2019版七年级数学下册 8.3 同底数幂的乘法学案(新版)苏科版
- 格式:doc
- 大小:86.50 KB
- 文档页数:3
江苏省丹阳市华南实验学校七年级数学下册《第八章幂的运算复习》教案苏科版教学目标:1、能理解并正确运用幂的有关运算性质进行计算.2、通过具体的例子培养学生渗透转化、化归等思想,发展学生推理能力.教学重点与难点:正确运用幂的运算性质进行计算.教学过程:一、知识梳理:1.同底数幂的乘法法则 ,公式 .2.幂的乘方法则 ,公式. 3.积的乘方法则,公式.4. 同底数幂的除法法则 ,公式 .5.任何不等于0的数的0次幂等于 .即a0= .a n-= (a≠0,n是正整数)一、基础练习:1.你知道下列各式错在哪里吗?在横线填上正确的答案:2.填空510)()(xyyx-÷-= =+02)01.0(x=-0)(yx=+-2)(ba=-12)(x二、典型例题:例1例2.计算(3)2019184322222222+------()52aaa=⋅()()()25aaa=-÷-()()93aa=()843xxx=⋅⋅()()()945=-⋅-xyyx()22120092008-=⨯⎪⎭⎫⎝⎛-()______232=-yx()______42=-x()()______332=-÷aa()()()()32323333522221xxxxx-⋅+-+-()()()()xxx-÷÷-32432()()()()()222234xxxxxx--+⋅-÷()01322)14.3(3)21()52(25-+--++-----π()234)()()(3babaab-⨯-÷-20092010)4()25.0()2(-⨯-20092010)2()2)(1(-+-例3.(1)已知210=a 2=4b (其中a,b 为正整数),求a b的值(3).若x =m 2+1,y =3+ m 4,则用x 的代数式表示y 为______ 过程如下:例4 已知909999911,999==N M ,那么M 、N 的大小关系怎样?课后练习: 班级 姓名 学号 得分1. -()32a =_________()23)(x x -⋅-=_________2. ()2322a a ⋅=_________10-2×105÷102-=_________3. ()32_______x x =⋅-x x x ÷÷35=_________4. 用科学记数法表示:1800000=_________ -0.0000018=_________5. 0.252005×2006)4(-=_________;当_________ 时,式子2)9(--x 有意义.6. 若3=m x ,2=n x ,则n m x +=_________,n m x -2=_________ .(二)选择题7. 下列计算正确的是( ) A.30=0 B.31-=-3 C. -32=-9 D. 33=98. 下列计算正确的是( )A. 933a a a =⋅B. ()624a a =C. ()62342x x =-D. ()()76108.1103106⨯=⨯⨯⨯9. 下列运算过程正确的是( )A. 3333+=+x x xB. ()3333+=x xC. 853x x x x =⋅⋅D. ()532x x x -=-⋅10. 已知1纳米=109-米,则35000纳米用科学记数表示应为( )A. 3.5×104米B. 3.5×104-米 C. 3.5×105-米 D. 3.5×109-米11. 在①25)(x x -⋅-②36)()(x x x -⋅-⋅③2332)()(x x ⋅-④[]52)(x --中,结果为10x -有( )A. ①②B. ①④C. ②④D. ③④ 12. 已知b a 、互为倒数,则254)(b a -等于( )A. 2aB. 3bC. 2bD. 3a13.若55a = 2,44b = 3,33c = 4,则a 、b 、c 的大小关系为( )A .b >c >a B. a >b >c C. c >a >b D. a <b <c .14.已知m x = a ,nx = b ,则3m 2nx-的值为( )A.3a 2b -B.32a b - C. 32a b D.32a b.(三)计算题15. 23422225)()()()(2a a a a ⋅-⋅ 16. 345)()()(b a a b b a -⋅-÷-()()()的值求为正整数,且已知n n n x x x n 2223293,52-=17.27335)104()105.2()105(⨯-⨯⨯÷⨯ 18.24230)51()5(2)2()3(---÷-+⨯-+-19.1111111113(2)(0.125)()(8)37-⨯⨯⨯-20.已知2928162mm⨯⨯=,求关于x 的方程5194mx -=的解.(四)解答题21. 已知:a 5=4,b 5=6,c 5=9. (1)b a +25的值;(2)c b 25-的值; (3)求证:c a b +=2.22. 已知a 2=3,b 4=5,c 8=7,求cb a -+28的值. ★ 24. 若1)2(2=--xx ,求x 的值23. 若02)1()12(-=-+m m m ,求m。
