真菌毒素
- 格式:doc
- 大小:260.29 KB
- 文档页数:20
真菌毒素是一些真菌,如曲霉属、青霉属及镰孢属,在生长过程中产生的易引起人和动物病理变化和生理变态的次级代谢产物。
研究证实,真菌毒素可以引起人类和动物的急性或慢性中毒,可损害机体的肝脏、肾脏、神经组织、造血组织及皮肤组织等,部分真菌毒素已被证实具有致癌、致畸、致细胞突变的“三致”作用。
据世界粮农组织(FAO) 报告,全球每年约有25%的农作物遭受真菌及其毒素污染,造成的经济损失每年达数千亿美元。
几种典型的真菌毒素及其危害:迄今发现已有300 种真菌毒素,粮食中主要真菌毒素有黄曲霉毒素、赭曲霉毒素、展青霉素、单端孢霉烯族毒素、玉米赤霉烯酮、伏马毒素等。
不同种类的毒素有各自的特点及危害。
(一)黄曲霉毒素(Aflatoxin, AFT)黄曲霉毒素(AFT)是由黄曲霉和寄生曲霉所产生的一种次生代谢物,具有很强的毒性和致癌性。
AFT是一类结构相似的物质,包括B1,B2,G1,G2,M1,M2,P1,R1等十七种异构体。
在紫外线的照射下可发出荧光,根据荧光颜色的不同,可以把黄曲霉毒素分为B族和G族。
AFT耐热,加热到280℃是才发生裂解而破坏,所以一般的烹调加工很难将其清除。
AFT 在中性、酸性溶液中很稳定,在PH9-10的强碱性溶液中,能迅速分解,产生钠盐,但此反应是可逆的,在酸性条件下又能形成带有荧光的AFT。
1、易受污染的食品黄曲霉毒素对粮食食品的污染非常广泛,主要受污染的食品有:花生及其制品、玉米、棉籽、大米、小麦、大麦及豆类及其制品。
其中花生及其制品、玉米污染严重,其次是大米、大麦,豆类很少受污染。
2、对人体的危害AFT按急性毒性分级属于极毒类,其LD50为0.24~0.32mg/KgBW(雏鸭)对人主要引起急性中毒性肝炎和中毒性脑病。
黄曲霉毒素的慢性中毒发生在高温高湿地区黄曲霉毒素污染严重的地区,表现类似雷耶氏症,如1963年发现于泰国的神经系统疾病,每年泰国有几百名1-13岁的儿童,由于类似于雷耶氏症的急性脑病和内脏脂肪变性而死亡。
真菌毒素知识点总结一、真菌毒素的概念和分类真菌毒素是由真菌生产的一类具有毒性的化合物,可以进入人体、动植物体内,对其产生危害。
真菌毒素通常被分为四大类:毒蛋白类、次生代谢产物类、生物碱类和人工合成的类。
1. 毒蛋白类真菌毒素毒蛋白类真菌毒素是由真菌产生的一类具有蛋白质结构的有毒物质,主要包括霉菌毒素、毒蛋白和细胞壁酶等。
这类真菌毒素通常会导致感染性疾病和过敏反应。
2. 次生代谢产物类真菌毒素次生代谢产物类真菌毒素是由真菌产生的一类具有代谢活性的有毒化合物,主要包括玉米赤霉烯酮、镰刀毒素、黄曲霉素等。
这类真菌毒素通常会导致急性中毒、慢性中毒和致癌。
3. 生物碱类真菌毒素生物碱类真菌毒素是由真菌产生的一类具有碱性结构的有毒物质,主要包括伞菇毒素、麦角毒碱、毒蘑菇素等。
这类真菌毒素通常会导致神经系统中毒和消化系统中毒。
4. 人工合成的类真菌毒素人工合成的类真菌毒素是在实验室中合成的一类具有毒性的化合物,主要用于科研和医药制剂。
这类真菌毒素通常会导致急性中毒和过敏反应。
二、真菌毒素的来源和影响真菌毒素主要来源于一些生长在土壤、植物、食品和饲料中的真菌,如曲霉、麦角毒素、镰刀菌和玉米赤霉烯酮等。
这些真菌毒素会对人体、动植物产生严重的危害,主要表现在以下几个方面:1. 对人体的危害真菌毒素进入人体后会导致中毒、致癌和神经系统损害等,严重影响人体健康。
常见的真菌毒素中毒症状包括:呕吐、腹泻、头痛、发热、皮疹等。
2. 对动植物的危害真菌毒素进入动植物体内后会导致肝脏损害、免疫系统失调和生长发育异常等,严重影响其生存和繁衍。
常见的真菌毒素中毒症状包括:食欲不振、腹泻、发育迟缓、死亡等。
