数据拟合方法
- 格式:docx
- 大小:75.30 KB
- 文档页数:8
数据拟合方法研究一、线性回归拟合方法线性回归拟合是最常见的数据拟合方法之一、其基本思想是建立一个线性模型,通过最小二乘法求解模型参数,使模型的预测结果与实际数据之间的误差最小化。
线性回归模型具有简单的形式和可解析的解,适用于解决线性关系的问题。
二、非线性拟合方法如果实际数据与线性模型之间存在非线性关系,线性回归模型就无法准确拟合数据。
这时需要使用非线性拟合方法。
常用的非线性拟合方法有多项式回归、指数函数拟合、对数函数拟合等。
这些方法通过调整模型参数,使模型能更好地逼近实际数据,建立更准确的拟合模型。
三、曲线拟合方法有些数据与线性模型或非线性模型都无法准确拟合,可能需要使用曲线拟合方法。
曲线拟合方法将数据与曲线进行对比,通过调整曲线参数,使曲线与实际数据尽可能接近。
常见的曲线拟合方法有多项式拟合、样条插值、B样条拟合等。
这些方法可以根据实际问题和数据特点选择合适的曲线模型,并通过调整节点或控制点的位置,优化曲线拟合效果。
四、最小二乘法拟合最小二乘法是一种常用的数据拟合方法,可以用于线性或非线性数据拟合。
最小二乘法的基本思想是最小化观测数据与拟合函数之间的残差平方和,即使得模型的预测结果与实际数据之间的误差最小化。
最小二乘法不仅可以用于拟合直线或曲线,还可以用于拟合多项式函数、指数函数、对数函数等。
五、贝叶斯拟合方法贝叶斯拟合方法是一种基于贝叶斯统计学理论的数据拟合方法。
贝叶斯拟合方法将参数的不确定性考虑进来,通过概率分布描述参数的可能取值范围,并通过贝叶斯公式更新参数的后验概率。
贝叶斯拟合方法可以更准确地估计参数的置信区间,并提供更可靠的模型预测。
综上所述,数据拟合方法包括线性回归拟合、非线性拟合、曲线拟合、最小二乘法拟合和贝叶斯拟合等。
不同的拟合方法适用于不同类型的数据和问题。
在实际应用中,需要结合数据的特点和问题的要求,选择合适的拟合方法,并通过调整模型参数,使拟合模型能准确地描述数据的变化趋势。
物理实验技术使用中如何进行数据拟合与曲线拟合在物理实验中,数据拟合与曲线拟合是一项非常重要的技术。
通过对实验数据进行拟合,我们可以得到更准确的实验结果,进一步理解和解释实验现象。
本文将介绍物理实验中如何进行数据拟合与曲线拟合的常用方法和技巧。
一、数据拟合的基本概念与方法数据拟合是指根据一组离散的实验数据点,找到能够最好地描述这些数据点的某种函数形式。
常用的数据拟合方法有最小二乘法和非线性最小二乘法。
1. 最小二乘法最小二乘法是一种最常用的线性数据拟合方法。
它通过寻找最小化残差平方和的参数值,来确定拟合函数的参数。
残差是指实验数据和拟合函数值之间的差异。
在使用最小二乘法进行数据拟合时,首先需要确定拟合函数的形式。
然后,将实验数据代入拟合函数,并计算残差平方和。
通过对残差平方和进行最小化,可以得到最佳的拟合参数。
2. 非线性最小二乘法非线性最小二乘法是适用于非线性拟合问题的方法。
在非线性拟合中,拟合函数的形式一般是已知的,但是函数参数的确定需要通过拟合实验数据来进行。
非线性最小二乘法通过迭代寻找最小化残差平方和的参数值。
首先,假设初始参数值,代入拟合函数,并计算残差。
然后,根据残差的大小,调整参数值,直到残差平方和最小化。
二、曲线拟合的常用方法与技巧曲线拟合是一种在实验中常见的数据处理方法。
例如,在光谱实验中,我们常常需要对谱线进行拟合,来确定峰的位置、宽度等参数。
1. 多项式拟合多项式拟合是一种常用的曲线拟合方法。
多项式可以近似任何函数形式,因此可以适用于不同形状的实验数据曲线。
在多项式拟合中,我们根据实验数据点的分布情况,选择适当的多项式次数。
通过最小二乘法,确定多项式的系数,从而得到拟合曲线。
2. 非线性曲线拟合非线性曲线拟合适用于实验数据具有复杂形状的情况。
拟合函数的形式一般是已知的,但是参数的确定需要通过拟合实验数据来进行。
非线性曲线拟合的方法类似于非线性最小二乘法。
通过寻找最小化残差平方和的参数值,可以得到拟合曲线的形状和特征。
第四章 数据拟合法在科学实验和生产实践中,有许多函数关系仅能用由实验或观测得到的一组数据表(,)(0,1,,)i i x y i m =来表示,例如某种物质的化学反应,能够测得生成物的浓度与时间关系的一组数据表.而它们的解析表达式)(t f y =是不知道的。
