第二章_钢的加热转变1
- 格式:ppt
- 大小:6.59 MB
- 文档页数:55
钢的过热与过烧1 概述在锅炉和压力容器制造中,对所用钢材进行热加工和热处理。
此时,如果加热温度控制不当,加热不均会使材料超温,导致材料机械性能恶化。
根据超温的程度和时间长短,钢材会发生脱碳,过热和过烧现象。
过热:钢被加热到Ac3以上某一温度,随着奥氏体晶粒的长大,在粗大的奥氏体晶界上,发生了化学成分的明显变化(主要是硫的偏析),在冷却时,或者在原始奥氏体晶界上保持了硫的偏析,或者产生了第二相(主要是硫化物)质点的网状沉积,导致晶界脆化,使钢的拉伸塑性和冲击韧性明显降低的现象。
开始发生过热现象的温度为过热温度。
不稳定过热(可恢复),稳定过热,如果没有硫的析出,不算是过热。
过烧:钢被加热到接近固相线或固-液两相温度范围内的某一温度后,在十分粗大奥氏体晶界上不仅发生了化学成分的明显变化(主要是硫和磷的偏析),而且局部或整个晶界出现烧熔现象,从而在晶界上形成了富硫,磷的液相。
在随后的冷却过程中,晶界上产生富硫,磷的烧熔层,并伴随着形成硫化物,磷化铁等脆性相的沉积,导致晶界严重弱化,从而剧烈降低钢的拉伸塑性和冲击韧性的现象。
开始发生过烧现象的温度为过烧温度。
2 钢在高温加热中的变化2.1 奥氏体晶粒长大2.1.1 奥氏体晶粒长大速率D-晶粒长大后的平均晶粒直径,K-物性参数,t时间。
2.1.2 奥氏体晶粒长大影响因素2.1.2.1 化学成分和冶炼方法本质晶粒度指钢被加热到Ac3以上某一温度时奥氏体晶粒的大小。
本质粗晶粒钢在冶炼时只用锰铁脱氧(沸腾钢)或用锰铁、硅铁脱氧的钢本质细晶粒钢指在除锰铁和硅铁脱氧外,还用铝作脱氧剂的钢。
2.1.2.2 碳及合金元素含碳量增加,晶粒长大倾向增大。
强烈抑制晶粒长大:Al,Ti,Nb,V,Zr中等抑制晶粒长大:Mo,W,Cr微弱抑制晶粒长大:Cu,Co增加晶粒长大倾向:Mn,P2.1.2.3 加热温度2.1.2.4 保温时间2.2 钢在高温加热时的成分和组织变化2.2.1 第一阶段:钢从Ac3温度到其过热温度以下的温度区间内加热。
一.钢的加热工艺1.为什么钢在轧制或锻造前必须进行加热?钢经过加热,性质会变得比较柔软,具有较大的塑性和较低的强度,容易延伸和变形。
钢对外力的抵抗能力随着温度的提高而减弱。
如以常温为标准,那么800︒C时它将减为常温的30%,1000︒C时减为20%,1100︒C时减为14%,而1200︒C时减为4%左右。
所以为了易于进行轧制或锻造,对钢进行加热是十分必须的,加热温度一般以1100~1200︒C为宜。
轧制经过加热的钢锭和钢坯可以提高轧机产量、减少电耗、减少轧辊的磨损。
2. 对钢的加热有哪些要求?钢的加热是整个热加工生产过程中极为重要的环节,加热操作的好坏对产品质量、数量、节约能源及设备的安全均有重要影响。
因此,钢的加热应当满足下列要求:a)加热温度应该达到规定的温度,且不产生过热和过烧;b)坯料的加热温度应沿长度、宽度和整个断面均匀一致;c)钢在加热过程中所产生的氧化烧损应最少。
3. 什么叫加热温度差,钢加热的允许温差应该是多少,温度差过大有什么不好?加热温度差是指加热终了时在钢锭或钢坯断面上存在的温度不均匀性。
要求钢锭或钢坯在加热终了时沿整个断面温度完全均匀一致是比较困难的。
在保证产品质量和轧制顺利的前提下,允许存在一定的温度差。
允许温差以坯料断面每米厚度(或直径)所具有的温度差来表示。
对于一般轧机,温度差不大于150~300℃/m;对于无缝钢管穿孔,温度差应不大于80~100℃/m 。
对加热温度低和变形抗力较大的坯料,允许的加热温差应取下限。