3. 对食品和饲料的危害真菌毒素会污染食品和饲料,导致食品和饲料中毒,严重影响人畜健康。
常见的真菌毒素污染食品有:玉米、大米、小麦、花生、猪肉等。
三、真菌毒素的检测和分析为了保障人畜健康和食品安全,需要对食品和饲料中的真菌毒素进行检测和分析。
食品常见真菌毒素对人类的危害及其预防措施真菌毒素是一种由真菌产生的有毒化合物,存在于食品、饲料、环境和工业生产过程中。
不同的真菌种类产生不同的毒素,其中一些可以对人类健康造成严重的危害。
真菌毒素可以对肝脏、肾脏、神经系统和免疫系统等多个系统造成损害,并且会引起慢性疾病和癌症等健康问题。
常见的食品真菌毒素包括黄曲霉毒素、脱氧雪腐镰刀菌烯醇(又称呕吐毒素)、玉米赤霉烯酮、展青霉毒素等。
真菌毒素对人类的危害性不容忽视,不仅会对人体内脏器官造成不可逆转的损伤,还会导致免疫力下降、生殖障碍、癌症等严重健康问题,特别是对老年人、孕妇、婴幼儿等易感人群的危害更为显著。
因此,科学有效地预防和控制真菌毒素的产生和污染是保障食品安全的重要措施之一。
一、常见真菌毒素的介绍以及对人体的危害1.黄曲霉毒素黄曲霉毒素是由黄曲霉(Aspergillus flavus)产生的一种真菌毒素,常见于玉米、花生、棉籽等作物中。
当这些作物处于高温、高湿的环境中,黄曲霉便易于滋生,从而产生黄曲霉毒素。
黄曲霉毒素在人体中的危害主要体现在两个方面。
一方面,它是一种强烈的致癌物质,对人体的肝脏、胃肠道等器官具有明显的毒性和致癌作用。
长期食用黄曲霉毒素污染的食品,容易导致肝癌、结肠癌等癌症的发生。
另一方面,黄曲霉毒素还会引起急性食物中毒,表现为恶心、呕吐、腹泻等消化道症状,重者可能导致肝脏、肾脏等器官损伤,严重威胁人体健康。
2.脱氧雪腐镰刀菌烯醇脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON),又称呕吐毒素,是一种由镰刀菌属真菌产生的毒素。
该毒素广泛分布于各种农作物中,如小麦、玉米、大麦等。
它是一种强烈的肠胃毒素,可引起恶心、呕吐、腹泻等症状。
此外,它还能影响蛋白质合成、抑制免疫系统等,对人体健康造成极大的威胁。
人类摄入含有脱氧雪腐镰刀菌烯醇的食物后,会引起胃肠道症状,如恶心、呕吐、腹泻等,同时还会出现头痛、乏力、食欲不振等全身症状。
关于真菌毒素安全风险提示
亲爱的顾客们:
为了保障您和家人的健康,我们提醒您注意真菌毒素的安全风险,特别是在存放谷类食品的时候要特别小心。
真菌毒素是指由某些细菌、真菌体或它们的代谢产物所产生的毒性物质。
它是一种挥发性的有机化合物,常出现在在谷类和谷类制品中,如大米、小麦、玉米等。
一些真菌毒素已经被证明对人体有害,长时间摄入高浓度的真菌毒素会导致健康问题,比如头痛、恶心、呕吐、口干、腹泻等症状,更严重的则会导致肝肾损害、免疫毒性及癌症等。
为了减少真菌毒素的风险,以下几点建议供您参考:
1. 注意质量:购买食品时要注意选择有良好信誉的品牌,且要注意食品安全标识和保质期等信息。
2. 存放注意事项:食品存储地方尽量避免湿润、潮湿、高温和阳光直射,切勿在厨房和浴室等潮湿的地方存放食物。
3. 经常性检查:尤其是在气候潮湿或者有雨水的季节,存放食品前一定要检查是否有发霉的情况。
4. 加强烹饪:高温的烹饪可以有效地杀死真菌毒素,烹饪前应先沥干或将食品冲洗干净,再进行加热或煮熟处理。
尽量不要使用已经变质的食品。
希望以上建议能帮您更好地了解真菌毒素的危害,同时
也希望在以后的饮食中您将更加注重食品安全,保障您和家人的健康,谢谢!。
食品安全国家标准食品中真菌毒素限量
一、引言
食品安全是人们日常生活中最为关注的话题之一,而真菌毒素作为食品安全的重要指标之一,对人体健康具有潜在的威胁。
本文将重点探讨食品中真菌毒素的限量标准,以保障公众的饮食安全。
二、真菌毒素简介
