一元一次方程的应用
- 格式:doc
- 大小:74.00 KB
- 文档页数:8
应用题分类练习一:盈不足问题例1.有一个班的同学去某游乐园划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐 9人。
这个班共有多少名学生?跟踪练习:1、一批学生乘汽车去观看“2008北京奥运会”如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和学生各有多少?(6分)2、某中学组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求参加春游的人数?(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?3、几个老头去赶集,半路买了一些梨,一人一个多一个,一人两个少俩梨,请问君子知道否,多少老头多少梨?(是有两种方法求解)二、鸡兔同笼问题:引例:在同一笼子里放着数只鸡和数只兔子,它们共有34只,并且它们共有100条腿,那么鸡和兔子各有多少只?例1、商店出售茶壶每只28元,茶杯每只4元,并规定:买一只茶壶赠送一只茶杯,某同学共买了茶壶和茶杯30只,花了280元,他各买了多少只?例2、王大伯承包了25亩土地,今年春天改种茄子和西红柿,用去资金44000元,茄子每亩用去1700元,西红柿每亩用去1800元。
茄子每亩获利2400元,西红柿每亩获利2600元,问王大伯一共获利多少万元?跟踪练习:1、某停车场收费标准如下:中型汽车的停车费为6元/辆,小型汽车停车费为4元/辆,现在停车场有50辆中小型汽车,这些车共缴费230元,问:中小型汽车各多少辆?三、方案设计问题:例1、某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠。
”乙旅行社说:“教师在内全部按票价的6折优惠。
”若全部票价是240元。
(1)如果有10名学生,应参加哪个旅行社,并说出理由。
(2)当学生人数是多少时,两家旅行社收费一样多?例2、某同学在A、B两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元.(1)求该同学看中的英语学习机和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打7.5折销售;超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱?跟踪练习:1、下面的两种移动电话计费方式表,考虑下列问题。
一元一次方程的应用一元一次方程是指只有一个未知数,并且该未知数的指数为1的方程。
一元一次方程的一般形式为ax + b = 0,其中 a 和 b 为已知常数,x 为未知数。
一元一次方程的应用非常广泛,可以在各个领域中解决实际问题。
本文将以数学、物理和经济三个方面来讨论一元一次方程的具体应用。
一、数学领域1. 解题应用:一元一次方程的解可以代表问题的答案。
通过列方程、整理方程、求解方程的过程,可以得到问题的解决方案。
2. 几何应用:一元一次方程可以用于求解图形的坐标、长度、面积等问题。
例如,求两点之间的距离、直线与坐标轴的交点等都可以转化为一元一次方程的问题。
3. 概率应用:一元一次方程可以用于概率计算中。
例如,已知事件发生的概率,求解该事件发生的次数等,可以通过建立一元一次方程来解决。
二、物理领域1. 力学应用:一元一次方程可以用于解决力学问题。
例如,已知物体的质量和加速度,求解力的大小;已知物体的速度和时间,求解物体的位移等。
2. 热学应用:一元一次方程可以用于热学问题的计算。
例如,已知物体的温度和传热系数,求解物体的传热速率;已知物体的热容和温度变化,求解物体的热量等。
三、经济领域1. 成本应用:一元一次方程可以用于经济成本的计算。
例如,已知某商品的固定成本和单位产品的生产成本,求解生产一定数量商品的总成本。
2. 收益应用:一元一次方程可以用于经济收益的计算。
例如,已知某汽车公司的定价策略和销售数量,求解该公司的总收益。
3. 投资应用:一元一次方程可以用于投资回报的计算。
例如,已知某项投资的投资额和回报率,求解投资多少年可以收回成本。
综上所述,一元一次方程的应用十分广泛,不仅可以用于数学领域的解题,还可以用于物理和经济等实际问题的求解。
掌握一元一次方程的应用方法,将有助于我们解决各种实际问题,并提升我们的数学思维能力。
一元一次方程在生活中的应用
一元一次方程可以用来解决很多实际问题,如移动手机定价问题、
