s化学键
- 格式:ppt
- 大小:1.61 MB
- 文档页数:25
化学键主要有三种基本类型,即离子键、共价键和金属键;一、离子键离子键是由电子转移失去电子者为阳离子,获得电子者为阴离子形成的;即正离子和负离子之间由于静电引力所形成的化学键;离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO42-,NO3-等;离子键的作用力强,无饱和性,无方向性;离子键形成的矿物总是以离子晶体的形式存在;二、共价键共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力;共价键的作用力很强,有饱和性与方向性;因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性;共价键又可分为三种:1非极性共价键形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键;2极性共价键形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S键,电子云偏于S一侧,可表示为Pb→S;3配价键共享的电子对只有一个原子单独提供;如Zn—S键,共享的电子对由锌提供,Z:+¨..S:=Zn→S共价键可以形成两类晶体,即原子晶体共价键与分子晶体;原子晶体的晶格结点上排列着原子;原子之间有共价键联系着;在分子晶体的晶格结点上排列着分子极性分子或非极性分子,在分子之间有分子间力作用着,在某些晶体中还存在着氢键;关于分子键精辟氢键后面要讲到;三、金属键由于金属晶体中存在着自由电子,整个金属晶体的原子或离子与自由电子形成化学键;这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键;对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”;金属键没有方向性与饱和性;和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式也叫分子式通常用化学符号来表示;上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力;但它没有包括所有其他可能的作用力;比如,氯气,氨气和二氧化碳气在一定的条件下都可以液化或凝固成液氯、液氨和干冰二氧化碳的晶体;说明在分子之间还有一种作用力存在着,这种作用力叫做分子间力范德华力,有的叫分子键;分子间力的分子的极性有关;分子有极性分子和非极性分子,其根据是分子中的正负电荷中心是否重合,重合者为非极性分子,不重合者为极性分子;分子间力包括三种作用力,即色散力、诱导力和取向力;1当非极性分子相互靠近时,由于电子的不断运动和原子核的不断振动,要使每一瞬间正、负电荷中心都重合是不可能的,在某一瞬间总会有一个偶极存在,这种偶极叫做瞬时偶极;由于同极相斥,异极相吸,瞬时偶极之间产生的分子间力叫做色散力;任何分子不论极性或非极性互相靠近时,都存在色散力;2当极性分子和非极性分子靠近时,除了存在色散力作用外,由于非极性分子受极性分子电场的影响产生诱导偶极,这种诱导偶极和极性.。
s加naoh化学方程式《S加NaOH化学方程式》同学们,今天咱们来好好讲讲这个S(硫)和NaOH(氢氧化钠)反应的化学方程式。
这其中可是涉及到好多化学概念呢,不过别怕,老师会用特别简单的方式给大家讲明白。
首先,咱们得知道这个反应的化学方程式是3S + 6NaOH = 2Na₂S + Na₂SO₃+ 3H₂O。
这里面发生了很有趣的化学过程。
咱们先说说化学键这个概念哈。
化学键就像原子之间的小钩子,把原子们连接在一起。
在这个反应里,S和NaOH之间的化学键要发生变化。
那离子键呢,就像是带正电和带负电的原子像超强磁铁般吸在一起。
NaOH里面,Na⁺和OH⁻就是靠离子键结合的。
而共价键呢,是原子共用小钩子连接。
S原子之间就有共价键。
当S和NaOH反应的时候,就像是把这些原有的小钩子拆开,然后重新组合。
再看看化学平衡这个概念。
咱们可以把它比作拔河比赛。
反应物和生成物就像两队人。
在这个反应中,最开始的时候,S和NaOH是反应物这一队,它们的量比较多,反应就朝着生成Na₂S、Na₂SO₃和H₂O的方向进行。