真菌毒素是由某些霉菌产生的有毒化合物,主要存在于谷物、坚果、干果等食品中。
常见的真菌毒素包括黄曲霉毒素、赤霉酮、玉米赤霉烯醇等,它们对人体肝脏、免疫系统等器官具有潜在的危害。
三、食品中真菌毒素的限量标准
为了保障公众健康,国家制定了一系列食品安全标准,包括了食品中真菌毒素的限量标准。
根据《食品安全国家标准》,不同食品中真菌毒素的限量标准有所不同,主要包括以下几类:
1.谷物及其制品
–黄曲霉毒素B1的限量标准为:XXXμg/kg
–赤霉酮的限量标准为:XXXμg/kg
2.坚果及其制品
–赤霉酮的限量标准为:XXXμg/kg
–玉米赤霉烯醇的限量标准为:XXXμg/kg
3.干果
–黄曲霉毒素B1的限量标准为:XXXμg/kg
–玉米赤霉烯醇的限量标准为:XXXμg/kg
四、真菌毒素检测方法
为了有效监控食品中真菌毒素的含量,科学家们发展了各种检测方法,其中包括高效液相色谱法、气相色谱法、免疫吸附分析法等。
这些方法能够快速准确地检测食品中真菌毒素的含量,并保障公众的饮食安全。
五、结语
食品安全是人们健康生活的重要保障,食品中真菌毒素的限量标准是保障食品安全的关键之一。
随着科学技术的不断发展,我们相信在不久的将来,将能够更好地监控和管理食品中真菌毒素的含量,为公众提供更加安全的食品。
食品中真菌毒素的检测方法研究随着食品安全问题越来越引起人们的关注,各国的标准也越来越严格。
其中,真菌毒素是一种常见的食品危害物质。
因此,对于食品中真菌毒素的检测方法的研究也就显得十分重要。
本文就对真菌毒素的检测方法进行讨论。
一、真菌毒素简介真菌毒素是由真菌合成的,具有一定毒性的天然化合物。
在我国,农作物中最常见的真菌毒素主要有黄曲霉毒素、赤霉烯酮、玉米赤霉烯酮和致癌物质黄麴酸等。
它们都能对人体健康造成危害,如引起肝癌、胃肠道疾病等。
二、真菌毒素的检测方法1、高效液相色谱法高效液相色谱法可以对多种真菌毒素同时进行检测。
但是,液相色谱法也存在一些局限性,如可能存在共淋巴机能和缺乏标准物质等。
2、毒素联合酶法毒素联合酶法是一种比较新颖的检测方法,具有快速准确、敏感度高等特点。
同时它也能对多种真菌毒素进行检测和鉴定。
3、气相色谱法气相色谱法是化学分离与检测真菌毒素的通用方法,主要用于含量较低的环境或食品污染样品中真菌毒素分析。
然而,气相色谱法存在检测范围和方法的升级需要等问题。
4、质谱法质谱法是一种高灵敏度、高分辨率的检测方法。
它广泛应用于多种真菌毒素检测,具有特异性、灵敏度高等特点。
但是,质谱法也存在样品制备诱因较高和高成本等问题。
三、真菌毒素的检测建议1、在生产环节注重卫生和检测最好的方法是在食品生产过程中加强卫生管理,防止食品被真菌感染。
同时,也应建立完善的食品检测体系。
2、了解真菌毒素的来源和成因了解真菌毒素的来源和成因有助于在食品生产的全部过程中防止真菌污染。
3、选用适当的检测方法由于不同的真菌毒素在不同的检测方法中有不同的处理方式,因此在进行检测和分析时,需要选择适当的方法,从而获得更准确的结果。
四、结论随着人们对食品安全问题的关注不断增强,检测真菌毒素的重要性也越来越受到重视。
因此,在实际应用中,应该综合考虑不同的检测方法,以获得更准确、可靠和有效的检测结果。
真菌毒素真菌是微生物中的高等生物,是一类有细胞壁,不含叶绿素,无根叶茎,以腐生或寄生方式生存,能进行有性或无性繁殖的微生物。
自然界中的真菌分布十分广泛,并可作为食品中正常菌相的一部分用来加工食品,但在特定情况下又可造成食品的腐败变质。
有些真菌本身不仅作为病原体引发人类疾病,其代谢产物真菌毒素(mycotoxins)也对人及动物造成危害。
真菌毒素是农产品的主要污染物之一,人畜进食被其污染的粮油食品可导致急、慢性真菌毒素中毒症(myco—toxicc)ses)。