但是为了要知道化学反应速度,必须要利用已知数据给出它的近似表达式,有了近似表达式,通过求导数便可知道化学反应速度。
可见已知一组数据求它的近似表达式是非常有意义的.如何求它的近似表达式呢?第二章介绍的插值方法是一种有效的方法.但是由于数据(,)(0,1,,)i i x y i m =是由测量或观测得到的,它本身就有误差,作插值时一定要通过型值点),(i i y x 似乎没有必要;其次当m 很大时,采用插值(特别是多项式插值)很不理想(会出现龙格现象),非多项式插值计算又很复杂。
为此,本章介绍一种“整体”近似的方法,即对于给定的数据(,),0,1,,i i x y i n =,选一个线性无关函数系)(,),(),(10x x x n ϕϕϕ ,以它们为基底构成的线性空间为{}0span (),,()n x x ϕϕ=Φ.在此空间内选择函数()()nj j j x x ϕαϕ==∑其中(0,1,,)j j n α=为待定常数。
要求它逼近真实函数)(x f y =的误差尽可能小,这就是数据拟合问题.§1 最小二乘法一、最小二乘法设有数据(,),0,1,,i i x y i m =,令()(),0,1,,ni i i i j j i j r y x y x i m ϕαϕ==-=-=∑.并称Tm r r r r ),,,(10 =为残向量,用)(x ϕ去拟合)(x f y =的好坏问题变成残量的大小问题。
判断残量大小的标准,常用的有下面几种:(1) 确定参数(0,1,,)j j n α=,使残量绝对值中最大的一个达到最小,即i mi r ≤≤0max 为最小。
第二讲 数据拟合方法在实验中,实验和戡测常常会产生大量的数据。
为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。
需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。
数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。
数据拟合方法求拟合函数,插值方法求插值函数。
这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。
例如,在某化学反应中,测–33显然,连续函数关系是客观存在的。
但是通过表中的数据不可能确切地得到这种关系。
何况,由于仪器和环境的影响,测量数据难免有误差。
因此只能寻求一个近拟表达式y = ϕ(t )寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。
数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ϕ作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。
数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。
拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。
而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。
则下一步是确定函数y= a + b x中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。
一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即a +b x k = y k如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为k k y bx a -+的差异(残差)。
数据拟合方法研究数据拟合是数据分析中非常重要的工作,其主要目的是找到最佳的函数形式来描述数据之间的关系。
在实际应用中,数据拟合通常用于模型建立、预测分析、实验设计等领域。
本文将介绍数据拟合的基本概念、常用方法以及其在实际应用中的应用。
一、数据拟合基本概念数据拟合是指通过已有数据的样本值,寻找一个函数形式使其最佳地描述这些数据所表现出的规律。
在拟合过程中,常常涉及到拟合函数的选择、参数的求解以及拟合程度的评价等问题。
拟合函数的选择通常依赖于研究问题的不同以及观测数据的特点。
