最齐全的模拟电子技术基础参考
- 格式:ppt
- 大小:2.23 MB
- 文档页数:7
模拟电子技术基础试卷及参考答案试卷三(本科)及其参考答案试卷三一、选择题(这是四选一的选择题,选择一个正确的答案填在括号内)(共16分)1.有两个增益相同,输入电阻和输出电阻不同的放大电路A和B,对同一个具有内阻的信号源电压进行放大。
在负载开路的条件下,测得A放大器的输出电压小,这说明A的()a. 输入电阻大b. 输入电阻小c. 输出电阻大d. 输出电阻小2.共模抑制比K CMR越大,表明电路()。
a. 放大倍数越稳定b. 交流放大倍数越大c. 抑制温漂能力越强d. 输入信号中的差模成分越大3.多级放大电路与组成它的各个单级放大电路相比,其通频带()。
a. 变宽b. 变窄c. 不变d. 与各单级放大电路无关4.一个放大电路的对数幅频特性如图1-4所示。
当信号频率恰好为上限频率或下限频率时,实际的电压增益为()。
a. 43dBb. 40dBc. 37dBd. 3dB图1-4 图1-55.LC正弦波振荡电路如图1-5所示,该电路()。
a. 满足振荡条件,能产生正弦波振荡b. 由于无选频网络,不能产生正弦波振荡c. 由于不满足相位平衡条件,不能产生正弦波振荡d. 由于放大器不能正常工作,不能产生正弦波振荡6.双端输入、双端输出差分放大电路如图1-6所示。
已知静态时,V o=V c1-V c2=0,设差模电压增益100vd =A ,共模电压增益mV 5V mV,10,0i2i1c ===V A V ,则输出电压o V 为( )。
a. 125mVb. 1000 mVc. 250 mVd. 500 mV图1-6 图1-77.对于图1-7所示的复合管,假设CEO1I 和CEO2I 分别表示T 1、T 2单管工作时的穿透电流,则复合管的穿透电流CEO I 为( )。
a. CEO2CEO I I =b. CEO2CEO1CEO I I I +=c. CEO1CEO I I =d. CEO12CEO2CEO )1(I I I β++=8.某仪表放大电路,要求R i 大,输出电流稳定,应选( )。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模拟电子技术基础目录模拟电子技术基础目录模拟电子技术基础目录前言教学建议第1章半导体二极管及其应用1.1 半导体物理基础知识1.1.1 本征半导体1.1.2 杂质半导体1.2 pn结1.2.1 pn结的形成1.2.2 pn结的单向导电性1.2.3 pn结的反向击穿特性1.2.4 pn结的电容特性1.3 半导体二极管及其基本电路1.3.1 半导体二极管的伏安特性曲线1.3.2 半导体二极管的主要参数1.3.3 半导体二极管的电路模型1.3.4 二极管基本应用电路1.4 特殊二极管1.4.1 稳压二极管.1.4.2 变容二极管1.4.3 光电二极管1.4.4 发光二极管思考题习题第2章双极型晶体管及其放大电路2.1 双极型晶体管的工作原理2.1.1 双极型晶体管的结构2.1.2 双极型晶体管的工作原理2.2 晶体管的特性曲线2.2.1 共射极输出特性曲线2.2.2 共射极输入特性曲线2.2.3 温度对晶体管特性的影响2.2.4 晶体管的主要参数2.3 晶体管放大电路的放大原理2.3.1 放大电路的组成2.3.2 静态工作点的作用2.3.3 晶体管放大电路的放大原理2.3.4 基本放大电路的组成原则2.3.5 直流通路和交流通路2.4 放大电路的静态分析和设计2.4.1 晶体管的直流模型及静态工作点的估算2.4.2 静态工作点的图解分析法2.4.3 晶体管工作状态的判断方法2.4.4 放大状态下的直流偏置电路2.5 共射放大电路的动态分析和设计2.5.1 交流图解分析法2.5.2 放大电路的动态范围和非线性失真2.5.3 晶体管的交流小信号模型2.5.4 等效电路法分析共射放大电路2.5.5 共射放大电路的设计实例2.6 共集放大电路(射极输出器)2.7 共基放大电路2.8 