我国是一个农业大国,小麦、玉米、大米及花生等是居民的主要食品原料,每年因霉变而导致25000t粮食不能食用。
出口粮食由于真菌毒素超过输入国限量标准而遭警告或降低等级的现象时有发生。
某些食物中毒、慢性病及癌症的发生与摄入含有真菌毒素的食品有关。
1985~1992年,我国河南、广西、河北、安徽和江苏等省的部分地区共发生由赤霉病麦或霉玉米导致的人畜脱氧雪腐镰刀菌烯醇(deoxvnivalenol,DON)中毒15起。
特别是在1991年春夏之交,我国部分省市遭受特大洪涝灾害,受灾严重的安徽、江苏、河南等省正值小麦收获季节,暴雨使小麦的收割、脱粒等操作无法进行,导致大量小麦发霉,仅安徽一省就有13万多人因食用霉变小麦而发生急性中毒,严重危害了人民的身体健康。
一、真菌毒素的种类目前为止,全世界已经发现了300多种结构不同的真菌毒素,其中已经被分离鉴定的有20多种。
Hesseltine就真菌毒素对农业及人类健康的危害程度和对社会经济发展影响的重要性,对世界上30多个国家和地区进行了调查,结果表明,排在第一位的是黄曲霉毒素,其次为赭曲霉毒素A(ochratoxin A,0TA)、单端孢霉烯族化合物、玉米赤霉烯酮(zearalenone,ZEN)、橘青霉素(citrinin)、杂色曲霉素(sterigmatocystins,ST)、展青霉素(patulin,Pat)、圆弧偶氮酸(cycloplazonlc acid,CPA)等,该项调查进行之时伏马菌素(fumonisins,FMs)尚未被发现。
真菌毒素介绍一什么是真菌毒素真菌毒素是由真菌产生的具有毒性的次级代谢产物,主要包括黄曲霉毒素、赭曲霉毒素A、玉米赤霉烯酮、单端孢霉烯族毒素、伏马毒素、黄绿青霉毒素以及麦角生物碱等, 这些真菌毒素可广泛污染农作物、植物及其副产品等。
二代表性真菌毒素简介黄曲霉毒素发现于1960年,其毒性为氰化钾的10倍,砒霜的68倍。
花生和玉米是最容易被黄曲霉污染的粮食。
大量资料证实,黄曲霉毒素对人及动物的肝脏组织有很强的毒性作用,严重时可导致肝癌,甚至死亡。
1993年世界卫生组织(WHO)的癌症研究机构划定AF 为一类致癌物。
被黄曲霉毒素污染的玉米显微镜下的黄曲霉毒素单端孢霉烯族毒素是粮食中最常见的一类污染性霉菌毒素,包括T-2毒素、雪腐镰刀菌烯醇、镰刀菌烯酮和脱氧雪腐镰刀菌烯醇等。
低温储藏过冬的玉米、麦类、小米和高粱等常含有大量的单端孢霉烯族毒素。
单端孢霉烯族毒素可以引起多种健康问题:如消化紊乱、体重增加减少和生长缓慢、出血、造血系统疾病、口腔损害、皮炎和免疫抑制等。
赭曲霉毒素A是由多种生长在小麦、玉米、大麦、花生、蔬菜(豆类)等粮食作物上的曲霉和青霉产生的。
赭曲霉毒素A具有很强的肾毒性,可引起巴尔干肾炎,并可诱发肿瘤。
此外,赭曲霉毒素A 还具有一定的肝脏毒性、神经毒性、免疫毒性、生殖毒性和发育毒性,可导致胎儿畸形、流产及死亡,并有一定的致畸、致癌和致突变的作用。
玉米赤霉烯酮又称F-2 毒素,广泛存在于玉米、小麦、大麦、高粱中。
它主要是由禾谷镰刀菌产生的一种代谢物,具有强烈的雌激素作用,作用强度约为雌激素的1/10,但作用时间长于雌激素。
研究认为,玉米中F-2 毒素的量达到0.1 mg/kg 时,就会产生雌激素过多症。
在急性中毒的条件下,ZEA 对神经系统、心脏、肾脏、肝脏、肺脏都会有一定的毒害作用。
其机制是引起神经系统的亢奋,造成大量出血点,使动物死亡。
伏马菌素是由玉米串珠镰刀菌产生的一组有毒害和致癌性的真菌毒素。
真菌毒素真菌是微生物中的高等生物,是一类有细胞壁,不含叶绿素,无根叶茎,以腐生或寄生方式生存,能进行有性或无性繁殖的微生物。
自然界中的真菌分布十分广泛,并可作为食品中正常菌相的一部分用来加工食品,但在特定情况下又可造成食品的腐败变质。