江苏省灌南县实验中学七年级数学下册《幂的运算复习》教案 苏科版一、教学目标:1. 能说出同底数幂的乘(除)法、幂的乘方、积的乘方运算性质;2.了解零指数幂和负整数指数幂的意义,并能用科学记数法表示绝对值小于1的数;3.会运用幂的运算性质熟练进行计算;二、教学重难点. 运用幂的运算性质进行计算.三、教学过程:自主学习·一. 梳理知识:①同底数幂的乘法 文字叙述: ;字母表示: . ②幂的乘方法则 文字叙述: ;字母表示: . ③积的乘方 文字叙述: ;字母表示: . ④同底数幂的除法 文字叙述: ;字母表示: . ⑤零指数幂的规定 字母表示: .⑥负整指数幂的规定 字母表示: .二.错题整理:探究新知 一.误区警示,排忧解难.1.你知道下列各式错在哪里吗?在横线填上正确的答案:(1)a 3+a 3=a 6;________ (2)a 3·a 2=a 6; _________ (3)(x 4)4=x 8; _________(4)(2a 2)3=6a 6; _________(5)(3x 2y 3)2=9x 4y 5;_________ (6)(-x 2)3=x 6; _________(7)(-a 6) (-a 2)2=a 8;____(8)(32a )2=92a 2; _________ (9)-2-2=4; _________二.方法指引,融会贯通.1.知识练习:★基础题 计算: (1)x 3·x ·x 2 (2)(a m -1)3 (3)[(x +y )4]5 (4)(-12a 5b 2)3(5)(-2x )6÷(-2x )3 (6)(-3a 3)2÷a 2 (7)(-12) 2 ÷(-2) 3 ÷(-2) -2 ÷(π-2005) 0★提高题 计算:(1)(-x )3·x ·(-x )2 (2)(-x )8÷x 5+(-2x )·(-x )2(3) y 2yn -1+y 3y n -2-2y 5y n -4(4)计算:(-22)3+22×24+(1125)0+||-5-(17)-1★ 拓展题 计算:(1)(m -n )9· (n -m )8÷(m -n )2(2)(x +y -z )3n ·(z -x -y )2n ·(x -z +y )5n2.逆向思维训练:(1)计算: A (-2)2010+ (-2) 2009 B(-0.25)2010×42009(2)已知10m =4,10m =5,求103m +2n 的值.(3)已知:4m = a , 8n = b 求: ① 22m +3n 的值; ② 24m -6n 的值.。
七年级下期数学培优学案(1)同底数幂的乘(除)法、幂的乘方、积的乘方一、同底数幂的乘法1.公式及其推广:m n p m n p a a a a++= 2.公式顺用:例1、计算(1)21n n n aa a ++ (2)232()()x x x -••- (3)432111()()()101010--(4)34(2)(2)(2)x y x y y x --- (5)2132()()()n n a a a ++---练习 231022(1),13m m x x x m m -=-+=若则整式 2(2)2(8)2128,n n n +•-•=-=若则33(3)m a +可以写成(4)2122)2(2)n n n +-+-=为正整数,( 3.公式的逆用例2.2+14=6435(1)a x x x +=-a 若,解关于的方程:2二、幂的乘方1.公式的应用例3.计算 (1)(34()x - (2)34[()]x -练习:计算下列各题253(1)()x x - 2844(2)()()x x 2332222(3)()()(2)y y y y +-2.公式的逆用32231313694.(1)2,3)()2102,103,103253,4324)(),n n n n a b a b x y m n x y x y x y x y x y m n +-+====+=••=+例已知,求(的值()已知求的值()若求的值()若(求的值三、积的乘方1.