动力荷载名词解释
- 格式:doc
- 大小:12.97 KB
- 文档页数:2
桥梁荷载计算方法桥梁是连接两个地点的重要交通设施,而荷载计算是桥梁设计的关键步骤之一。
本文将介绍几种常用的桥梁荷载计算方法,以帮助读者更好地理解和应用这些方法。
一、静力荷载计算方法静力荷载计算方法是最常用的桥梁荷载计算方法之一,它基于静力平衡原理,通过计算各种荷载的作用力与结构的相互作用来确定桥梁的承载情况。
这种方法适用于大多数桥梁设计,包括梁桥、拱桥和悬索桥等。
在静力荷载计算方法中,首先需要确定荷载的类型和大小,常见的荷载包括自重荷载、活荷载和温度荷载等。
然后,根据桥梁结构的特点,采用不同的分析方法进行计算,如静力平衡方程、注释方程和应力-应变关系等。
最后,对计算结果进行验证和优化,以确保桥梁的安全可靠。
二、动力荷载计算方法动力荷载计算方法是在考虑桥梁振动响应的基础上进行的荷载计算。
桥梁在使用过程中会受到各种动力荷载的影响,如车辆行驶、风力和地震等。
为了确保桥梁具有良好的抗震性能和动力稳定性,需要进行动力荷载计算。
在动力荷载计算方法中,首先需要确定振动模态和振动频率,以及荷载的类型和大小。
然后,根据桥梁的振动特性,采用不同的分析方法进行计算,如模态分析、时程分析和频谱分析等。
最后,对计算结果进行验证和优化,以确保桥梁在动力荷载下的安全可靠性。
三、总结综上所述,桥梁荷载计算是桥梁设计中至关重要的一环。
静力荷载计算方法和动力荷载计算方法是常用的计算方法,可以根据具体情况选择合适的方法进行计算。
为了确保桥梁的安全可靠性,荷载计算应当精确可靠,并符合相关的规范和标准。
在实际的桥梁设计中,还可以结合计算软件和现代计算技术来进行荷载计算,以提高计算效率和准确度。
同时,桥梁设计人员应当具备扎实的工程基础和专业知识,不断学习和研究新的计算方法和技术,以适应不断变化的设计需求和挑战。
总之,桥梁荷载计算方法是桥梁设计中不可或缺的一部分,它直接关系到桥梁的安全可靠性和使用寿命。
通过合理选择和应用荷载计算方法,可以确保桥梁结构的合理性和稳定性,为人们出行提供更加安全和便捷的通行条件。
浅谈对结构动力学的认识摘要:简单地讲述了对结构动力学的整体认识,介绍了结构动力学的发展历程,结构动力问题的几大特点,结构动力问题的分类,结构系统的动力自由度及其离散方法(包括集中质量法、广义坐标法和有限单元法),建立运动方程的方法(包括利用达朗贝尔(d'Alermbert)原理的直接平衡法,虚位移原理建立振动方程,哈密顿(Hamilton)原理建立振动方程)。
关键词:结构动力学;质量;阻尼;运动方程On understanding of structure dynamics Abstract: This paper simply tells the overall understanding of structure dynamics, and introduces the development course of structure dynamics, a few big characteristics of structure dynamic problem , the classification of structure dynamic problem, the structure of the system and its dynamic freedom discrete method (including focus on quality method, generalized coordinates method and finite element method), the method for establishing the equations of motion (including the use of d'Alermbert principle direct balance method, vibration equation with imaginary displacement principle, establish vibration equation with Hamilton principle).Key words: structure dynamics; quality; damping; equations of motion1结构动力学发展简介结构动力学是研究结构体系的动力特性,及其在动力荷载作用下动力响应分析原理和方法的一门技术学科。
建筑力学中的各种名词解释引言:建筑力学是研究建筑物结构力学行为的学科,它涉及到大量的专业名词和术语。
本文将对建筑力学中的各种名词进行解释和阐述,希望能够为读者提供一些帮助和理解。
一、受力分析受力分析是建筑力学中最基础也最重要的内容之一。
在建筑结构中,力的作用可以分为静力和动力。