有些真菌本身不仅作为病原体引发人类疾病,其代谢产物真菌毒素(mycotoxins)也对人及动物造成危害。
真菌毒素是农产品的主要污染物之一,人畜进食被其污染的粮油食品可导致急、慢性真菌毒素中毒症(myco—toxicc)ses)。
我国是一个农业大国,小麦、玉米、大米及花生等是居民的主要食品原料,每年因霉变而导致25000t粮食不能食用。
出口粮食由于真菌毒素超过输入国限量标准而遭警告或降低等级的现象时有发生。
某些食物中毒、慢性病及癌症的发生与摄入含有真菌毒素的食品有关。
1985~1992年,我国河南、广西、河北、安徽和江苏等省的部分地区共发生由赤霉病麦或霉玉米导致的人畜脱氧雪腐镰刀菌烯醇(deoxvnivalenol,DON)中毒15起。
特别是在1991年春夏之交,我国部分省市遭受特大洪涝灾害,受灾严重的安徽、江苏、河南等省正值小麦收获季节,暴雨使小麦的收割、脱粒等操作无法进行,导致大量小麦发霉,仅安徽一省就有13万多人因食用霉变小麦而发生急性中毒,严重危害了人民的身体健康。
一、真菌毒素的种类目前为止,全世界已经发现了300多种结构不同的真菌毒素,其中已经被分离鉴定的有20多种。
Hesseltine就真菌毒素对农业及人类健康的危害程度和对社会经济发展影响的重要性,对世界上30多个国家和地区进行了调查,结果表明,排在第一位的是黄曲霉毒素,其次为赭曲霉毒素A(ochratoxin A,0TA)、单端孢霉烯族化合物、玉米赤霉烯酮(zearalenone,ZEN)、橘青霉素(citrinin)、杂色曲霉素(sterigmatocystins,ST)、展青霉素(patulin,Pat)、圆弧偶氮酸(cycloplazonlc acid,CPA)等,该项调查进行之时伏马菌素(fumonisins,FMs)尚未被发现。
真菌毒素限量标准
真菌毒素的限量标准因不同的毒素和食品类型而异。
以下是一些常见的真菌毒素及其限量标准:
黄曲霉毒素B1:在饲料中,黄曲霉毒素B1的限量标准根据饲料类型和动物种类而异。
例如,在奶牛饲料中,黄曲霉毒素B1的限量标准为50μg/kg;在猪饲料中,其限量标准为100μg/kg。
赭曲霉毒素A:在配合饲料中,赭曲霉毒素A的限量标准为100μg/kg。
脱氧雪腐镰刀菌醇:在猪、犊牛和泌乳期复合饲料中,脱氧雪腐镰刀菌醇的限量为1mg/kg;在牛、禽饲料中,其限量标准为5mg/kg。
T-2毒素:在猪、家禽饲料中,T-2毒素的限量为1mg/kg。
以上信息仅供参考,如有需要,建议查阅相关网站。
食品中真菌毒素的检测与防控研究食品安全一直是人们关注的重要问题之一。
除了细菌和病毒外,真菌毒素也是食品安全的重要威胁之一。
真菌毒素是由真菌产生的一类化合物,它们可以在食品生产、运输和储存过程中产生和积累。
一、真菌毒素的分类真菌毒素主要包括黄曲霉毒素、赭曲霉毒素、玉米赤霉烯醇和伏马菌素等。
这些毒素存在于各种食品中,如粮食、谷物、水果、坚果、咖啡等。
不同的真菌毒素对人体有不同的危害,有的会导致急性中毒反应,而有的则会引发长期慢性疾病。
二、真菌毒素的检测方法针对真菌毒素的检测方法有多种,其中最常用的是基于高效液相色谱-质谱联用技术(HPLC-MS)。
这种方法可以对食品样品中的真菌毒素进行快速准确的检测和分析。
此外,近年来,基于免疫学的方法也得到了广泛应用,如酶联免疫吸附试验(ELISA)。
这种方法快速简便,可以用于大规模食品样品的筛查。
三、真菌毒素的防控措施要有效地控制真菌毒素的危害,需要采取一系列预防和控制措施。
首先,农业生产环节要加强管理,控制农田中真菌的滋生和繁殖。
这可以通过合理施用农药、灌溉和排水管理等方式实现。
其次,食品加工企业应加强质量控制,严格遵守食品安全标准。
对于易受真菌污染的食品,比如谷物和坚果类产品,应定期进行真菌毒素的检测,并设立专门的实验室进行分析。