钢锭或钢坯的加热温度差一般情况下无法捡检,通常只能通过坯料钻孔试验制订合理的加热制度来保证。
但利用先进技术,可以通过建立加热炉数学模型计算出在炉钢坯的截面温度差并在计算机里实时显示出来。
产生加热温度差太大的主要原因是加热速度太快和均热时间太短,应该延长加热时间和均热时间。
4. 什么叫钢的加热制度?在钢的加热过程中,炉子操作必须遵守的各种规定总称为加热制度。
第一章金属固态相变概论1、名词解释固态相变平衡转变惯习面取向关系2、填空题1) 理论是施行金属热处理的理论依据和实践基础。
2)固态金属发生的平衡转变主要有。
3)固态金属发生的非平衡转变主要有。
4)金属固态相变的类型很多,但就相变的实质来说,其变化不外乎以下三个方面:①;②;③。
5)相变时,(举一种)只有结构上变化;只有成分上的变化;只有有序化程度的变化;(举一种)兼有结构和成分的变化。
6)根据界面上两相原子在晶体学上匹配程度的不同,可分为等三类。
7)一般说来,当新相与母相间为界面时,两相之间必然存在一定的晶体学取向关系;若两相间无一定的取向关系,则其界面必定为界面。
3、金属固态相变有哪些主要特征?哪些因素构成相变阻力?哪些因素构成相变驱动力?第二章钢的加热转变1、名词解释奥氏体相变临界点(Ac1,Ac3,Accm, Ar1,Ar3,Arcm)晶粒度起始晶粒度本质晶粒度实际晶粒度2、填空题1)、奥氏体的形成遵循相变的一般规律,即包括和两个基本过程。
2)、晶粒长大是一个自发进行的过程,因为3)、晶粒长大的驱动力是。
4)、影响奥氏体晶粒长大的因素主要有。
5).大多数热处理工艺都需要将钢件加热到以上。
6).奥氏体是碳溶于所形成的固溶体。
8).奥氏体晶粒度有三种:晶粒度、晶粒度、晶粒度。
9). 在相同加热条件下,珠光体的片层间距越小,则奥氏体化的速度。
3、选择题(1) 奥氏体是碳溶解在__________中的间隙固溶体.(a)γ-Fe (b)α-Fe (c)Fe (d)立方晶系(2) 奥氏体形成的热力学条件为奥氏体的自由能______珠光体的自由能.(a)小于(b)等于(c)大于(d)小于等于(3) 奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的.(a)铁原子(b)碳原子(c)铁碳原子(d)溶质原子(4) 渗碳体转变结束后, 奥氏体中碳浓度不均匀, 要继续保温通过碳扩散可以使奥氏体____.(a) 长大 (b) 转变 (c) 均匀化 (d) 溶解(5) 奥氏体的长大速度随温度升高而____.(a) 减小 (b) 不变 (c) 增大 (d) 无规律(6) 连续加热的奥氏体转变温度与加热速度有关.加热速度逾大, 转变温度____, 转变温度范围越小, 奥氏体___.(a)愈低, 愈均匀 (b)愈高, 愈不均匀(c)愈低, 愈不均匀 (d) 愈高, 愈均匀(7) 加热转变终了时所得A晶粒度为_____.(a)实际晶粒度 (b)本质晶粒度 (c)加热晶粒度 (d).起始晶粒度(8) 奥氏体晶粒半径逾小, 长大驱动力___(a)愈大 (b)不变 (c)逾小 (d)无规律4、奥氏体晶核优先在什么地方形成?为什么?5、以共析钢(P组织)为例,说明加热转变中奥氏体的形成机理,并画出A等温形成动力学图。