树木移植问题、预算规划问题、安装家具长度计算问题等。
1、移动手机定价问题。
若一部手机的原价为500元,经销商降低了20%,则可用一元一次方程x-500=0.2x,求解出手机实际售价x=400元。
2、树木移植问题。
若将一棵树移植到新地方,移植工程共花费2000元,土地房屋搭建费用1000元,则可用一元一次方程x+1000=2000,
求出移植树的费用x=1000元。
3、预算规划问题。
若某家庭每月收入9000元,其中食物费用占据2/3,则可用一元一次方程x+6000=9000,求出食物费用x=3000元。
4、安装家具长度计算问题。
若客厅的长度为6m,已安装的柜子占据
3/4,则可用一元一次方程x+4.5=6,求出柜子的长度x=1.5m。
一元一次方程的应用与实践在数学中,一元一次方程是我们最早接触到的方程类型之一。
它的基本形式为:ax + b = 0,其中a和b为已知常数,x为未知数。
一元一次方程的求解是我们学习数学的起点,而本文将探讨一元一次方程在实际生活中的应用与实践。
一、商品打折在购物中,我们经常会遇到商品打折的情况。
假设某商品原价为P 元,经过打折后降价了D元,最终售价为S元。
我们可以通过一元一次方程来求解原价P。
设未知数P,根据一元一次方程的定义,我们可以列出如下方程:P - D = S将该方程变形为标准形式,得到:P = S + D通过解这个一元一次方程,我们可以找到该商品的原价P。
这个例子展示了一元一次方程在购物中的实际应用。
二、行程时间计算在旅行或者通勤中,我们通常需要计算行程所需的时间。
假设一辆汽车以固定的速度v行驶,行程的总距离为d,我们可以通过一元一次方程来计算行程所需的时间t。
设未知数t,根据一元一次方程的定义,我们可以列出如下方程:v * t = d将该方程变形为标准形式,得到:t = d / v通过解这个一元一次方程,我们可以算出该行程所需的时间t。
这个例子展示了一元一次方程在行程时间计算中的实际应用。
三、温度转换在物理学中,摄氏度与华氏度之间可以通过线性关系进行转换。
假设一个温度以摄氏度表示为C,经过转换后得到的华氏度表示为F,我们可以通过一元一次方程来进行温度转换。
设未知数F,根据一元一次方程的定义,我们可以列出如下方程:F = (9/5) * C + 32通过解这个一元一次方程,我们可以将摄氏度C转换为华氏度F。
这个例子展示了一元一次方程在温度转换中的实际应用。
总结:一元一次方程作为数学中最基础的方程类型之一,不仅仅是我们学习数学的起点,更在实际生活中广泛应用。
本文简要介绍了一元一次方程在商品打折、行程时间计算和温度转换等方面的实际应用。
通过解一元一次方程,我们能够找到所需的未知数,解决实际问题,实践数学在生活中的价值。
一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
七年级数学一元一次方程的应用一元一次方程是初中数学中的基础内容,也是数学在实际生活中广泛应用的一种工具。
本文将从实际问题的角度出发,探讨七年级数学一元一次方程的应用。
1. 商品打折问题假设某商场正在进行打折促销活动,现有一款商品原价为x元,经过折扣后降价到原价的80%。
我们可以通过一元一次方程来计算出折后价格。
设折后价格为y元,则有方程:y = 0.8x。
通过解这个方程,便可以得出折后价格。
这个例子展示了一元一次方程在计算打折后价格问题中的应用。
2. 速度问题在旅行中,我们常常需要计算行驶距离、速度和时间之间的关系。
假设某辆汽车行驶的速度是v km/h,行驶t小时后,行驶的总距离s km。
我们可以通过一元一次方程来计算这些参数之间的关系。
设总距离s为y km,则有方程:s = vt。
通过解这个方程,我们可以计算出汽车行驶的总距离。
这个例子展示了一元一次方程在速度问题中的应用。
3. 家庭预算问题家庭预算是人们生活中常遇到的问题之一。
假设某家庭每月的总收入是x元,总支出是y元。
我们可以通过一元一次方程来计算每月结余或者透支的情况。
设结余为z元,则有方程:z = x - y。
通过解这个方程,我们可以得到每月的结余或者透支情况。
这个例子展示了一元一次方程在家庭预算问题中的应用。
4. 距离、时间、速度问题某辆汽车行驶了一段距离d,行驶的时间是t小时,我们需要计算汽车的平均速度v km/h。
通过一元一次方程我们可以找出速度与距离、时间之间的关系。
设平均速度v为y km/h,则有方程:v = d/t。
通过解这个方程,我们可以计算汽车的平均速度。