此外,消费者在购买食品时也应加强食品安全意识,选择正规渠道购买符合标准的产品。
同时,储存和食用食品时要注意保存,避免食品受潮发霉。
四、真菌毒素研究的挑战与前景尽管现在已经有了许多方法来检测和控制真菌毒素,但是仍然存在一些挑战。
首先,真菌毒素的种类繁多,每一种毒素都需要针对性的检测方法。
其次,现有的检测方法往往耗时复杂,不能满足食品企业的快速检测需求。
此外,真菌毒素的防控是一个复杂的系统工程,需要政府、企业和消费者的共同努力。
然而,随着科技的发展,真菌毒素研究也取得了一些重要进展。
比如,基因工程技术可以应用于培育抗真菌毒素的农作物。
此外,新的检测技术的不断出现也为真菌毒素的快速检测提供了可能。
真菌毒素1.黄曲霉毒素:黄曲霉毒素(AFT)是一类化学结构类似的化合物,均为二氢呋喃香豆素的衍生物。
黄曲霉毒素是主要由黄曲霉(aspergillus flavus))寄生曲霉(a.parasiticus))产生的次生代谢产物,在湿热地区食品和饲料中出现黄曲霉毒素的机率最高。
发现历史20世纪60年代在英国发生的十万只火鸡突发性死亡事件被确认与从巴西进口的花生粕有关.进一步的黄曲霉毒素B1调研证明,这些花生粕被一种来自真菌的有毒物质污染这些研究工作最终使人们发现了黄曲霉(Aspergillus.flavus)产生的有毒代谢物质。
黄曲霉毒素(Aflatoxins).是黄曲霉和寄生曲霉的代谢产物特曲霉也能产生黄曲霉毒素,但产量较少.产生的黄曲霉毒素主要有B1,B2,G1,G2 以及另外两种代谢产物M1,M2.其中M1 和M2是从牛奶中分离出来的.B1,B2,G1,G2,M1 和M2 在分子结构上十分接近.。
发展史1960年,英国发现有10万只火鸡死于一种以前没见过的病,被称为“火鸡X病”,再后来鸭子也被波及。
追根溯源,最大的嫌疑是饲料。
这些可怜的火鸡和鸭子吃的是花生饼。
花生饼是花生榨油之后剩下的残渣,富含蛋白质,是很好的禽畜饲料。
科学家们很快从花生饼中找到了罪魁祸首,一种真菌产生的毒素。
它被命名为“aflatoxin ”,就是全国人民在蒙牛的努力下学会的又一个科学名词——“黄曲霉毒素”。
自那以后,黄曲霉毒素就获得了科学家们的特别关照,对它的研究可能是所有的真菌毒素中最深入最广泛的。
目前发现的黄曲霉素有十几种。
蒙牛介绍给公众的“黄曲霉毒素M1”主要出现在各种奶中。
M就是“奶”的意思。
它还有一个兄弟M2。
其实M1和M2并不是黄曲霉菌产生的,毒性也并不是最强。
毒性最强的排行“B1”,B表示蓝色,因为它在紫外光的照射下会发出蓝色荧光。
除了亲兄弟B2之外,它还有堂兄弟G1和G2,因为在紫外光下发射黄绿色荧光而得名。
B1 、B2和G1、G2,就是经常经常出现在农产品中的黄曲霉毒素的代表。
B1和B2被奶牛吃了之后,分别有一小部分会转化为M1和M2进入奶中。
这就是牛奶中黄曲霉毒素的来源。
黄曲霉毒素在农产品中几乎无法避免,不想饿死的人类也只好无奈地吃下一些。
世界各国,都只能设定一个“限量标准”。
不超过那个标准,危害就小到可以忽略了。
花生和玉米是最容易被黄曲霉污染的粮食。
这也就是那10万只可怜的火鸡被害的原因。
或许会有敏感的读者想到:既然那些花生被污染了,那么它们榨的油呢?1966年,就有一篇科学论文探索过这个问题。
研究者找了一批严重发霉的花生,其中的黄曲霉毒素B1已经超标到不可思议的地步。
食物中的黄曲霉毒素用ppb为单位,1ppb相当于1吨粮食中含有1毫克。
中国的现行标准是花生中不超过20ppb,而那批花生中的含量是5500ppb,无异于毒药了。
作者用有机溶剂浸取的方法来得到油,发现油中的B1含量是120ppb,虽然比原料中要低得多,但仍然大大高于安全标准。