随着反应的进行,生成物这一队的“人”(分子或者离子)越来越多,反应物这一队越来越少。
当正逆反应速率相等的时候,就像是两队人谁也拉不动谁了,这时候浓度就不再变化了,达到了化学平衡状态。
不过这个反应是朝着正方向进行得比较彻底的反应,但是这个概念在很多反应里都很重要哦。
接着讲讲分子的极性。
这就类似小磁针。
比如说水是极性分子,就像一个小磁针一样,氧一端像磁针南极带负电,氢一端像北极带正电。
而二氧化碳是直线对称的非极性分子,就像一个两边完全一样的小棒,没有这种一端带正电一端带负电的情况。
在这个S和NaOH的反应里,虽然分子的极性不是反应发生的最直接原因,但是它会影响到物质的很多性质,比如溶解性等,而溶解性有时候又会影响反应能不能顺利进行。
那配位化合物呢?中心离子就像是聚会的主角,配体就是提供孤对电子共享的小伙伴。
虽然咱们这个S和NaOH的反应不是配位反应,但是在化学的大家庭里,配位化合物也是很重要的一部分呢。
化学键的三种基本类型 This manuscript was revised on November 28, 2020化学键主要有三种基本类型,即离子键、共价键和金属键。
一、离子键离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。
即正离子和负离子之间由于静电引力所形成的化学键。
离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO42-,NO3-等。
离子键的作用力强,无饱和性,无方向性。
离子键形成的矿物总是以离子晶体的形式存在。
二、共价键共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。
共价键的作用力很强,有饱和性与方向性。
因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。
共价键又可分为三种:(1)非极性共价键形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。
(2)极性共价键形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S键,电子云偏于S一侧,可表示为Pb→S。
(3)配价键共享的电子对只有一个原子单独提供。
如Zn—S键,共享的电子对由锌提供,Z:+¨..S:=Zn→S共价键可以形成两类晶体,即原子晶体共价键与分子晶体。
原子晶体的晶格结点上排列着原子。
原子之间有共价键联系着。
在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。
关于分子键精辟氢键后面要讲到。
三、金属键由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。
这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。
对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。
金属键没有方向性与饱和性。
知识点一:一、共价键1.共价键的概念和特征原子间通过 所形成的相互作用。
微点拨【答案】共用电子对2.共价键的类型(按成键原子的原子轨道重叠方式分类) (1)σ键形成 由成键原子的s 轨道或p 轨道“头碰头”重叠形成类型s-s 型共价键的方向性决定了分子的立体构型,并不是所有共价键都具有方向性,如两个s 电子形成共价键时就没有方向性。
知识精讲考点导航第05讲 共价键s-p型p-p型特征以形成化学键的两原子核的为轴做旋转操作,共价键的电子云的图形,这种特征称为(2)π键形成由两个原子的p轨道“”重叠形成pp π键特征π键的电子云形状与σ键的电子云形状有明显差别:每个π键的电子云由两块组成,它们互为,这种特征称为;π键旋转;不如σ键,较易(3)判断σ键、π键的一般规律共价单键为键;共价双键中有一个键,另一个是键;共价三键由一个键和两个键构成。