二、常用的数据拟合方法1.最小二乘法拟合在最小二乘法拟合中,我们试图找到一个函数形式使其预测值与观测值之间的误差平方和最小。
这种方法在拟合过程中,通常需要确定待拟合函数的形式、参数估计以及拟合程度的评价指标等问题。
最小二乘法拟合常用于线性回归、非线性回归以及多项式拟合等问题。
2.最大似然估计拟合最大似然估计拟合是一种常用的参数估计方法,其主要思想是选择使得已观测数据样本概率最大化的参数值。
最大似然估计拟合常用于分布拟合、生存分析、统计模型等领域。
通过最大似然估计拟合,可以推测出数据背后的概率分布模型,从而进行预测和推断分析。
3.核函数拟合核函数拟合是一种非参数拟合方法,其主要思想是通过一系列核函数的线性组合来逼近数据分布。
核函数拟合具有较强的灵活性和拟合能力,适用于各种类型的数据分布,并且能够处理多维数据。
在核函数拟合中,需要选择合适的核函数以及核函数的参数,并通过交叉验证等方法选择最佳模型。
4.贝叶斯拟合贝叶斯拟合是一种基于贝叶斯理论的数据拟合方法,其主要思想是通过先验分布和观测数据来更新参数的后验分布,从而得到参数的估计值。
贝叶斯拟合能够处理参数不确定性、模型不确定性以及过拟合等问题,具有较好的鲁棒性和泛化能力。
三、数据拟合的应用数据拟合在实际应用中有着广泛的应用。
以下是几个典型的应用案例:1.经济学中的数据拟合:在经济学中,数据拟合常常用于建立经济模型以及预测分析。
第讲概率统计模型数据拟合方法分解在概率统计模型中,数据拟合是指通过已有的数据来估计未知的参数,以便建立模型并进行进一步的分析与预测。
数据拟合方法可以分为参数估计和非参数估计两种。
参数估计方法是假设数据服从其中一特定参数分布,通过最大似然估计或最小二乘估计等方法,估计出这些参数的值。
最大似然估计是基于参数的似然函数,通过寻找使得似然函数取最大值的参数值来进行估计。
最小二乘估计是通过最小化观测值与模型预测值之间的平方差来进行参数估计。
这两种方法都可以通过求导数等数学手段来获得估计值的闭式解,从而得到参数的估计结果。
非参数估计方法是不对数据分布做任何假设,直接通过样本来进行估计。
常见的非参数估计方法包括核密度估计、最近邻估计等。
核密度估计是基于核函数的方式,通过将每个样本点周围一定区域内的所有样本点都等权重地加权平均来估计该点的密度。
最近邻估计则是通过找到每个样本点周围一定区域内的最靠近的样本点,以及这些样本点与该点之间的距离,来估计该点的密度。
在数据拟合过程中,可以通过拟合优度检验来评估模型的拟合效果。
常见的拟合优度检验方法有卡方检验和残差分析。
卡方检验是通过计算观测频数和预期频数之间的差异来检验模型的拟合优度。
残差分析是通过分析观测值与预测值之间的差异,来评估模型的拟合效果。
数据拟合方法的选择应根据具体问题的性质和可用数据的特点来确定。
参数估计方法适用于已知数据分布的情况,且假设其中一特定参数分布是合理的。
非参数估计方法适用于数据分布未知或无法假设特定参数分布的情况。
总之,数据拟合是概率统计模型中的重要步骤,通过参数估计和非参数估计方法,可以对数据进行拟合,建立相应的模型,并进行进一步的分析与预测。
在选择拟合方法时,应根据具体问题的性质和数据的特点来确定适用的方法,并通过拟合优度检验来评估模型的拟合效果。
数据拟合的常用方法
数据拟合是统计学中一种基本的分析方法,用来根据以前观测到的数据,推断未知数
据的未来趋势和分布情况。
它可以让研究者更好地了解存在于集合数据中的规律及其变化,并且提出有用的结论。
通常,可以使用以下五大常用拟合方法来进行拟合:
(1)普通最小二乘法:普通最小二乘法(OLS)是一种用于数据拟合的常见方法,即
求解一组数据的实际值和预测值的最小误差的方法。
它根据所给的参数和坐标点的坐标绘
制出一个模型,然后拟合出合适的模型,并计算坐标点的误差。
(2)逐步回归:逐步回归也称为自动回归,是一种特殊的最小二乘回归方法,其主
要思想是可以从一系列常量开始,一次一次加入变量,直到变量不再显著,然后停止。
一
般来说,它可以更快地找到数据拟合最佳模型。
(3)多项式拟合:多项式拟合是利用给定的数据点拟合适合的数学模型的方法,重
点在于选择最佳的模型参数使得拟合的模型更准确,而不是任意地估计一组模型参数。
(4)对数拟合:对数拟合是指将一组实际数据样本点连续地用一条它们之间的唯一
直线连接起来。