金相检验人员培训教学大纲目录一级二级三级第一章金属学基础第一节金属与合金的晶体结构一、纯金属的晶体结构了解掌握掌握二、合金的晶体结构了解掌握掌握第二节纯金属及合金的结晶一、纯金属的结晶了解掌握掌握二、合金的凝固了解掌握掌握三、铸锭的组织与缺陷掌握掌握掌握第三节 Fe-C相图一、相图中点、线、区的意义掌握熟练掌握熟练掌握二、相图分析掌握熟练掌握熟练掌握三、铁碳合金的平衡结晶过程及组织掌握熟练掌握熟练掌握第二章钢的热处理基础第一节钢在加热时的转变一、奥氏体的形成过程掌握熟练掌握熟练掌握二、影响奥氏体形成速度的因素掌握熟练掌握熟练掌握三、奥氏体晶粒的长大掌握熟练掌握熟练掌握第二节钢在冷却时的转变一、过冷奥氏体等温转变曲线掌握熟练掌握熟练掌握二、过冷奥氏体连续转变曲线掌握熟练掌握熟练掌握第三节钢的珠光体转变一、珠光体的组织形态与力学性能掌握熟练掌握熟练掌握二、珠光体的形成过程掌握熟练掌握熟练掌握第四节钢的马氏体转变一、马氏体的组织形态与力学性能掌握熟练掌握熟练掌握二、马氏体转变的特点掌握熟练掌握熟练掌握三、影响马氏体转变的因素了解熟练掌握熟练掌握第五节钢的贝氏体转变一、贝氏体的组织形态与力学性能了解掌握熟练掌握二、贝氏体转变的特点了解了解掌握三、魏氏组织的形成了解掌握熟练掌握第六节钢的退火与正火一、完全退火了解掌握掌握二、不完全退火了解掌握掌握三、球化退火了解掌握掌握四、扩散退火了解掌握掌握五、去应力退火了解掌握掌握六、再结晶退火了解掌握掌握七、钢的正火了解熟练掌握熟练掌握第七节钢的淬火与回火一、淬火应力了解熟练掌握熟练掌握二、淬火加热了解掌握掌握三、淬火冷却了解掌握掌握四、冷却方法了解掌握掌握五、钢的淬透性了解熟练掌握熟练掌握六、钢的回火了解熟练掌握熟练掌握七、钢的回火脆性了解熟练掌握熟练掌握第三章钢的宏观检验技术第一节硫印试验了解掌握掌握一、硫在钢中的分布及影响了解掌握掌握二、硫印的基本原理了解掌握掌握三、硫印方法介绍了解掌握掌握第二节酸蚀试验一、试样的选取熟练掌握熟练掌握熟练掌握二、试样的制备熟练掌握熟练掌握熟练掌握三、热酸蚀试验熟练掌握熟练掌握熟练掌握四、冷酸蚀试验熟练掌握熟练掌握熟练掌握五、电解酸蚀试验了解了解了解六、低倍组织缺陷的评定和标准贯彻熟练掌握熟练掌握熟练掌握第三节断口检验一、纵向断口制备方法熟练掌握熟练掌握熟练掌握二、横向断口制备方法熟练掌握熟练掌握熟练掌握三、钢材断口的分类及各种缺陷形态的识别熟练掌握熟练掌握熟练掌握第四节塔形试验一、发纹的形成原因及分布规律了解掌握掌握二、塔形试验介绍了解掌握掌握第四章金相检验技术及设备第一节金相试样的制备一、金相试样的选取熟练掌握熟练掌握熟练掌握二、金相试样的镶嵌熟练掌握熟练掌握熟练掌握三、金相试样的磨制熟练掌握熟练掌握熟练掌握四、金相试样的侵蚀熟练掌握熟练掌握熟练掌握五、现场金相检验熟练掌握熟练掌握熟练掌握第二节暗室技术一、感光材料了解了解了解二、感光胶片的显影和定影熟练掌握熟练掌握熟练掌握三、印相熟练掌握熟练掌握熟练掌握第三节金相显微镜一、显微镜简述熟练掌握熟练掌握熟练掌握二、显微镜的光学原理熟练掌握熟练掌握熟练掌握三、新型金相显微镜简介熟练掌握熟练掌握熟练掌握四、金相显微镜的操作与维护熟练掌握熟练掌握熟练掌握第四节显微硬度计一、显微硬度测试原理了解熟练掌握熟练掌握二、影响显微硬度值的因素了解熟练掌握熟练掌握三、显微硬度试验的应用了解熟练掌握熟练掌握四、新型显微硬度计简介了解熟练掌握熟练掌握五、显微硬度计的维护了解熟练掌握熟练掌握第五章结构钢的金相检验第一节钢中非金属夹杂物的金相检验熟练掌握熟练掌握熟练掌握第二节碳素钢和低合金钢中的基本组织熟练掌握熟练掌握熟练掌握第三节冷变形钢的金相检验熟练掌握熟练掌握熟练掌握第四节易切削结构钢的金相检验了解了解了解第五节合金元素在结构钢中的作用了解掌握熟练掌握第六节低碳马氏体钢的金相检验了解了解掌握第七节低碳低合金钢的金相检验了解掌握掌握第八节调质钢的金相检验掌握掌握掌握第九节大截面用钢