【答案】连线不变轴对称肩并肩镜像镜面对称不能牢固断裂σ σ π σ π【即学即练1】1.下列关于σ 键和π键的说法不正确的是A.σ 键能单独形成,π键不能单独形成B.σ 键可以绕键轴旋转,π键不能绕键轴旋转C.双键中一定有一个σ 键,一个π键,三键中一定有一个σ 键,两个π键D.CH3-CH3、CH2=CH2、CH≡CH中的σ 键都是C-C键,所以键能都相同【答案】D【解析】A.分子中可只含σ键,但含π键时一定含σ键,则σ键一般能单独形成,而π键一般不能单独形成,A正确;B.σ键为球对称,π键为镜面对称,则σ键可以绕键轴旋转,π键一定不能绕键轴旋转,B 正确;C.双键、三键中均只含1个σ键,其余为π键,则碳碳双键中有一个σ键,一个π键,碳碳三键中有一个σ键,两个π键,C正确;D.三种分子中分别含C-C、C=C、C≡C键和C-H键,所以σ键也包含C-H键,且碳原子与碳原子之间的键长、键能均不相同,D错误;答案选D。
2.下列分子中既含σ键,又含π键的是A .①B .②C .③D .④【答案】D【解析】A .水中只含σ键,A 错误; B .乙醇中只含σ键,B 错误; C .氨气中只含σ键,C 错误;D .乙醛中含醛基,存在碳氧双键,既含σ键,又含π键的,D 正确; 故选D 。
化学键知识总结一、经典共价键理论(八电子规则)基本思想:当n s、n p原子轨道充满电子,会成为八电子构型,该电子构型是稳定的,所以在共价分子中,每个原子都希望成为八电子构型(H原子为2电子构型)。
二、近代价键理论1.经典价键理论遇到许多困难:(1) 两个电子配对后为什么不相互排斥?(2) 在有些化合物中,中心原子周围的价电子总数超过8, 为什么仍然稳定存在?(3) 根据静电理论,原子核对成键电子对的吸引只具有共价键能的5%,那么大部分共价键能从何而来?(4) 经典共价键理论不能解释共价键的方向性和饱和性!2.近代价键理论的内容(1) 两个原子形成一个共价键时,两个原子必须各提供一个未成对电子(即单电子)且它们的自旋方向相反。
(2) 两个原子形成共价键时,其成键轨道能量要相近。
例如H2中1s~1s轨道成键;HF中H的1s与F的2p轨道成键等。
(3) 共价键的形成在尽可能的范围内一定要采取在电子云密度最大方向上进行重叠(即获得最大的键能,使分子处于最稳定的状态)−−解决了共价键的方向性。
但必须注意的是,由于s电子云是球形的,所以s-s形成的共价键无方向性。
3.共价键的特点(1) 饱和性:一个原子有几个未成对电子,就可以和几个自旋相反的电子配对,形成共价键。
(2) 方向性:s-s原子轨道的重叠无方向性,s-p、p-p、p-d原子轨道的重叠都有方向性。
(3) 共价键的类型a.σ键:沿着键轴的方向,发生“头碰头”原子轨道的重叠而形成的共价键,称为σ键。
b.π键:原子轨道以“肩碰肩”的方式发生重叠而形成的共价键,称为π键。
4.杂化轨道理论(1) 问题的提出:a.基态C原子只有2个单电子,为何可以与4个H原子形成CH4分子?即如何来解决共价键的饱和性呢?b.水分子中的∠HOH = 104.5︒,与根据2个H原子的1s原子轨道与O原子的2p x、2p y原子轨道重叠,形成90︒角不符。
即如何来解决共价键的方向性?(2) Pauling 的杂化轨道理论−−解决共价键的饱和性和方向性内容:由不同类型的原子轨道混合起来,重新组成能量相等的新的轨道的过程,称为原子轨道杂化。
化学键一、化学键1、概念:化学键是指使离子或原子之间结合的作用。
或者说,相邻的原子或原子团强烈的相互作用叫化学键。
注意:不是所有的物质都是通过化学键结合而成。
惰性气体就不存在化学键。
2、分类:金属键、离子键、共价键。
3、意义:①解释绝大部分单质和化合物的形成:绝大部分单质和化合物都是离子或者原子通过化学键的作用形成的。
②解释化学变化的本质:化学变化的本质就是反应物化学键的断裂和生成物化学键的形成过程。
原子重新组合就是通过反应物原子间化学键的断裂,然后又重新形成新的化学键的过程。
二、离子键:带相反电荷离子间的相互作用称为离子键。
1、概念:使阴阳离子结合成化合物的静电作用,叫做离子键。
2、成键微粒:阴阳离子3、本质:静电作用4、成键过程:阴阳离子接近到某一定距离时,吸引和排斥达到平衡,就形成了离子键。
5、成键条件:活泼金属(IA IIA)与活泼非金属(VIA VIIA)之间的化合物。
6、结果:形成离子化合物。
离子化合物就是阴阳离子通过离子键而形成的化合物。
离子晶体就是阴阳离子通过离子键而形成的晶体。
7、范围:典型的金属与典型的非金属之间容易形成离子键。
特别是位于元素周期表中左下方的金属与右上方的非金属元素之间。
例如:氧化钾、氟化钙、氢氧化钠、硝酸钾、氯化钾三、共价键:1、概念:原子通过共用电子对形成的相互作用。