利用对数拟合回归方法,可以拟合出一条最佳拟合直线,从而得到数据的
准确分析模型。
(5)伽马调节:伽马调节是一种数据变换方法,目的是使得某些模型更好地适应数据,伽马调节也可以用来某些变量的数值标准化,并用于模型的拟合分析。
测绘技术中的数据拟合方法介绍1. 引言测绘技术是一门应用广泛的学科,常用于地图制作、土地测量和建筑设计等领域。
在测绘过程中,我们经常需要进行数据的拟合,以求得准确的结果。
本文将重点介绍测绘技术中常用的数据拟合方法。
2. 最小二乘法最小二乘法是数据拟合中最常用的方法之一。
其基本原理是通过最小化测量值与拟合曲线之间的残差平方和,来确定最佳的拟合曲线。
最小二乘法可以应用于线性和非线性函数的拟合。
其中,线性最小二乘法可以直接利用矩阵运算求解,而非线性最小二乘法则需要通过迭代法求解。
3. 多项式拟合多项式拟合是一种简单而常用的数据拟合方法。
通过将数据拟合为一个多项式函数,可以较好地逼近数据点的分布。
多项式拟合的优势在于其简单计算和广泛应用。
然而,多项式拟合也存在一些问题,例如容易出现过拟合和不稳定等情况。
4. 样条插值样条插值是一种基于插值原理的数据拟合方法。
其基本思想是将数据点之间的区域进行拟合,从而得到一个平滑的曲线。
样条插值可以分为三次样条插值和分段线性插值两种方法。
三次样条插值方法可以保持曲线的光滑性,而分段线性插值方法则更加快速和简单。
5. 曲线拟合对于非线性的数据,曲线拟合可以提供更加准确的结果。
曲线拟合通常利用数学模型来逼近数据点的分布。
常见的曲线拟合方法包括指数曲线拟合、对数曲线拟合和幂函数曲线拟合等。
曲线拟合要求选取合适的拟合模型,并通过最优化方法来求解模型参数。
6. 联合拟合如果数据集中包含多个相互关联的变量,那么联合拟合方法可以提供更好的拟合结果。
联合拟合是在多个拟合模型之间建立联系,并同时进行参数估计的过程。
联合拟合方法可以提高数据拟合的准确性,减小不确定性。
7. 结论通过本文的介绍,我们了解了测绘技术中常用的数据拟合方法。
最小二乘法在线性和非线性拟合中都具有重要的应用。
多项式拟合、样条插值和曲线拟合则分别适用于不同类型的数据。
联合拟合方法可以适用于包含多个变量的复杂数据集。
在实际测绘过程中,根据不同的数据特点和需求,可以选择合适的拟合方法来提高测量结果的准确性和可靠性。
数据拟合算法数据拟合算法是一种利用已知数据点的信息来推测出未知数据点的数学方法。
在现实生活中,我们经常会遇到需要根据已知数据来预测未知数据的情况,比如根据过去的销售数据预测未来的销售额,或者根据已有的医疗数据来判断患者的病情等。
数据拟合算法的目标是找到一个数学模型,使得该模型能够最好地描述已知数据点之间的关系,从而能够用这个模型来预测未知数据点的值。
常见的数据拟合算法有线性回归、多项式拟合、曲线拟合等。
线性回归是一种常用的数据拟合算法,它假设已知数据的关系是线性的,即可以用一个直线来近似表示。
线性回归的目标是找到一条直线,使得该直线与已知数据点的误差最小。
误差可以用最小二乘法来计算,即将所有数据点到拟合直线的距离的平方和最小化。
多项式拟合是另一种常见的数据拟合算法,它假设已知数据的关系可以用一个多项式来描述。
多项式拟合的目标是找到一个多项式,使得该多项式与已知数据点的误差最小。
多项式的阶数可以根据具体问题来确定,一般情况下,阶数越高,拟合的精度越高,但容易出现过拟合的问题。
曲线拟合是一种更加灵活的数据拟合算法,它不仅可以拟合直线和多项式,还可以拟合其他复杂的曲线。
曲线拟合的目标是找到一个曲线,使得该曲线与已知数据点的误差最小。
曲线可以是任意形状的,可以是指数曲线、对数曲线、正弦曲线等。
除了上述常见的数据拟合算法,还有其他一些更加复杂的算法,比如神经网络算法、遗传算法等。
这些算法可以在特定的问题中发挥更好的拟合效果。
数据拟合算法在实际应用中起着重要的作用。
通过对已知数据的拟合,我们可以预测未知数据的值,从而为决策提供依据。
比如在金融领域,我们可以根据历史股票价格的数据来预测未来的股票价格走势,从而指导投资决策。
在医疗领域,我们可以根据已有的病人数据来预测未来患病的风险,从而制定预防措施。
然而,数据拟合算法也有一些限制和注意事项。
首先,拟合的精度受到数据质量和样本数量的影响。
如果数据质量差、样本数量少,拟合的结果可能不准确。