的金相检验了解了解了解第十节高强度马氏体钢的金相检验了解了解了解第十一节贝氏体钢的金相检验了解了解掌握第十二节非调质钢的金相检验了解了解掌握第十三节弹簧钢的金相检验了解掌握掌握第十四节双相钢的金相检验了解了解了解第十五节轴承钢的金相检验了解掌握掌握第六章工模具钢的金相检验第一节碳素工具钢的金相检验掌握掌握熟练掌握第二节合金工具钢的金相检验了解掌握熟练掌握第三节模具钢的金相检验了解掌握熟练掌握第四节高速工具钢的金相检验了解掌握掌握第七章不锈钢与耐热钢的金相检验第一节不锈钢的金相检验掌握掌握熟练掌握第二节耐热钢的金相检验了解掌握熟练掌握第八章铸钢和铸铁的金相检验第一节铸钢的金相检验了解掌握掌握第二节铸铁的金相检验掌握掌握掌握第九章钢的显微组织评定第一节钢中非金属夹杂物显微评定熟练掌握熟练掌握熟练掌握第二节金属平均晶粒度测定法熟练掌握熟练掌握熟练掌握第三节低碳钢冷轧薄板铁素体晶粒度测定熟练掌握熟练掌握熟练掌握第四节钢的显微组织评定熟练掌握熟练掌握熟练掌握第五节钢的脱碳层深度测定熟练掌握熟练掌握熟练掌握第六节中碳/合金结构钢马氏体等级了解掌握掌握第七节钢质模锻件金相组织评级熟练掌握熟练掌握熟练掌握第八节钢的共晶碳化物不均匀度评级了解掌握掌握第九节奥氏体不锈钢中的a相面积金相测定了解掌握掌握第十节外科植入用不锈钢了解掌握掌握第十章零件表面处理后的金相检验第一节概述第二节钢的渗碳层检验掌握掌握熟练掌握第三节钢的碳氮共渗层检验了解掌握熟练掌握第四节钢的渗氮层检验了解掌握熟练掌握第五节钢的渗硼层检验了解了解了解第六节钢的渗金属检验了解了解了解第七节表面热处理检验掌握掌握掌握第八节激光加热表面淬火检验了解了解了解第九节火焰加热表面淬火检验了解了解了解第十节热喷涂与喷焊金相检验了解了解了解第十一章焊接件的金相检验第一节焊接接头的宏观检验掌握掌握掌握第二节焊接区域显微组织特征了解掌握掌握第三节几种典型焊接组织识别了解掌握掌握第四节焊接组织侵蚀方法了解掌握掌握第五节焊接接头常见缺陷掌握掌握掌握第十二章非铁金属和粉末冶金制品的金相检验第一节概述第二节铝及铝合金的金相检验一、概述二、铝合金的宏观检验掌握掌握掌握三、铝合金的微观检验了解掌握掌握四、变形铝合金的金相检验了解掌握掌握五、铝合金中主要相的侵蚀特征了解掌握掌握第三节铜及铜合金的金相检验一、概述二、铜合金的宏观检验掌握掌握掌握三、铜合金的微观检验掌握掌握掌握第四节镁合金的金相检验一、概述了解了解了解二、镁合金的宏观检验了解了解了解三、镁合金的显微组织检验了解了解了解第五节钛合金的金相检验一、概述了解了解了解二、金相样品制备和侵蚀了解了解了解三、钛合金金相检验标准了解了解了解第六节硬质合金的金相检验一、概述了解掌握掌握二、金相样品制备和侵蚀了解掌握掌握三、显微组织的鉴别了解掌握掌握四、硬质合金金相检验标准了解掌握掌握第七节铁基、铜基粉末冶金制品的金相检验一、概述了解掌握掌握二、金相样品制备和侵蚀了解掌握掌握三、显微组织的鉴别了解掌握掌握四、粉末冶金制品的金相标准了解掌握掌握第八节轴瓦合金的金相检验一、概述了解了解了解二、金相样品制备和侵蚀了解了解了解三、金相组织了解了解了解四、金相检验标准了解了解了解第十三章缺陷分析第一节铸造缺陷了解熟练掌握熟练掌握第二节锻造缺陷了解熟练掌握熟练掌握第三节热处理缺陷了解熟练掌握熟练掌握第十四章失效分析第一节失效分析的目的和意义了解熟练掌握熟练掌握第二节机械机构失效分析的主要形式了解熟练掌握熟练掌握第三节失效分析的思路与方法了解熟练掌握熟练掌握附:金相检验三级人员研讨专题一、金属材料与结构的断裂及断裂失效分析技术二、腐蚀、磨损失效分析技术三、现代材料分析方法与应用四、失效分析方法论五、材料性能的综合评价六、钢的强韧化原理七、数理统计技术及不确定度评定八、实验室质量体系的建立及运行。