花生饼中的含量则高达11000ppb,如果拿去喂动物,动物就只能追随那批可怜的火鸡了。
按照工业加工的流程,浸取出来的“粗油”要经过几步精炼。
经过了第一步精炼,B1含量降到了10ppb,已经达到食用标准。
再经过第二步精炼,含量就低于1ppb,可以忽略了。
在中国还有很多榨油作坊。
压榨出来的油又如何呢?那位研究者也用这批花生进行了压榨,结果是油中的B1超过了800ppb。
这么高的原因在于,压榨出的油中会带入一些残渣,而残渣中的含量非常高。
同样地,经过两步精炼,油中的黄曲霉毒素基本上会被除去。
通常的花生当然不可能发霉到这种地步。
不过在粮食发生肉眼可见的霉变之前,其中的黄曲霉毒素也可能达到危险的含量。
从安全的角度,经过精炼的油是要更加优越的。
如果实在喜欢“自己榨”的粗油,应该尽量使用收割之后及时干燥、而且保存良好的花生或者其他油料作物。
否则,油中含有的黄曲霉毒素B1,无论是毒性还是含量,都比蒙牛超标牛奶中的M1要高得多了。
许多人都知道粮食收割之后受潮长霉会产生黄曲霉毒素。
其实,黄曲霉毒素在农作物正常的生长期中就可以形成。
比如玉米,土壤中的黄曲霉“种子”会在玉米棒中“萌发”。
如果那段时间干燥而且高温,黄曲霉毒素的含量就会明显升高。
此外,种植太密、野草太多、氮肥不足、虫等因素,也有利于黄曲霉毒素的形成。
美国曾经连续几年跟踪过中部一些州的玉米。
发现1988年,那些州的玉米中黄曲霉毒素普遍很高。
在有些农场的抽检样品中,超过食用标准20ppb的比例甚至高达36%。
农业生产中,黄曲霉毒素超标的玉米并不少见。
如果全部销毁,将会是很大的损失。
科学家们也找到了一些使用它们的合理方式。
比如可以与不超标的混合,把总的含量降到比较低。
这样的做法不能用于人的食物,但对于禽畜饲料是可以接受的。
如果超标不是很多,也可以喂给成年的猪、牛、鸡等,黄曲霉素很难残留在肉中。
此外,酿酒也是一种出路。
经过蒸馏,黄曲霉毒素无法进入酒中。
只是,剩下的酒糟中含有很多毒素,也就不能用来做饲料了。
基本认识1993年黄曲霉毒素被世界卫生组织(WHO)的癌症研究机构划定为1类致癌物,是一种毒性极强的剧毒物质.黄曲霉毒素的危害性在于对人及动物肝脏组织有破坏作用,严重时可导致肝癌甚至死亡.在天然污染的食品中以黄曲霉毒素B1最为多见,其毒性和致癌性也最强. B1是最危险的致癌物,经常在玉米,花生,棉花种子,一些干果中常能检测到。
它们在紫外线照射下能产生荧光,根据荧光颜色不同,将其分为B族和G族两大类及其衍生物。
AFT目前已发现20余种。
AFT主要污染粮油食品、动植物食品等;如花生、玉米,大米、小麦、豆类、坚果类、肉类、乳及乳制品、水产品等均有黄曲霉毒素污染。
其中以花生和玉米污染最严重。
家庭自制发酵食品也能检出黄曲霉毒素,尤其是高温高湿地区的粮油及制品种检出率更高。
化学结构黄曲霉毒素(Aflatoxins)CAS号1402-68-2,是一组化学结构类似的化合物,目前已分离鉴定出12黄曲霉毒素B2种包括B1,B2,G1,G2,M1,M2,P1,Q,H1,GM,B2a和毒醇.黄曲霉毒素的的基本结构为二呋喃环和香豆素,B1是二氢呋喃氧杂萘邻酮的衍生物.即含有一个双呋喃环和一个氧杂萘邻酮(香豆素).前者为基本毒性结构后者与致癌有关.M1是黄曲霉毒素B1在体内经过羟化而衍生成的代谢产物.黄曲霉毒素的主要分子型式含B1,B2,G1,G2,M1,M2等.其中M1和M2 主要存在于牛奶中.B1为毒性及致癌性最强的物质. 《黄曲霉毒素B1,B2,G1,G2,M1,M2化学结构式》黄曲霉毒素B1(CAS号1162-65-8);分子式:C17H12O6 分子量:312.27黄曲霉毒素G1黄曲霉毒素B2(CAS号7220-81-7);黄曲霉毒素G1(CAS号1165-39-5);黄曲霉毒素G2(CAS号7241-98-7);黄曲霉毒素M1(CAS号6795-23-9)黄曲霉毒素M2物质特点物化特性在紫外线下黄曲霉毒素B1,B2发蓝色荧光黄曲霉毒素G1,G2发绿色荧光.