数据拟合excel数据拟合ExcelExcel是一款广泛应用于数据处理和分析的软件,它可以帮助用户快速地进行数据拟合。
数据拟合是指通过一定的数学模型,将实验数据与理论模型进行比较,从而得到最优的拟合结果。
在Excel中,数据拟合可以通过多种方法实现,本文将介绍其中的两种方法:趋势线和回归分析。
一、趋势线趋势线是一种简单的数据拟合方法,它可以帮助用户快速地了解数据的趋势和规律。
在Excel中,趋势线可以通过以下步骤实现:1. 打开Excel,并将数据输入到工作表中。
2. 选中数据区域,然后点击“插入”选项卡中的“散点图”按钮,选择“散点图”类型。
3. 在图表中右键单击数据点,选择“添加趋势线”。
4. 在弹出的对话框中,选择需要的趋势线类型,如线性、指数、对数等。
5. 点击“确定”按钮,即可在图表中看到趋势线。
二、回归分析回归分析是一种更为精确的数据拟合方法,它可以通过建立数学模型,对数据进行更加准确的拟合。
在Excel中,回归分析可以通过以下步骤实现:1. 打开Excel,并将数据输入到工作表中。
2. 选中数据区域,然后点击“数据”选项卡中的“数据分析”按钮。
3. 在弹出的对话框中,选择“回归”分析工具,并点击“确定”按钮。
4. 在“回归”对话框中,输入自变量和因变量的数据区域,并选择需要的回归类型,如线性、多项式等。
5. 点击“确定”按钮,即可在工作表中看到回归分析的结果。
需要注意的是,在进行回归分析时,需要对数据进行预处理,如去除异常值、处理缺失值等,以保证分析结果的准确性。
总结数据拟合是数据分析中的重要环节,它可以帮助用户了解数据的趋势和规律,从而做出更加准确的决策。
在Excel中,数据拟合可以通过趋势线和回归分析两种方法实现,用户可以根据实际需求选择合适的方法。
同时,在进行数据拟合时,需要注意数据的预处理和分析结果的准确性,以保证分析结果的可靠性。
第二讲 数据拟合方法在实验中,实验和戡测常常会产生大量的数据。
为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。
需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。
数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。
数据拟合方法求拟合函数,插值方法求插值函数。
这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。
例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示显然,连续函数关系y (t )是客观存在的。
但是通过表中的数据不可能确切地得到这种关系。
何况,由于仪器和环境的影响,测量数据难免有误差。
因此只能寻求一个近拟表达式y = (t )寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。
数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ϕ作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。
数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。
拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。
为了问题叙述的方假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。
而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。
则下一步是确定函数y= a + b x中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。
一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即a +b x k = y k如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为k k y bx a -+的差异(残差)。