第二章钢的加热转变2.奥氏体晶核优先在什么地方形成?为什么?答:奥氏体晶核优先在α/Fe3C界面上形成原因:①能量起伏条件易满足(相界面能的增加减少,也是应变能的增加减少)②结构起伏条件易满足③成分起伏条件易满足6.钢的等温及连续加热TTA图是怎样测定的,图中的各条曲线代表什么?答:等温TTA图将小试样迅速加热到Ac1以上的不同温度,并在各温度下保持不同时间后迅速淬冷,然后通过金相法测定奥氏体的转变量与时间的关系,将不同温度下奥氏体等温形成的进程综合表示在一个图中,即为钢的等温TTA图。
四条曲线由左向右依次表示:奥氏体转化开始线,奥氏体转变完成线,碳化物完全溶解线,奥氏体中碳浓度梯度消失线。
连续加热TTA图将小试样采用不同加热速度加热到不同温度后迅速淬冷,然后观察其显微组织,配合膨胀试验结果确定奥氏体形成的进程并综合表示在一个图中,即为钢的连续加热TTA图。
Acc 加热时Fe3CⅡ→A 终了温度Ac3 加热时α→A 终了温度Ac1 加热时P→A 开始温度13.怎样表示温度、时间、加热速度对奥氏体晶粒大小的影响?答:奥氏体晶粒度级别随加热温度和保温时间变化的情况可以表示在等温TTA图中加热速度对奥氏体晶粒度的影响可以表示在连续加热时的TTA图中随加热温度和保温时间的增加晶粒度越大加热速度越快I↑由于时间短,A晶粒来不及长大可获得细小的起始晶粒度补充2.阐述加热转变A的形成机理,并能画出A等温形成动力学图(共析钢)答:形成条件ΔG=Ga-Gp<0形成过程形核:对于球化体,A优先在与晶界相连的α/Fe3C界面形核对于片状P, A优先在P团的界面上形核长大:1 )Fe原子自扩散完成晶格改组2 )C原子扩散促使A晶格向α、Fe3C相两侧推移并长大Fe3C残留与溶解:A/F界面的迁移速度> A/Fe3C界面的迁移速度,当P中F完全消失,Fe3C残留Fe3C→AA均匀化:刚形成A中,C浓度不均匀。
2021年国家开放大学电大《机械制造基础》章节测试题参考答案第一章常用工程材料的基本知识边学边练1.金属材料在外力作用下,对变形和破裂的抵抗能力称为()a.硬度b.韧性c.塑性d.强度2.适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是()。
a.洛氏硬度b.以上方法都可以c.维氏硬度d.布氏硬度3.材料的冲击韧度越大,其韧性就()。
a.越差b.难以确定c.无影响d.越好4.金属材料在做疲劳试验时,试样所承受的载荷为()。
a.冲击载荷b.交变载荷c.静载荷d.无规律载荷5.()是α-Fe 中溶入一种或多种溶质元素构成的固溶体。
a.铁素体b.渗碳体c.奥氏体d.珠光体6.珠光体是一种()。
a.机械混合物b.金属化合物c.固溶体d.单相组织金属7.自位支承(浮动支承)其作用增加与工件接触的支承点数目,但()。
a. 0.25%b. 1.4%c. 0.6%d. 2.11%8.灰铸铁中的碳主要是以()形式存在。
a.团絮状石墨b.蠕虫状石墨c.球状石墨9.黄铜是由()合成。
a.铜和锌b.铜和镍c.铜和铝d.铜和硅本章测验一、单选题(每题10 分,共50 分)1.拉伸实验中,试样所受的力为()。
A.冲击载荷B.循环载荷C.交变载荷D.静载荷2.常用的塑性判断依据是()。
A.伸长率和断面收缩率B.断面收缩率和塑性C.塑性和韧性D.伸长率和塑性3.用金刚石圆锥体作为压头可以用来测试()。
A.维氏硬度B.洛氏硬度C.布氏硬度D.以上都可以4.金属疲劳的判断依据是()。