公式的顺用例5.125计算:()(-x b) 322(2)(2)()ab ab23(3)3()x x --练习:计算2233(1)()()(5)ab a b ab -- 122(2)()()n n n c dc d -452342102533(3)()()()()()a a a a a a a --•+----2.公式的逆用例6.计算10010223(1)()()32- (2) 200320011(0.75)(1)3-练习:22(1)2,3,)n n n x y x y ==已知求(的值 2430,216x y x y +-=•()已知求的值四、拓展100751.23比较与的大小2.试判断10825⨯是几位数?2004200523⨯的个位数字是多少?3.阅读下列材料:为了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,则 2S=2+22+23+…+22012②,②﹣①得 2S ﹣S=22012﹣1,即S=22012﹣1,∴1+2+22+23+…+22011=22012﹣1仿照以上推理,请计算:1+4+42+43 (42011)4.几个相同的数码摆成一个数,并且不用任何数学运算符号(含括号),如果要使摆成的数尽可能的大,该怎样摆呢?如用3个1按上述要求摆成一个数,有如下四种形式:①111;②111;③111; ④.显然,111是这四个数中的最大的数.那么3个2有几种摆法?请找出其中的最大数.5.已知2a =3,2b =5,求23a+2b+2的值6.32)1,x x x +-=已知(求整数的值。
第八章幂的运算课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于 ( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
第八章幂的运算的小结与思考(1)--- [教案]班级____________姓名____________学号___________备课时间: 主备人:教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4 C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
七年级数学下册8.1同底数幂的乘法怎样理解“同底数幂相乘,底数不变,指数相加”素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册8.1 同底数幂的乘法怎样理解“同底数幂相乘,底数不变,指数相加”素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册8.1 同底数幂的乘法怎样理解“同底数幂相乘,底数不变,指数相加”素材(新版)苏科版的全部内容。
怎样理解“同底数幂相乘,底数不变,指数相加”?幂的运算性质的表达式是am·a n =am+n(m,n均为正整数)(1)左边两个幂的底数相同,而且是相乘的关系;右边所得到的一个幂,底数仍不变,指数相加.可见,这一性质由乘法运算降为加法运算(指数相加).对于这一性质,不仅要记住结论,更重要的是掌握结论导出过程。
因为这个推导过程体现了“由特殊到一般的数学思想方法"。
掌握这一方法对于学好数学(当然也包括其他学科)是非常重要的.(2)公式中的字母a既可以表示数,也可以表示单项式,还可表示多项式。
(3)当三个或三个以上同底数幂相乘时,法则仍成立,即a m·a n·a p=am+n+p(m,n,p都是正整数)。
(4)只有“同底数”的幂相乘才能用这个法则。
千万不要出现类似下面的错误: a2·(-a)3=a5。
这里出错的原因是因为这两个底数不同,一个是a,一个是-a,而强用了法则。
(5)注意可逆用公式am+n=a m·a n(m,n都是正整数)。
以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
同底数幂的乘法说课稿——汝城七中朱思敏各位领导、各位老师:大家下午好!首先,感谢濠头学校的领导和老师的精心准备和热情招待,非常感谢七年级1班的班主任陈老师贴心地给我准备了座位表,让我可以加快对学生的认识。
今天我说课的题目是七年级数学下册《同行数据的乘法》,下面,我将从教材分析. 教学目标、教学方法这几个方面进行阐述。
一、教材分析《同底数幂的乘法》是在七年级上册已经学习了有理数的乘方和整式的加减运算的基础上.再对幂的含义的理解、运用和深化。
是为了学习整式的乘法而学习的幂的基本性质。