于是全部点处的总误差是 ∑=-+101k k ky bxa这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函数取极小值。
但是在实际求解问题时为了操作上的方便,常常是求a 和b 使得函数∑=-+=1012)(),(k k k y bx a b a F达到极小。
为了求该函数的极小值点,令0=∂∂a F ,0=∂∂bF, 得0)(2101=-+∑=k k ky bxa , ∑==-+1010)(2k k k k x y bx a这是关于未知数a 和b 的线性方程组。
它们被称为法方程,又可以写成⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====101101210110110110k k k k k k k k k k k y x b x a x y b x a 求解这个二元线性方程组便得待定系数a 和b ,从而得线性拟合函数 y = a+ b x 。
下图中直线是数据的线性拟合的结果。
假设拟合函数不是线性函数,而是一个二次多项式函数。
即拟合函数的图形是一条平面上的抛物线,而表中的数据点未能精确地落在这条抛物线上的原因是实验数据的误差。
则下一步是确定函数y = a 0 + a 1 x + a 2 x 2中系数a 0、a 1和a 2各等于多少从几何背景来考虑,就是要以a 0、a 1和a 2为待定系数,确定二次曲线使得表中数据所对应的10个点尽可能地靠近这条曲线。
一般来讲,数据点将不会全部落在这条曲线上,如果第k 个点的数据恰好落在曲线上,则这个点的坐标满足二次曲线的方程,即a 0 + a 1 x k + a 2 x k 2 = y k如果这个点不在曲线上,则它的坐标不满足曲线方程,有一个误差(残差)。
于是全部点处的总误差用残差平方和表示∑=-++=10122210210])[(),,(k k k k y x a x a a a a a F这是关于a 0、a 1和a 2的一个三元函数,合理的做法是选取a 0、a 1和a 2 ,使得这个函数取极小值。
为了求该函数的极小值点,令00=∂∂a F ,01=∂∂a F ,02=∂∂a F得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-++=-++∑∑∑===10122210101221010122100])[(20])[(20])[(2k k k k k k k k k k k k k k x y x a x a a x y x a x a a y x a x a a 这是关于待定系数a 0、a 1和a 2的线性方程组,写成等价的形式为⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++∑∑∑∑∑∑∑∑∑∑∑===========101210124101131010210110110123121010101101221101010k kk k k k k k k k k k k k k k k k k kk k k k y x a x a x a x y x a x a x a x y a x a x a这就是法方程,求解这一方程组可得二次拟合函数中的三个待定系数。
下三. 数据的n 次多项式拟合x x 1 x 2 …… x m f (x ) y 1 x 2 …… y m所给数据来确定下面的函数y = a 0 + a 1 x + a 2 x 2 + …… + a n x n这里要做一个假设,即多项式的阶数n 应小于题目所给数据的数目m (例题中m = 10)。
类似前面的推导,可得数据的n 次多项式拟合中拟合函数的系数应满足的正规方程组如下⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====m k k n k mk k k mk k n mk n kmk n kmk n k mk n k mk km k kmk n k mk k y x y x y a a a x x x x xxx x m 11110121111112111从这一方程组可以看出,线性拟合方法和二次拟合方法是多项式拟合的特殊情况。