2、本质:静电作用3、方式:原子间通过共用电子对形成静电作用。
4、条件:非金属元素的原子之间容易形成共价键。
5、结果:形成共价单质或共价化合物。
共价单质是指同种元素的原子通过共价键所形成的单质。
共价化合物是由不同种元素的原子通过共价键所形成的化合物。
6、范围:共价单质有H2、B、C、N2、O2、O3、F2、Si、P、S、Cl2、Br2、I2.共价化合物主要有非金属氢化物、非金属的氧化物、酸、非金属的氯化物。
7、类型:极性键:共用电子对发生偏移的共价键。
主要存在于不同元素的原子之间所形成的共价键。
化学键的杂化与杂化轨道的构成化学键是化学物质中原子之间的相互作用,负责连接和稳定分子的结构。
化学键的形成是由原子轨道之间的相互重叠所引起的,而杂化与杂化轨道则是在形成化学键过程中的重要概念。
一、杂化的概念及原理杂化是指原子内部价电子轨道的混合,形成新的杂化轨道,使得这些轨道能够更有效地重叠,从而形成化学键。
杂化的主要原理是通过混合不同类型的原子轨道,形成一组相同类型的杂化轨道。
常见的杂化类型有sp、sp2、sp3等。
1. sp杂化sp杂化是最常见和最简单的杂化,例如碳原子在与其他原子形成化学键时常用到的sp杂化。
在sp杂化中,一只s轨道和一只p轨道进行线性组合,形成两只sp杂化轨道。
sp杂化轨道形状呈线性,角度为180度。
这种杂化常见于碳原子四价键、炔烃中的碳碳键等。
2. sp2杂化sp2杂化是在碳原子与三个原子形成化学键时常见的杂化类型,最典型的例子是芳香化合物中的碳原子。
在sp2杂化中,一个s轨道和两个p轨道进行线性组合,形成三只sp2杂化轨道。
它们处于同一平面上,形成120度的角度。
这种杂化常见于双键、三键等。
3. sp3杂化sp3杂化是碳原子与四个原子形成化学键时常见的杂化类型,也是最常见的杂化类型。
在sp3杂化中,一个s轨道和三个p轨道进行线性组合,形成四只sp3杂化轨道。
它们呈现四面体的排列,形成109.5度的角度。
这种杂化类型常见于饱和化合物中的碳碳单键。
二、杂化轨道的构成杂化轨道的构成与杂化类型密切相关,每一种杂化类型所形成的杂化轨道数量与原先参与杂化的原子轨道数量相等。
1. sp杂化轨道的构成sp杂化轨道是由一个s轨道和一个p轨道线性混合形成的,因此只有两个原子轨道参与混合,最后形成两个sp杂化轨道。
2. sp2杂化轨道的构成sp2杂化轨道是由一个s轨道和两个p轨道线性混合形成的,因此有三个原子轨道参与混合,最后形成三个sp2杂化轨道。
3. sp3杂化轨道的构成sp3杂化轨道是由一个s轨道和三个p轨道线性混合形成的,因此有四个原子轨道参与混合,最后形成四个sp3杂化轨道。
化学键【学习目标】1.了解离子键、共价键、极性键、非极性键以及化学键的含义。
2.了解离子键和共价键的形成,增进对物质构成的认识。
3.明确化学键与离子化合物、共价化合物的关系。
4.会用电子式表示原子、离子、离子化合物、共价化合物以及离子化合物和共价化合物的形成过程。
重点:离子键、共价键、离子化合物、共价化合物的涵义。
难点:用电子式表示原子、离子、化合物以及化合物的形成过程。
【要点梳理】要点一、离子键1.定义:带相反电荷离子之间的相互作用称为离子键。
要点诠释:原子在参加化学反应时,都有通过得失电子或形成共用电子对使自己的结构变成稳定结构的倾向。
例如Na 与Cl2反应过程中,当钠原子和氯原子相遇时,钠原子的最外电子层的1个电子转移到氯原子的最外电子层上,使钠原子和氯原子分别形成了带正电荷的钠离子和带负电荷的氯离子。
这两种带有相反电荷的离子通过静电作用,形成了稳定的化合物。
我们把带相反电荷离子之间的相互作用称为离子键。
2.成键的粒子:阴阳离子。
3.成键的性质:静电作用。
阴阳离子间的相互作用(静电作用)包括:①阳离子与阴离子之间的吸引作用;②原子核与原子核之间的排斥作用;③核外电子与核外电子之间的作用。
4.成键原因:通过电子得失形成阴阳离子。
5.成键条件:(1)活泼金属与活泼的非金属化合时,一般都能形成离子键。
如IA、ⅡA族的金属元素(如Li、Na、K、Mg、Ca等)与ⅥA、ⅦA族的非金属元素(如O、S、F、Cl、Br、I等)之间化合。
(2)金属阳离子(或铵根离子)与某些带负电荷的原子团之间(如Na+与OH-、SO42-等)含有离子键。