多级放大电路2.8.1 级间耦合方式2.8.2 多级放大电路的性能指标计算2.8.3 常见的组合放大电路思考题习题第3章场效应晶体管及其放大电路3.1 场效应晶体管3.1.1 结型场效应管3.1.2 绝缘栅场效应管3.1.3 场效应管的参数3.2 场效应管工作状态分析及其偏置电路3.2.1 场效应管工作状态分析3.2.2 场效应管的偏置电路3.3 场效应管放大电路3.3.1 场效应管的低频小信号模型3.3.2 共源放大电路3.3.3 共漏放大电路思考题习题第4章放大电路的频率响应和噪声4.1 放大电路的频率响应和频率失真4.1.1 放大电路的幅频响应和幅频失真4.1.2 放大电路的相频响应和相频失真4.1.3 波特图4.2 晶体管的高频小信号模型和高频参数4.2.1 晶体管的高频小信号模型4.2.2 晶体管的高频参数4.3 晶体管放大电路的频率响应4.3.1 共射放大电路的频率响应4.3.2 共基、共集放大器的频率响应4.4 场效应管放大电路的频率响应4.4.1 场效应管的高频小信号等效电路4.4.2 共源放大电路的频率响应4.5 多级放大器的频率响应4.5.1 多级放大电路的上限频率4.5.2 多级放大电路的下限频率4.6 放大电路的噪声4.6.1 电子元件的噪声4.6.2 噪声的度量思考题习题第5章集成运算放大电路5.1 集成运算放大电路的特点5.2 电流源电路5.3 以电流源为有源负载的放大电路5.4 差动放大电路5.4.1 零点漂移现象5.4.2 差动放大电路的工作原理及性能分析5.4.3 具有电流源的差动放大电路5.4.4 差动放大电路的大信号分析5.4.5 差动放大电路的失调和温漂5.5 复合管及其放大电路5.6 集成运算放大电路的输出级电路5.7 集成运算放大电路举例5.7.1 双极型集成运算放大电路f0075.7.2 cmos集成运算放大电路mc145735.8 集成运算放大电路的外部特性及其理想化5.8.1 集成运放的模型5.8.2 集成运放的主要性能指标5.8.3 理想集成运算放大电路思考题习题第6章反馈6.1 反馈的基本概念及类型6.1.1 反馈的概念6.1.2 反馈放大电路的基本框图6.1.3 负反馈放大电路的基本方程6.1.4 负反馈放大电路的组态和四种基本类型6.2 负反馈对放大电路性能的影响6.2.1 稳定放大倍数6.2.2 展宽通频带6.2.3 减小非线性失真6.2.4 减少反馈环内的干扰和噪声6.2.5 改变输入电阻和输出电阻6.3 深度负反馈放大电路的近似计算6.3.1 深负反馈放大电路近似计算的一般方法6.3.2 深负反馈放大电路的近似计算6.4 负反馈放大电路的稳定性6.4.1 负反馈放大电路的自激振荡6.4.2 负反馈放大电路稳定性的判断6.4.3 负反馈放大电路自激振荡的消除方法思考题习题第7章集成运算放大器的应用7.1 基本运算电路7.1.1 比例运算电路7.1.2 求和运算电路7.1.3 积分和微分运算电路7.1.4 对数和反对数运算电路7.2 电压比较器7.2.1 电压比较器概述7.2.2 单门限比较器7.2.3 迟滞比较器7.2.4 窗口比较器7.3 弛张振荡器7.4 精密二极管电路7.4.1 精密整流电路7.4.2 峰值检波电路7.5 有源滤波器7.5.1 滤波电路的作用与分类7.5.2 一阶有源滤波器7.5.3 二阶有源滤波器7.5.4 开关电容滤波器思考题习题第8章功率放大电路8.1 功率放大电路的特点与分类8.2 甲类功率放大电路8.3 互补推挽乙类功率放大电路8.3.1 双电源互补推挽乙类功率放大电路8.3.2 单电源互补推挽乙类功率放大电路8.3.3 采用复合管的准互补推挽功率放大电路8.4 集成功率放大器8.5 功率器件8.5.1 双极型大功率晶体管8.5.2 功率mos器件8.5.3 绝缘栅双极型功率管及功率模块8.5.4 功率管的保护思考题习题第9章直流稳压电源9.1 直流电源的组成9.2 整流电路9.2.1 单相半波整流电路9.2.2 单相全波整流电路9.2.3 单相桥式整流电路9.2.4 