从算法上看,数据最小二乘拟合的多项式方法是解一个超定方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++m n m n m m nn n n yx a x a x a a y x a x a x a a y x a x a x a a 22102222221*********( m > n ) 的最小二乘解。
而多项式拟合所引出的正规方程组恰好是用超定方程组的系数矩阵的转置矩阵去左乘超定方程组左、右两端所得。
正规方程组的系数矩阵是一个病态矩阵,这类方程组被称为病态方程组。
当系数矩阵或者是右端向量有微小的误差时,可能引起方程组准确解有很大的误差。
为了避免求解这样的线性方程组,在做多项式拟合时可以将多项式中的各次幂函数做正交化变换,使得所推出的正规方程的系数矩阵是对角矩阵。
四.点集{x 1,x 2,……,x m }上的正交多项式系多项式q 0(x ),q 1(x ),q 2(x ),……,q n (x )在点集{x 1,x 2,……,x m }上的正交 ∑==mi i j i k j k x q x q q q 1)()(),(正交多项式系可以认为是幂函数系:1,x ,x 2,……,x n 通过正交变换而得到的一组函数。
正交多项式系构造的方法如下:q 0(x )=1,q 0(x ) = x – a 1 ,(a 1 = n x mi i /1∑=),q k (x ) = (x - a k ) q k -1(x ) - b k q k-2(x ) ,( k = 2,3,……,n )其中,∑∑=-=-----==mi i k mi i k i k k k k k x q x q x q q q xq a 1211211111)(/)(),/(),(∑∑=-=-----==mi i k m i i k k k k k k x q x q q q q q b 1221212211)(/)(),/(),(五.用正交多项式系组成拟合函数的多项式拟合考虑拟合函数:)()()()(x q a x q a x q a x +++= ϕ,将数据表⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++mm n n m m m n n n n y x q a x q a x q a x q a y x q a x q a x q a x q a y x q a x q a x q a x q a )()()()()()()()()()()()(2211002222221120011122111100 (m > n ) 其系数矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡)()()()()()()()()()()()(21022221201121110m n m m mn n x q x q x q x q x q x q x q x q x q x q x q x q由于多项式q 0(x ),q 1(x ),q 2(x ),……,q n (x )在点集{x 1,x 2,……,x m }上的正交,所以超定方程组的系数矩阵中不同列的列向量是相互正交的向量组。
于是用这一矩阵的转置矩阵去左乘超定方程组左、右两端得正规方程组⎪⎪⎩⎪⎪⎨⎧===),(),(),(),(),(),(11110000y q a q q y q a q q y q a q q n n n n => ⎪⎪⎩⎪⎪⎨⎧===),/(),(),/(),(),/(),(11110000n n n n q q y q a q q y q a q q y q a 其中,∑==m i i k k k x q q q 12)(),(,∑==mi i i k k y x q y q 1)(),(。
因为正规方程组中每一个方程都是一元一次方程可以直接写出原超方程组的最小二乘解,所以拟合函数为)(),(),()(),(),()(),(),()(11110000x q q q y q x q q q y q x q q q y q x n n n n +++=ϕ这一结果与用次多项式拟合所得结果在理论是完全一样的,只是形式上不同、算法实现上避免了解病态方程组。
六.指数函数的数据拟合 问题1:世界人中预测问题下表给出了本世纪六十年代世界人口的统计数据(单位:亿)有人根据表中数据,预测公元2000年世界人口会超过 60亿。
这一结论在六十年代末令人难以置信,但现在已成为事实。
试建立数学模型并根据表中数据推算出2000年世界人口的数量。