连接处,特别是首尾抗扭箱处还要承受非常大的横向弯曲力矩和扭矩,因此连接桥与片体连接处的强度是双体船结构设计的关键。
高速船船体结构强度不能预留较大的安全余量,应该在应力较大位置作合理的结构加强,这样才能既保证强度满足规范的要求,又能控制住空船重量。
本文以29.6m高速双体风电运维船抗扭箱与片体连接处的结构为研究对象,运用有限元软件进行总横强度和扭转强度核算。
双体船结构的直接计算分析双体船是一种特殊的船舶结构,它由两个平行排列的船体组成,这两个船体之间通过横向的连接结构相互连接。
相比传统的单体船,双体船具有较大的稳定性和抗风浪能力,能够在恶劣的海况下进行航行。
然而,双体船的结构设计较为复杂,需要进行直接计算分析来确定其结构的强度和稳定性。
双体船的结构设计通常需要考虑以下几个方面:船体的构建材料、连接结构的强度、船体的水动力特性和破坏模式等。
直接计算分析是通过数值计算和工程力学原理来评估这些方面的设计要求和性能。
下面将从强度和稳定性两个方面介绍双体船结构的直接计算分析。
首先是强度方面的直接计算分析。
在强度分析中,需要确定双体船结构的承载能力和局部的应力分布。
强度分析可以通过有限元方法进行,其中将船体划分为有限数量的小单元,然后进行数值计算得到各个单元的应力和变形。
通过这些计算结果,可以评估双体船结构在各种工况下的稳定性和强度,为结构设计提供参考。
另外,强度分析还需要考虑各个组件之间的连接方式和强度,以及材料的强度参数等。
其次是稳定性方面的直接计算分析。
在稳定性分析中,需要考虑双体船在静态和动态条件下的稳定性。
静态稳定性指的是船舶在平静水面上的倾覆能力,需要评估双体船的重心位置和浮心位置等参数。
动态稳定性指的是船舶在遇到外部力矩时的倾覆能力,需要考虑船体和船体之间的连接结构对外部力矩的响应,并评估双体船的回复能力。
这些稳定性参数可以通过计算和模拟得到,可以帮助设计者优化双体船的结构和减小倾覆风险。
除了这些方面,直接计算分析还可以应用于双体船的水动力分析和破坏模式分析等。
水动力分析主要是评估双体船在水下行驶时的性能和航行稳定性,可以通过CFD(计算流体力学)分析方法进行,得到水流对船体的作用力和阻力等信息。
破坏模式分析主要是评估双体船在遭受外部冲击时的破坏程度和结构的可靠性,可以通过数值模拟和实验来得到破坏模式和破坏过程。
在进行直接计算分析时,需要对双体船的结构进行精确的几何建模和材料建模,以及预先确定边界条件和加载情况。
期刊网址:引用格式:蒋中沅, 丁江明, 李凌勋, 等. 高速槽道双体艇船型设计与阻力性能评估[J]. 中国舰船研究, 2024, 19(增刊 1): 18–27.JIANG Z Y, DING J M, LI L X, et al. The ship design and resistance performance estimation of high-speed planning tun-nel catamaran[J]. Chinese Journal of Ship Research, 2024, 19(Supp 1): 18–27 (in Chinese).高速槽道双体艇船型设计与阻力性能评估蒋中沅1,丁江明*1,李凌勋1,赵辉21 武汉理工大学 船海与能源动力工程学院,湖北 武汉 4300632 中国舰船研究设计中心,上海 201108摘 要:[目的]槽道双体艇是一种中部贯通含有两个滑行片体的特殊滑行艇船型,中部槽道受到气旋抬升作用能使艇体脱离水面达到更高的航速,具有良好的快速性,同时在高速航行时能很快进入稳定状态。
针对高速槽道双体艇的艇型参数化设计与阻力性能评估对于高性能船舶的船型开发与设计具有重要意义。
[方法]采用clamped B 样条曲线定义槽道双体艇的主要型线进行艇体船型参数化构型,并通过STAR-CCM+软件设置多船型方案对比,研究双体艇槽道尺寸和斜升角大小对艇体阻力性能的影响。
[结果]得到比初始设计船型阻力降低17.3%的优选船型方案。
[结论]与同尺度同排水量单体滑行艇对比,结果证明,在中高速工况下,本文所研究的高速槽道双体艇具有更加优良的航行性能。
关键词:槽道艇;参数化设计;船型优选;计算流体力学中图分类号: U661.311文献标志码: ADOI :10.19693/j.issn.1673-3185.03365The ship design and resistance performance estimation ofhigh-speed planning tunnel catamaranJIANG Zhongyuan 1, DING Jiangming *1, LI Lingxun 1, ZHAO hui21 School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology,Wuhan 430063, China2 Shanghai Division, China Ship Development and Design Center, Shanghai 201108, ChinaAbstract : [Objectives ]The tunnel catamaran is a special type of planing craft with two planing bodies con-nected in the middle channel. The central channel is lifted by a cyclone which can lift the hull off the surface of the water to achieve a higher speed. It has good rapidity and can quickly enter a stable state during high-speed navigation. The parametric design and resistance performance estimation of a high-speed planing tunnel catamaran play important roles in the development and design of catamarans.[Methods ]The parameterized configuration of the hull is carried out by defining the main lines of the planing tunnel catamaran hull with a clamped B-spline curve. The influence of the channel size and deadrise angle of the catamaran on its hull res-istance performance is then studied by setting multiple hull designs in STAR-CCM+.[Results ]An optim-ized hull design is obtained with 17.3% resistance reduction compared with the original.[Conclusions ]Compared with a planing hull of the same scale and displacement, this study proves that a high-speed planing tunnel catamaran has superior sailing performance under medium and high-speed working conditions.Key words : planing tunnel catamaran ;parametric design ;ship selection ;computational fluid dynamics (CFD)0 引 言槽道双体艇是一种中部贯通,具有两个滑行片体的特殊滑行艇船型。