A.抗拉强度B.塑性C.疲劳强度D.强度5.牌号为45 号钢属于()。
A.普通碳素结构钢B.碳素工具钢C.铸造碳钢D.优质碳素结构钢二、判断题(每题10 分,共50 分)6.通常材料的力学性能是选材的主要指标。
(√)7.抗拉强度是表示金属材料抵抗最大均匀塑性变形或断裂的能力。
(√)8.冲击韧性是指金属材料在静载荷作用下抵抗破坏的能力。
(×)9.碳钢的含碳量一般不超过1.5%。
第一章金属学基础知识1.什么是强度什么是塑性衡量这两种性能的指标有哪些各用什么符号表示金属材料在外力作用下抵抗永久变形和断裂的能力,称为强度。
常用的强度指标有弹性极限σe、屈服点σs、抗拉强度σb。
塑性是指金属材料在外力作用下产生永久变形而不破坏的能力。
常用的塑性指标有断后伸长率δ和断面收缩率Ψ。
2.什么是硬度HBS、HBW、HRA、HRB、HRC各代表用什么方法测出的硬度各种硬度测试方法的特点有何不同硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力。
HBS:用淬火钢球作压头时的布氏硬度。
不能测试太硬的材料,一般在450HBS以上的就不能使用。
通常用于测定铸铁、有色金属、低合金结构钢等材料的硬度。
HBW:用硬质合金球作压头的布氏硬度。
用于测试硬度在650HBW以下的材料。
HRA:洛氏硬度,表示试验载荷(60KG),使用顶角为120度的金刚石圆锥压头试压。
用于硬度极高的材料,例如硬质合金。
HRB:洛氏硬度,表示试验载荷(100KG),使用直径的淬火钢球试压。
用于硬度较低的材料,例如退火钢、铸铁等。
HRC:洛氏硬度,表示试验载荷(150KG),使用顶角为120度的金刚石圆锥头试压。
用于硬度很高的材料,例如淬火钢等。
3.简述各力学性能指标是在什么载荷作用下测试的。
静载荷作用下测试:强度、塑性、硬度。
动载荷作用下测试:冲击韧度、疲劳强度。
4.试对晶体、晶格、晶胞、单晶体和多晶体作简要解释。
晶体:物质的原子都是按一定几何形状有规则地排列的称为晶体。
晶格:用于描述原子在晶体中排列规律的空间架格称为晶格。
晶胞:能够完整地反映晶格结构特征的最小几何单元,称为晶胞。
单晶体:如果一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。
多晶体:由许多晶格位向不同的晶粒集合组成的晶体称为多晶体。
5.常见金属晶格类型有哪几种试绘图说明。
①体心立方晶格②面心立方晶格③密排六方晶格6.晶体的各向异性是如何产生的为何实际晶体一般都显示不出各向异性在相同晶格中,由于不同晶面和晶向上的原子排列情况不同,因而原子间距不同,原子间相互作用的强弱不同,从而导致晶体的宏观性能在不同方向上具有不同数值,此现象称为晶体的各向异性。
2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。
因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。
原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。
二、钢在冷却时的组织转变
冷却方式是决定热处理组织和性能的主要因素。
热处理冷却方式分为等温冷却和连续冷却。
等温转变产物及性能:用等温转变图可分析钢在A
线以下不同温度进行等温转变
1
所获的产物。
根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。