这个例子展示了一元一次方程在距离、时间和速度问题中的应用。
以上是几个七年级数学中一元一次方程的应用例子,从商品打折、速度问题、家庭预算问题到距离、时间、速度问题,一元一次方程在实际生活中无处不在。
掌握了一元一次方程的应用,我们不仅能更好地理解数学的基础概念,还能更好地解决实际生活中的问题。
一元一次方程的实际问题应用一元一次方程是初中数学中的基本知识之一,它在解决实际问题中起着重要的作用。
本文将从几个典型的实际问题入手,展示一元一次方程的应用。
问题一:购买水果小明去市场购买了苹果和橙子,苹果每斤3元,橙子每斤2元,他总共购买了7斤水果,并支付了15元。
求小明购买的苹果和橙子的重量。
解析:设小明购买的苹果重量为x斤,橙子重量为y斤。
根据题意,我们可以得到以下两个方程:x + y = 7 (式1)3x + 2y = 15 (式2)通过解方程组(式1)和(式2),可以求得x和y的值。
可以通过倍加消元法解这个方程组,具体步骤如下:首先将(式1)的两边乘以2,得到2x + 2y = 14。
然后将上述方程和(式2)相减,得到3x - 2x = 15 - 14,即x = 1。
将求得的x值代入(式1),可得1 + y = 7,解得y = 6。
所以小明购买的苹果重量为1斤,橙子重量为6斤。
问题二:汽车行驶一辆汽车以每小时60千米的速度行驶,行驶了t小时后行程达到了120千米。
求汽车行驶了多少时间。
解析:设汽车行驶的时间为t小时。
根据题意,我们可以得到以下方程:60t = 120解这个方程,可以求得t的值。
将方程两边除以60,得到t = 2。
所以汽车行驶了2小时。
问题三:人口增长某城市的人口每年以2%的速度增长,现有人口为100万人,求n 年后该城市的人口。
解析:设n年后该城市的人口为P万人。
根据题意,我们可以得到以下方程:P = 100 × (1 + 0.02)^n解这个方程,可以求得n的值。
假设n=10,则可以计算得到P ≈ 121.9。
所以10年后该城市的人口约为121.9万人。
通过以上三个实际问题的例子,我们可以看到一元一次方程在解决实际问题中的应用。
它能够帮助我们建立数学模型,根据已知条件推导出未知量的值。
在生活中,我们常常会遇到类似的实际问题,通过运用一元一次方程的解法,我们能够更好地解决这些问题,提高问题解决能力。
一元一次方程的应用1. 苹果的购买:假设每个苹果的价格是p,你买了x个苹果,花了y 元。
这个购买过程可以用方程px = y来表示,其中p是苹果的单价。
通过解这个方程,可以计算出每个苹果的价格或购买的数量。
2. 电费计算:假设每度电的价格是p,你使用了x度电,支付了y元的电费。
这个计算过程可以用方程px = y来表示,通过解这个方程,可以计算出每度电的价格或使用的数量。
3. 路程和速度的关系:假设一个人以每小时v的速度行驶了x小时,那么他所行驶的路程可以用方程vx = d来表示,其中d是行驶的总路程。
通过解这个方程,可以计算出速度或行驶的时间。
4. 汽车行驶的时间:假设一个汽车以每小时的速度v行驶了x千米,行驶的时间可以用方程vx = t来表示,其中t是行驶的时间。
通过解这个方程,可以计算出汽车的速度或行驶的距离。
5. 工作量计算:假设一项工作需要x个小时完成,每小时工作的效率是p个单位,那么完成这项工作需要的总工作量可以用方程px = w来表示,其中w是工作的总量。
通过解这个方程,可以计算出工作的效率或完成工作所需的时间。
6. 线性销售模型:假设一种商品每件的价格是p,销售了x件,总销售额为y元。
这个销售过程可以用方程px = y来表示。
通过解这个方程,可以计算出每件商品的价格或销售的数量。
7. 比例关系:假设一个问题中存在两个量x和y,它们之间存在比例关系,可以用方程yx = t来表示,其中t是比例系数。
通过解这个方程,可以计算出两个量的比例关系。
以上这些是一元一次方程在现实生活中的一些应用场景,我们可以通过解这些方程来计算出各种参数的值或者确认各种关系。
整合了数学和实际问题,使得人们可以更好地理解和解决实际生活中的各种情况。
一元一次方程的实际问题一元一次方程是我们初中数学中最基本的代数方程之一。
它的一般形式为ax + b = 0,其中a和b为已知数,而x是未知数。
本文将从实际问题的角度出发,探讨一元一次方程在现实生活中的应用。
一、购物优惠假设你在某商场购物,打折后的价格为原价的80%,你购买了一件商品,共花费120元。
现在我们就用一元一次方程来计算原价是多少。
设原价为x元,则打折后的价格为0.8x元。
根据题意,我们得到方程0.8x = 120。