倍压整流电路9.3 滤波电路9.3.1 电容滤波电路9.3.2 电感滤波电路9.3.3 复合型滤波电路9.4 稳压电路9.4.1 稳压电路的主要指标9.4.2 线性串联型直流稳压电路9.4.3 开关型直流稳压电路思考题习题第10章可编程模拟器件与电子电路仿真软件10.1 在系统可编程模拟电路原理与应用10.1.1 isppac10的结构和原理10.1.2 其他isppac器件的结构和原理10.1.3 isppac的典型应用10.2 multisim软件及其应用10.2.1 multisim 8的基本界面10.2.2 元件库10.2.3 仿真仪器10.2.4 仿真分析方法10.2.5 在模拟电路设计中的应用思考题习题第11章集成逻辑门电路11.1 双极型晶体管的开关特性11.2 mos管的开关特性11.3 ttl门电路11.3.1 ttl标准系列与非门11.3.2 其他类型的ttl标准系列门电路11.3.3 ttl其他系列门电路11.4 ecl门电路简介11.5 cmos门11.5.1 cmos反相器11.5.2 其他类型的cmos电路11.5.3 使用cmos集成电路的注意事项11.5.4 cmos其他系列门电路11.6 cmos电路与ttl电路的连接思考题习题参考文献延伸阅读:模拟电子技术基础50问1、空穴是一种载流子吗?空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。
模拟电子技术基础参考文献[1]华中理工大学电子学教研室编,康华光主编.陈大钦副主编(电子技术基础)(模拟部分)第四版.北京.高等教育出版社.1999[2]西安交通大学电子学教研室编,沈尚贤主编(电子技术导论),北京.高等教育出版社,1985[3]谢嘉奎主编:[电子线路](第四版),北京高等教育出版社,1999[4]北方交通大学,冯民昌主编:[模拟集成电路系统](第2版)北京中国铁道出版社1998[5汪惠].王志华编著:[电子电路的计算机辅助分析与设计方法]北京.清华大学出版社1996[6]吴运昌编著:[模拟集成电路原理与应用],广州.华南理工大学出版社,1995[7]沙占友.李学芝.邱凯编著(新型数字电压表原理与应用),北京.国防工业出版社[8]王汝君.钱秀珍编:[模拟集成电子电路(上)(下)].南京,东南大学出版社1993[9]华中理工大学电子学教研室,陈大钦主编.杨华副主编,(模拟电子技术基础),北京,高等教育出版社,2000[10]杨素行主编(模拟电子电路),北京.中央广播电视大学出版社.1994[11]清华大学电子学教研室组编,杨素行主编:(模拟电子技术简明教程)(第二版),北京,高等教育出版社,1998[12]清华大学电子学教研组编,童诗白主编:[模拟电子技术基础](第二版)],北京高等教育出版社,1988[13]清华大学电子学教研组编,童诗白主编(模拟电子技术基础)(上下册)北京人民教育出版社,1983[14]华成英主编(电子技术)北京中央广播电视大学出版社,1996[15]A.J.Peyton V. Walsh: Analogue eletronics with Op Amps:a source book of practical, Campridge university press,New york, 1993[16]Jacob Millman and Arvin Grabel .Microelectronics.2nd ed.New York:Mcgraw-Hill book Company,1987。
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
(完整版)模拟电子技术基础总结第一章晶体二极管及应用电路一、半导体知识1.本征半导体·单质半导体材料是具有4价共价键晶体结构的硅(Si)和锗(Ge)(图1-2)。
前者是制造半导体IC的材料(三五价化合物砷化镓GaAs 是微波毫米波半导体器件和IC 的重要材料)。