~550℃ ,获片状珠光体型(F+P)组织。
[ 高温转变]:转变温度范围为A
1
依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗到细。
其力学性能与片层间距大小有关,片层间距越小,则塑性变形抗力越大,强度
炉冷V
:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与C曲线的
1
转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。
空冷V
:相当于在空气中冷却(正火的冷却方式),它分别与C曲线的转变开
2
始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断。
第一章钢的热处理组织与性能1 概述热处理之所以能使钢的性能发生巨大的变化,主要是由于钢制工件在适当的介质中,经不同的加热与冷却过程,使刚的内部组织发生了变化,化学热处理还改变钢件表层的化学成分,使其表面和基体具有不同的组织,获得所需表里不一的性能。
1.1 钢加热时的组织转变在进行退火、正火和淬火等热处理时,一般将钢加热到临界温度以上,以获得奥氏体。
加热时形成的奥氏体对冷却转变过程,以及冷却时转变产物的组织、性能有显著影响。
奥氏体的形成过程以共析钢为例,加热至AC1以上,钢中珠光体向奥氏体转变,包括以下四个阶段:(如图1—1)1)形核:在温度AC1以上珠光体不稳定。
在铁素体和渗碳体界面上碳浓度不均匀,原子排列不规则从浓度和机构上为奥氏体晶核的形成提供了有利条件,因此优先在界面上形成奥氏体晶核。
2)长大:奥氏体形核后的长大依靠铁素体继续转变为奥氏体和渗碳体的不断溶解。
前者比后者快,所以转变基本完成后仍有部分剩余奥氏体未溶解。
3)剩余渗碳体的溶解:随着时间延长,剩余渗碳体不断溶入奥氏体中。
4)奥氏体的均匀化:渗碳体溶解后,奥氏体中碳浓度不均匀,需要通过碳原子扩散获得均匀的奥氏体。
对亚共析钢和过共析钢而言,温度刚超过AC1只能使珠光体转变为奥氏体,只有在AC1或Acm以上保温足够时间,才能使先共析铁素体或先共析渗碳体完全溶入奥氏体中,获得单项奥氏体组织。
1.2 过冷奥氏体的转变冷至临界温度以下的奥氏体称为过冷奥氏体。
它的分解是一个点阵重构和碳原子扩散再分配的过程。
过冷奥氏体转变分为三种基本类型:珠光体转变(扩散型),贝氏体转变(过渡型),马氏体转变(无扩散型)。
过冷奥氏体等温转变曲线(C—曲线或TTT图)过冷奥氏体等温转变曲线形如拉丁字母中的“C”,故称为C-曲线,亦称TTT(Time Temperature Transformation)图,如图1-2所示。
共析钢C-曲线如图1-2所示,图中最上面的一根水平虚线为钢的临界点A1,下方的一根水平线Ms为马氏体转变开始温度,另一根水平线M f为马氏体转变终了温度。
一.钢的加热工艺1。
为什么钢在轧制或锻造前必须进行加热?钢经过加热,性质会变得比较柔软,具有较大的塑性和较低的强度,容易延伸和变形。
钢对外力的抵抗能力随着温度的提高而减弱。
如以常温为标准,那么800C时它将减为常温的30%,1000C时减为20%,1100C 时减为14%,而1200C时减为4%左右.所以为了易于进行轧制或锻造,对钢进行加热是十分必须的,加热温度一般以1100~1200C为宜。
轧制经过加热的钢锭和钢坯可以提高轧机产量、减少电耗、减少轧辊的磨损。
2. 对钢的加热有哪些要求?钢的加热是整个热加工生产过程中极为重要的环节,加热操作的好坏对产品质量、数量、节约能源及设备的安全均有重要影响。