通过解方程,可以得到x = 150。
因此,该商品的原价是150元。
二、汽车行驶假设小明骑自行车去上学,上班的时间比平时的时间推迟了30分钟。
如果他原来以每小时20公里的速度骑行,现在以每小时25公里的速度行驶,那么他的上班距离是多远呢?设他平时上班距离为x公里,则他原本需要x/20小时到达。
而现在,他推迟了30分钟,相当于推迟了0.5小时。
根据题意,我们可以建立方程x/25 = x/20 + 0.5。
通过解方程,可以得到x = 12.5。
因此,小明的上班路程是12.5公里。
三、超市商品促销某超市举办了一次促销活动,对购买2个相同商品的顾客进行优惠。
如果购买2个商品的总价格是120元,而单个商品的价格是原价的80%,我们用一元一次方程解决这个问题。
设原价为x元,则打折后的价格为0.8x元。
根据题意,我们可以得到方程2 * 0.8x = 120。
通过解方程,可以得到x = 75。
因此,该商品的原价是75元。
四、公交车票价假设某城市的公交车票价为每次上车5元,而持有城市公交卡的乘客每次只需支付2元。
如果一位乘客共乘坐了15次公交车,支付了78元,那么他持有的公交卡中还剩下多少钱呢?设他持有公交卡的剩余金额为x元,则他共支付了(15 - x) * 5元。
根据题意,我们可以得到方程(15 - x) * 5 = 78。
通过解方程,可以得到x = 9。
因此,他持有的公交卡中还剩下9元。
五、水果购买某水果摊每个苹果的单价为2元,而橙子的单价比苹果贵1元。
一元一次方程应用题8种类型引言一元一次方程是初中数学中最基础、最常见的方程类型之一。
在实际生活中,我们可以经常遇到一些问题需要用到一元一次方程来求解。
本文将介绍一元一次方程应用题的8种类型,并通过具体例子进行解析。
通过学习这些例题,我们可以更好地理解一元一次方程的应用。
类型一:简单乘除法在这类问题中,我们可以利用一元一次方程来解决乘除法的运算问题。
举例如下:例题一:小明买了三个相同价格的苹果,花了50元。
那么每个苹果的价格是多少?解析:设每个苹果的价格为x元,则有3x = 50。
解这个方程,得到每个苹果的价格为50/3 = 16.67元。
类型二:加减法在这类问题中,我们可以利用一元一次方程来解决加减法的运算问题。
举例如下:例题二:在一张长方形的图纸上,长所占的比例是宽的2倍。
如果长为8厘米,那么宽是多少?解析:设宽为x厘米,则有8 = 2x。
解这个方程,得到宽为4厘米。
类型三:平均数在这类问题中,我们可以利用一元一次方程来解决平均数的问题。
举例如下:例题三:小明连续三天每天跑步,第一天跑了3公里,第三天跑了7公里,三天的平均距离是5公里。
那么第二天跑了多少公里?解析:设第二天跑了x公里,则有(3 + x + 7)/3 = 5。
解这个方程,得到第二天跑了5公里。
类型四:速度在这类问题中,我们可以利用一元一次方程来解决速度问题。
举例如下:例题四:小红骑自行车去学校的路上,遇到了红绿灯,等了30秒后才能继续骑行,这时她发现她在等红绿灯的时候又走了200米。
如果她骑自行车的速度是10米/秒,那么她离开红绿灯时与红绿灯的距离是多少?解析:设她离开红绿灯时与红绿灯的距离为x米,则有10 * 30 = x + 200。
解这个方程,得到她离开红绿灯时与红绿灯的距离是500米。
类型五:价格打折在这类问题中,我们可以利用一元一次方程来解决打折问题。
举例如下:例题五:商场举办打折活动,凡购买两件以上商品的顾客可以享受8折优惠。
《一元一次方程的应用》第一课时导学
姓名:
一、设甲数为x,用代数式表示乙数:
1、乙数比甲数小5. __________________________
2、乙数是甲数的2倍._________________________
3、乙数比甲数小15%._________________________
二、设甲数为x,乙数为y,用方程表示:
1、乙数比甲数小5. __________________________
2、乙数是甲数的2倍._________________________
3、乙数比甲数小15%.__________________________
三、列方程或方程组解应用题
1、一列火车从北京出发到达广州大约需要15小时.火车出发后先按原来的时速匀速行驶8小时后到达武汉,由于2009年12月世界时速最高铁路武广高铁正式投入运营,现在从武汉到广州火车的平均时速是原来的2倍还多50公里,所需时间也比原来缩短了4个小时.求火车从北京到武汉的平均时速和提速后武汉到广州的平均时速.