6.存在离子键的物质:强碱、低价态金属氧化物和大部分盐等离子化合物。
7.离子键的形成过程的表示:要点二、共价键1.定义:原子间通过共用电子对所形成的相互作用称为共价键。
要点诠释:从氯原子和氢原子的结构分析,由于氯和氢都是非金属元素,这两种元素的原子获得电子难易的程度相差不大,原子相互作用的结果是双方各以最外层的一个电子组成一个电子对,电子对为两个原子所共用,在两个原子核外的空间运动,从而使双方最外层都达到稳定结构,这种电子对,就是共用电子对。
化学键_知识点概括标题:化学键——知识点概括化学键是化学中的一个重要概念,它描述了原子或分子之间通过相互作用形成的结合关系。
本文将简要概括化学键的主要知识点,帮助读者更好地理解这一基本概念。
一、化学键的定义化学键是指原子或分子之间通过相互作用形成的结合关系。
这种相互作用可以是静电引力、共价键、离子键等。
化学键的形成是化学反应的基础,也是物质稳定性的来源。
二、化学键的类型1、离子键:离子键形成是由于原子或分子间的静电引力。
当原子或分子失去或获得电子时,它们会形成带电的离子,这些离子通过静电引力结合在一起,形成离子键。
2、共价键:共价键形成是由于原子或分子间的电子共享。
当两个原子或分子相互靠近时,它们的电子会相互作用,形成共用电子对。
这种共用电子对被称为共价键。
3、金属键:金属键形成是由于金属原子的外层电子容易失去,而空轨道容易接受电子。
金属原子通过失去电子,与其它原子或分子形成金属键。
4、极性共价键和非极性共价键:根据共价键的极性不同,可以将共价键分为极性共价键和非极性共价键。
极性共价键是指共用电子对偏向其中一个原子,而非极性共价键是指共用电子对均匀分布在两个原子之间。
三、化学键的本质化学键的本质是原子或分子间电子的重新分布。
当两个原子或分子相互靠近时,它们的电子会相互作用,导致电子的重新分布,从而形成化学键。
这种电子的重新分布是化学反应的基础,也是物质稳定性的来源。
四、化学键的重要性化学键是理解化学反应的基础,也是解释物质稳定性和性质的关键因素。
不同类型和强度的化学键决定了物质的物理和化学性质,如硬度、熔点、溶解度等。
化学键的形成和断裂是生物体内能量转换和物质合成的基础过程。
因此,理解化学键对于学习化学、生物学和医学等学科至关重要。
化学键是化学中的一个核心概念,它有助于我们理解物质的本质和性质。
本文简要概括了化学键的定义、类型、本质和重要性,希望能对读者有所帮助。
化学键知识点化学键是化学中的一个重要概念,它描述了原子或分子之间通过相互作用形成的结合关系。
ce_sds中硫醚键硫醚键是有机化合物中一种重要的化学键,它在许多生物、化学和工业应用中发挥着重要作用。
本文将对ce_sds中硫醚键进行深入探讨,介绍其结构特点、形成过程、性质以及应用领域等相关内容。
一、硫醚键的定义与结构特点硫醚键是由硫原子和两个有机基团连接而成的键,其化学式一般表示为R-S-R',其中R和R'可以是相同或不同的有机基团。
硫醚键的结构特点在于硫原子与相邻的碳原子之间形成共价键,而硫原子与两个有机基团之间形成的键属于硫与碳之间的极性键。
二、硫醚键的形成过程硫醚键的形成过程主要涉及到硫原子与碳原子之间的化学反应。
其中,最常见的形成方式是通过硫化物与有机卤化物的反应,例如:R-X + R'-S-R'' → R-S-R' + R''-X在该反应中,有机卤化物(R-X)中的卤素离去,生成亲核试剂(R''-X),然后与硫化物(R'-S-R'')发生亲核取代反应,形成硫醚键(R-S-R')。
三、硫醚键的性质1. 化学稳定性:硫醚键在常规反应条件下具有较高的化学稳定性,不易水解、氧化或分解。
2. 极性特性:由于硫醚键中硫原子与碳原子的电负性差异,硫醚键具有一定程度的极性,使得硫醚分子在溶解性、沸点和熔点等性质上与一些无机化合物有所不同。
3. 氧化反应性:硫醚键易于在氧气存在下发生氧化反应,进而生成硫醚氧化物。
4. 反应活性:硫醚键的活性相对较低,不容易被常规试剂攻击,但在有条件下仍能发生一些特定的官能团转化反应。
四、硫醚键的应用领域1. 生物学领域:硫醚键在许多生物分子中扮演重要角色,例如蛋白质的二级结构稳定性、个别氨基酸的功能等。
此外,硫醚键还参与体内某些代谢过程中的催化作用。
2. 有机合成领域:硫醚键具有较好的化学稳定性和广泛的适应性,在有机合成中被广泛应用。
例如,硫醚配体可用于过渡金属催化反应、杂环化合物的构建等。