因此,钢的加热应当满足下列要求:a)加热温度应该达到规定的温度,且不产生过热和过烧;b)坯料的加热温度应沿长度、宽度和整个断面均匀一致;c)钢在加热过程中所产生的氧化烧损应最少.3. 什么叫加热温度差,钢加热的允许温差应该是多少,温度差过大有什么不好?加热温度差是指加热终了时在钢锭或钢坯断面上存在的温度不均匀性.要求钢锭或钢坯在加热终了时沿整个断面温度完全均匀一致是比较困难的。
在保证产品质量和轧制顺利的前提下,允许存在一定的温度差。
允许温差以坯料断面每米厚度(或直径)所具有的温度差来表示.对于一般轧机,温度差不大于150~300℃/m;对于无缝钢管穿孔,温度差应不大于80~100℃/m 。
对加热温度低和变形抗力较大的坯料,允许的加热温差应取下限。
钢锭或钢坯的加热温度差一般情况下无法捡检,通常只能通过坯料钻孔试验制订合理的加热制度来保证。
但利用先进技术,可以通过建立加热炉数学模型计算出在炉钢坯的截面温度差并在计算机里实时显示出来。
产生加热温度差太大的主要原因是加热速度太快和均热时间太短,应该延长加热时间和均热时间。
4。
什么叫钢的加热制度?在钢的加热过程中,炉子操作必须遵守的各种规定总称为加热制度.钢的加热制度的内容包括坯料加热温度、断面允许的温度差、各阶段允许的加热速度、温度制度和加热时间等。
一、钢在加热时的组织转变1.钢在加热和冷却时的相变温度钢在固态下进行加热、保温和冷却时将发生组织转变,转变临界点根据Fe-Fe3C 相图确定。
平衡状态下:当钢在缓慢加热或冷却时,其固态下的临界点分别用Fe-Fe3C相图中的平衡线A1(PSK线)、A3(GS线)、Acm(ES线)表示。
实际加热和冷却时:发生组织转变的临界点都要偏离平衡临界点,并且加热和冷却速度越快,其偏离的程度越大。
实际加热时——临界点分别用Ac1、Ac3、Accm表示实际冷却时——临界点分别用Ar1、Ar3、Arcm表示钢热处理加热的目的是获得部分或全部奥氏体,组织向奥氏体转变的过程称奥氏体化。
加热至Ac1以上时:首先由珠光体转变成奥氏体(P → A);加热至Ac3以上时:亚共析钢中的铁素体将转变为奥体(F → A);加热至Accm 以上时:过共析钢中的二次渗碳体将转变成奥氏体(Fe3CI→ A)2.奥氏体的形成钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
共析钢奥氏体化:热处理加热至Ac1以上时,将全部奥氏体化亚共析钢奥氏体化:原始组织为F+P,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac3以上时,F奥氏体化,组织全部奥氏体化过共析钢奥氏体化:原始组织为P+Fe3C,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Acm以上时,Fe3C奥氏体化,组织全部奥氏体化2、奥氏体的晶粒大小奥氏体晶粒对性能影响:奥氏体的晶粒越细小、均匀,冷却后的室温组织越细密,其强度、塑性和韧性比较高。
[奥氏体的晶粒度]:晶粒度是指多晶体内晶粒的大小,可以用晶粒号、晶粒平均直径、单位面积或单位体积内晶粒的数目来表示。
GB/T8493-1987将奥氏体晶粒分为8个等级,其中1~4级为粗晶粒;5~8级为细晶粒。
[本质粗晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒迅速长大的钢。
[本质细晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒不易长大的钢。