也是学习整式的乘法的基础,在本章中具有举足轻重的作用。
二、教学目标和重难点.1、知识与技能目标理解同底数幂乘法法则的推导过程,能够运用同底数幂乘法的法则进行有关计算2、过程与方法目标通过学生自主探究、培养学生的观察、发现、归纳、概括的能力。
3、情感与价值目标让学生在合作交流中后感受数学其中的乐趣,激发学生探索创新的精神。
重点:正确理解同底数雾乘法法则难点:正确理解和运用同底数幂的乘三、教学方法根据教学目标,要让学生经历探索之后得出结论,因此,我在教学方法上采用以问题的形式,引导学生进行思考、探索,再通过讨论交流发现性质,通过教师的引导与适当讲授使学生正确理解同底数幂乘法法则,再通过练习巩固,力求突出重点,突破难点,使学生运用知识来解决问题的能力得到进一步提升。
四、教学反思最后,我将对这节课教学的不足之处进行反思:1、教学环节的临时改动。
计划赶不上变化,因为网络问题教学环节中的手机拍照投屏环节没有展现给大家,这是一个遗憾,但也给了我一个感悟,生活中的意外无处不在,那我们能做的就是尽可能地做好发生意外的准备。
2、教学时间观念还需加强。
尽管发生了一些小插曲,但是作为一名教师的我们要牢牢把握好时间,加强时间观念,在最有效的时间里让学生沉浸在知识的海洋里。
以上是我关于“同底数幂的乘法”这一节的说课内容,不足之处、请各位领导老师批评指正,谢谢!。
《同底数幂的乘法》教学目标:1、经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识.2、能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质计算同底数幂的乘法.教学重点:同底数幂的乘法运算法则.教学难点:同底数幂的乘法运算法则的灵活运用.教学过程设计一、复习旧知a n表示的意义是什么?其中a、n、a n分别叫做什么?a n= a× a× a×… a(n个a相乘)25表示什么?10×10×10×10×10可以写成什么形式?10×10×10×10×10 =?式子103×102的意义是什么?这个式子中的两个因式有何特点?二、探究新知1、探究算法103×102=(10×10×10)×(10×10)(乘方意义)=10×10×10×10×10(乘法结合律)=105 (乘方意义)2、寻找规律请同学们先认真计算下面各题,观察下面各题左右两边,底数、指数有什么关系?①103×102= ②23×22= ③a3×a2=归纳规律:底数不变,指数相加.3、定义法则①你能根据规律猜出答案吗?猜想:a m·a n=?(m、n都是正整数)写出计算过程,证明你的猜想是正确的.a m·a n=(aa…a)·(aa…a)(乘方意义)n个a= aa…a(m+n)个a(乘法结合律)=a m+n(乘方意义)即:a m·a n= a m+n(m、n都是正整数)②用自己的语言归纳法则A、a m·a n是什么运算?——乘法运算B、数a m、a n形式上有什么特点?——都是幂的形式C、幂a m、a n有何共同特点?——底数相同D、所以a m·a n叫做同底数幂的乘法.引出课题:这就是这节课要学习的内容《同底数幂的乘法》它的运算法则应该是同底数幂相乘,底数不变,指数相加.幂的底数必须相同,相乘时指数才能相加.例如:43×45=43+5=484、知识应用计算(1)32×35(2)(-5)3×(-5)5练习一例1:计算:(抢答)105×106当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?怎样用公式表示?例2:计算(1)a8·a3·a (2)(a+b)2(a+b)3底数也可以是一个多项式.例3:世界海洋面积约为3.6亿平方千米,约等于多少平方米?练习二下面的计算对不对?如果不对,怎样改正?(1)b5· b5= 2b5()(2)b5+ b5 = b10()(3)x5·x5= x25()(4)y5· y5= 2y10()(5)c· c3= c3()(6)m + m3= m4()。
h
2019版七年级数学下册 8.3 同底数幂的乘法学案(新版)苏科版 学习目标:理解同底数幂的乘法法则的由来,掌握同底数幂相乘的乘法法则;能熟练地运用同底数幂的乘法法则进行计算,并能利用它解决简单的实际问题。
学习重点:同底数幂的乘法法则及其简单应用。
学习难点:理解同底数幂的乘法法则的推导过程。
学习过程:
一、课前预习
任务一 同底数幂的乘法
1.102×103= =10 = 。
2. (-2)3×(-2)2= (21)5×(2
1)4= 3.你发现同底数幂相乘时,底数和指数有什么规律?