·纯净(纯度>7N)且具有完整晶体结构的半导体称为本征半导体。
在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发或产生)(图1-3)。
本征激发产生两种带电性质相反的载流子——自由电子和空穴对。
温度越高,本征激发越强。
+载流子。
空穴导电的本质是价电子依次填补本征晶·空穴是半导体中的一种等效q+电荷的空位宏观定向运动(图1-4)。
格中的空位,使局部显示q·在一定的温度下,自由电子与空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为载流子复合。
复合是产生的相反过程,当产生等于复合时,称载流子处于平衡状态。
2.杂质半导体·在本征硅(或锗)中渗入微量5价(或3价)元素后形成N型(或P型)杂质半导体(N型:图1-5,P型:图1-6)。
·在很低的温度下,N型(P型)半导体中的杂质会全部电离,产生自由电子和杂质正离子对(空穴和杂质负离子对)。
·由于杂质电离,使N型半导体中的多子是自由电子,少子是空穴,而P型半导体中的多子是空穴,少子是自由电子。
·在常温下,多子>>少子(图1-7)。
多子浓度几乎等于杂质浓度,与温度无关;两少子浓度是温度的敏感函数。
·在相同掺杂和常温下,Si的少子浓度远小于Ge的少子浓度。
3.半导体中的两种电流在半导体中存在因电场作用产生的载流子漂移电流(这与金属导电一致);还存在因载流子浓度差而产生的扩散电流。
4.PN结·在具有完整晶格的P型和N型材料的物理界面附近,会形成一个特殊的薄层——PN结(图1-8)。
模拟电子技术基础试卷及参考答案试卷三(本科)及其参考答案试卷三一、选择题(这是四选一的选择题,选择一个正确的答案填在括号内)(共16分)1.有两个增益相同,输入电阻和输出电阻不同的放大电路A和B,对同一个具有内阻的信号源电压进行放大。
在负载开路的条件下,测得A放大器的输出电压小,这说明A的()a. 输入电阻大b. 输入电阻小c. 输出电阻大d. 输出电阻小2.共模抑制比K CMR越大,表明电路()。
a. 放大倍数越稳定b. 交流放大倍数越大c. 抑制温漂能力越强d. 输入信号中的差模成分越大3.多级放大电路与组成它的各个单级放大电路相比,其通频带()。
a. 变宽b. 变窄c. 不变d. 与各单级放大电路无关4.一个放大电路的对数幅频特性如图1-4所示。
当信号频率恰好为上限频率或下限频率时,实际的电压增益为()。
a. 43dBb. 40dBc. 37dBd. 3dB图1-4 图1-55.LC正弦波振荡电路如图1-5所示,该电路()。
a. 满足振荡条件,能产生正弦波振荡b. 由于无选频网络,不能产生正弦波振荡c. 由于不满足相位平衡条件,不能产生正弦波振荡d. 由于放大器不能正常工作,不能产生正弦波振荡6.双端输入、双端输出差分放大电路如图1-6所示。
已知静态时,V o=V c1-V c2=0,设差模电压增益100vd =A ,共模电压增益mV 5V mV,10,0i2i1c ===V A V ,则输出电压o V 为( )。
a. 125mVb. 1000 mVc. 250 mVd. 500 mV图1-6 图1-77.对于图1-7所示的复合管,假设CEO1I 和CEO2I 分别表示T 1、T 2单管工作时的穿透电流,则复合管的穿透电流CEO I 为( )。
a. CEO2CEO I I =b. CEO2CEO1CEO I I I +=c. CEO1CEO I I =d. CEO12CEO2CEO )1(I I I β++=8.某仪表放大电路,要求R i 大,输出电流稳定,应选( )。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
*PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二.半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。