黄曲霉毒素的相黄曲霉毒素G2对分子量为312-346.难溶于水易溶于油,甲醇丙酮和氯仿等有机溶剂,但不溶于石油醚己烷和乙醚中.一般在中性溶液中较稳定,但在强酸性溶液中稍有分解在pH9-10的强碱溶液中分解迅速.其纯品为无色结晶,耐高温黄曲霉毒素B1的分解温度为268℃紫外线对低浓度黄曲霉毒素有一定的破坏性.毒性极强远远高于氰化物、砷化物和有机农药的毒性,其中以B1毒性最大。
当人摄入量大时,可发生急性中毒,出现急性肝炎、出血性坏死、肝细胞脂肪变性和胆管增生。
当微量持续摄入,可造成慢性中毒,生长障碍,引起纤维性病变,致使纤维组织增生。
AFT的致癌力也居首位,是目前已知最强致癌物之一。
黄曲霉毒素毒性比砒霜大68倍黄曲霉毒素被世界卫生组织划定为1类致癌物,毒性比砒霜大68倍,仅次于肉毒霉素,是目前已知霉菌中毒性最强的。
据悉,黄曲霉毒素的危害性在于对人及动物肝脏组织有破坏作用,严重时可导致肝癌甚至死亡,在天然污染的食品中以黄曲霉毒素B1最为多见,其毒性和致癌性也最强。
“B1是最危险的致癌物,经常在玉米,花生,棉花种子,一些干果中常能检测到,其中以花生和玉米污染最严重。
家庭自制发酵食品也能检出黄曲霉毒素,尤其是高温高湿地区的粮油及制品种检出率更高。
”一名相关人员介绍说。
[1]具耐热性一般烹调加工温度不能将其破坏,裂解温度为280℃。
在水中溶解度较低,溶于油及一些有机溶剂,如氯仿和甲醇中,但不溶于乙醚、石油醚及乙烷。
2.玉米赤霉烯酮:简介玉米赤霉烯酮(Zearalenone)又称F-2毒素,它首先从有赤霉病的玉米中分离得到。
玉米赤霉烯酮其产毒菌主要是镰刀菌属(Fusarium)的菌侏,如禾谷镰刀菌(F.graminearum)和三线镰刀菌(F.tricinctum)。
玉米赤霉烯酮主要污染玉米、小麦、大米、大麦、小米和燕麦等谷物。
其中玉米的阳性检出率为45%,最高含毒量可达到2909mg/kg;小麦的检出率为20%,含毒量为0.364~11.05mg/kg。
玉米赤霉烯酮的耐热性较强,110℃下处理1h才被完全破坏。
玉米赤霉烯酮具有雌激素样作用,能造成动物急慢性中毒,引起动物繁殖机能异常甚至死亡,可给畜牧场造成巨大经济损失。
玉米赤霉烯酮是玉米赤霉菌的代谢产物。
1980年李季伦教授发现植物体内也存在玉米赤霉烯酮。
功能玉米赤霉烯酮具有雌激素作用,主要作用于生殖系统,可使家畜,家禽和实验小鼠产生雌性激素亢进症。
妊娠期的动物(包括人)食用含玉米赤霉烯酮的食物可引起流产、死胎和畸胎。
食用含赤霉病麦面粉制作的各种面食也可引起中枢神经系统的中毒症状,如恶心、发冷、头痛、神智抑郁和共济失调等。
来源总类玉米赤霉烯酮主要由禾谷镰刀菌产生,粉红镰刀菌、窜珠镰刀菌、三线镰刀菌等多种镰刀菌也能产生这种毒素。
李季伦1980年研究发现,许多农作物如小麦、大豆等植物中也存在玉米赤霉烯酮。
玉米赤霉烯酮有许多种衍生物,例如7一脱氢玉米赤霉烯酮、玉米赤霉烯酸、8一羟基玉米赤霉烯酮。
同时,植物中的玉米赤霉烯酮结构和对生物体的影响与霉菌产生的玉米赤霉烯酮作用是一致的。
理化性质玉米赤霉烯酮是一种酚的二羟基苯酸的内酯结构,分子式为C18H22O50它不溶于水、二硫化碳和四氧化碳,溶于碱性水溶液、乙醚、苯、氯仿、二氯甲烷、乙酸乙酯和酸类,微溶于石油醚。
由于玉米赤霉烯酮是一种内酯的结构,因此在碱性环境的条件下可以将酯键打开,当碱的浓度下降时可将键恢复。
检测方法目前,一般都采取液相和气相色谱的方法进行测定。
测定的方法较为复杂,对仪器的要求也很高,但结果很准确。
还有的是从分子生物学的角度进行分析,测定的范围在5-100μg/mL。