4.总结:公式
语言
任务二 举例 1. 计算:(1)32×35 (2)(-5)3×(-5)5
二、课中实施
(一)预习反馈
以小组为单位交流展示预习成果,初步解决预习中的疑难问题问题。
(二)、精讲点拨
【探索发现】
1、103×102= a 4×a 3=
5m ×5n = a m
· a n =_________________ 2、同底数幂的乘法法则:_________________________________________________。
3、想一想:
(1)等号左边是什么运算?_______________________________________
(2)等号两边的底数有什么关系?___________________________________
(3)等号两边的指数有什么关系?___________________________________
h (4)公式中的底数a 可以表示什么?_________________________________
(5)当三个以上同底数幂相乘时,上述法则成立吗?___________________
(6)a m · a n · a p =________________.
【试一试】
例1求:
(1)(-2)8×(-2)7 (2) (a-b )2·(b-a ) (3) (x+y )4(x+y)3
【当堂训练】1、练一练。
(1)2 7 × 23 (2)(-3) 4 × (-3)7
(3)(-5) 2 × (-5)3 × 54 (4) (x+y) 3× (x+y)
拓展训练 1、如果a n-2a n+1=a 11,则n=
2、已知:a m =2, a n =3.求a m +n =?.
3、计算
(1)(x-y )3·(x-y )2·(x-y )5 (2)8×23×32×(-2)8
【火眼金睛】
判断下列各式是否正确,不正确的加以改正:
(1)x 2·x 4=x 8 ( ) (2)x 2+x 2=x 4 ( )
(3)m 5·m 6=m 30 ( ) (4)m 5+m 6=m 11 ( )
(5)a ·a 2·a 4=a 6 ( ) (6)a 5·b 6=(ab)11 ( )
(7)3x 3+x 3=4x 3 ( ) (8)x 3·x 3·x 3=3x 3 ( )
三、限时作业
1、计算
(2)x 3·x 2·x= ; (4)y 5·y 4·y 3= ;
(6)10
·102·105= ;
2.下列四个算式:①a6·a6=2a6;②m3+m2=m5;③x2·x·x8=x10;④y2+y2=y4.其中计算正确的有(• ) A.0个 B.1个 C.2个 D.3个
2.m16可以写成()
A.m8+m8 B.m8·m8 C.m2·m8 D.m4·m4
3.下列计算中,错误的是()
A.5a3-a3=4a3 B.2m·3n=6 m+n
C.(a-b)3·(b-a)2=(a-b)5 D.-a2·(-a)3=a5
4.若x m=3,x n=5,则x m+n的值为()
A.8 B.15 C.53 D.35
5.如果a2m-1·a m+2=a7,则m的值是()
A.2 B.3 C.4 D.5
7.计算:-22×(-2)2=_______.
8.计算:a m·a n·a p=________;(-x)(-x2)(-x3)(-x4)=_________.
9.3n-4·(-3)3·35-n=__________.
10.若82a+3·8b-2=810,则2a+b的值是__________.
11.计算下列各题:
①-x5·x2·x10②(-2)9·(-2)8·(-2)3③10m·1000
欢迎您的下载,资料仅供参考!
h。