《一元一次方程的应用》第一课时反馈
姓名:
列方程或方程组解应用题:
2009年12月联合国气候会议在哥本哈根召开.从某地到哥本哈根,若乘飞机需要3小时,若乘汽车需要9小时.这两种交通工具平均每小时二氧化碳的排放量之和为70千克,飞机全程二氧化碳的排放总量比汽车的多54千克,分别求飞机和汽车平均每小时二氧化碳的排放量.
《一元一次方程的应用》第二课时导学
姓名:
列方程或方程组解应用题:
1、2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?
2、北京市实施交通管理新措施以来,全市公共交通客运量显著增加。
据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次。
在此期间,地面公交和轨道交通日均客运量各为多少万人次?
《一元一次方程的应用》第二课时反馈
姓名:
列方程或方程组解应用题:
“家电下乡”农民得实惠,根据“家电下乡”的有关政策:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.小明的爷爷2009年5月份购买了一台彩电和一台洗衣机,他从乡政府领到了390元补贴款.若彩电的售价比洗衣机的售价高1000元,问一台彩电和一台洗衣机的售价各是多少元?
《一元一次方程的应用》第三课时导学
姓名:
列方程或方程组解应用题:
1、为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为
此购买了甲、乙两种消毒液.现已知过去两次购买这两种消
甲种消毒液(瓶)
乙种消毒液
(瓶)
总费用
(元)
第一次40 60 660
第二次80 30 690 2、春暖花开的时节,同学们到公园去划船,看了有关规定和价目
表(如右图所示)后,老师租了电动船和脚踏船共24条,同学们都上了船,恰好每条船都坐满了,大家玩儿得很开心,划船1小时共用了1050元.
求(1)电动船和脚踏船各租用了多少条?
(2)参加划船的同学共有
多少人?
《一元一次方程的应用》第三课时反馈
姓名:
列方程或方程组解应用题:
某采摘农场计划种植B
A、两种草莓共6亩,根据表格信息,解答下列问题:
若该农场每年草莓全部被采摘的总收入为46000O元,那么
A、两种草莓各种多少亩?
B
《一元一次方程的应用》第四课时反馈
姓名:
列方程或方程组解应用题:
某中学拟组织九年级师生外出.下面是年级组长李老师和小芳同学有关租车问题的对话:
李老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座客车每辆每天的租金多
200元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车外出参观,一天的租金共计5000元.”根据以上对话,求客运公司60座和45座的客车每辆每天的租金分别是多少元?
《一元一次方程的应用》第四课时导学
姓名:
列方程或方程组解应用题:
1、据报道:近年来全国人才市场供求最大幅度增加,总体形势不断趋好. 2009年第一季度登记用人和登记求职的总人数是888万人,其中登记求职的人数比登记用人的人数多396万.问登记求职的人数和登记用人的人数各是多少?
2、几个同学自发组织到蟒山国家森林公园爬山. 活动要求男生戴白色遮阳帽,女生戴红色遮阳帽.当他们带着遮阳帽爬山环顾其他所有同学时,发现了一个有趣的现象:每位男生看到白色与红色的遮阳帽一样多,而每位女生看到白色的遮阳帽是红色的2倍.问这几个同学中,男生、女生各有几名?。