静力是指力的平衡状态,其大小和方向相等;动力则是力的不平衡状态,会导致结构的变形和破坏。
在受力分析中,我们常用到的名词有以下几个:1.应力(Stress):在结构中发挥作用的力产生的内部反作用力。
它可以分为正应力、剪应力和轴心力。
2.应变(Strain):由于外力作用而导致的结构变形程度。
应变可以分为线性应变和非线性应变。
3.弹性(Elasticity):指结构材料的恢复能力,当外力作用消失时能够恢复到原来的形状。
4.屈服(Yield):结构材料在受力情况下出现的可逆性变形。
超过一定应力值后,材料无法恢复原状,并被认为已经屈服。
5.失稳(Instability):结构在受力过程中由于外力作用超过其承载能力而导致的倒塌。
二、承载力分析承载力分析是建筑力学中的关键内容之一,它主要研究结构的稳定性和承载能力。
1.静力学平衡(Static Equilibrium):结构受力状态下各部分力的相互平衡。
2.荷载(Load):指施加在结构上的外力,包括自重荷载、活载和地震荷载等。
3.承载能力(Bearing Capacity):结构能够承受的最大荷载。
4.强度(Strength):材料或者结构在承载外力作用下不发生破坏的能力。
5.变形(Deformation):由于外力作用引起的结构形状、尺寸、位置的改变。
三、构件和构造构件和构造涉及到建筑结构中的各个部分,是结构力学中重要的概念。
1.梁(Beam):用于承担和传递荷载的构件,其承载方式通常为弯曲。
2.柱(Column):用于承担和传递上部结构荷载的垂直构件。
3.墙(Wall):承担纵向、横向荷载传递作用的结构构件。
第12章 结构动力学复习思考题1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么?答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载;动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。
主要差别在于是否考虑惯性力的影响。
(2)计算上的差别:①计算式中是否加入惯性力的数值;②静力计算时,结构处于平衡状态,荷载的大小、方向、作用点及由它引起的结构的内力、位移等各种量值都不随时间而变化;而动力计算时,结构将发生振动,各种量值均随时间而变化;③动力分析方法常与荷载类型有关,而静力分析方法与荷载类型无关。
2.何谓结构的振动自由度?它与机动分析中的自由度有何异同?如何确定结构的振动自由度?答:(1)结构振动的自由度是指结构在弹性变形过程中确定全部质点位置所需的独立参数的数目。
(2)机动分析中的自由度简称静力自由度(又称动力自由度)。
①两者相同点:在数学意义上是一致的,都是强调体系空间质量所需的几何参量的个数。
②不同点:静力自由度是机构移动即刚体位移,排除了各个组成部件的变形运动;而动力自由度是变形位移导致机构位置改变,即体系变形过程质量的运动自由度。
(3)确定结构振动自由度的两种方法:①直接由确定质点位置所需的独立参数数目来判定;②加入最少数量的链杆以限制刚架上所有质点的位置,则该刚架的振动自由度数目即等于所加入链杆的数目。
3.建立振动微分方程有哪两种基本方法?每种方法所建立的方程代表什么条件?答:(1)建立振动微分方程的两种基本方法:刚度法和柔度法。
(2)刚度法代表力的平衡条件,柔度法代表变形协调条件。
4.为什么说结构的自振频率和周期是结构的固有性质?怎样改变它们?答:(1)自振频率和周期是结构的固有性质的原因:结构的自振频率和周期只取决于结构自身的质量和刚度,反映着结构固有的动力特性,而外部干扰力只能影响振幅和初相角的大小并不能改变结构的自振频率。
结构动力学学习总结通过对本课程的学习,感受颇深。
我谈一下自己对这门课的理解:一.结构动力学的基本概念和研究内容随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。
我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。
结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。
它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。
高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。
这门课的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。
既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。
二.动力分析及荷载计算1.动力计算的特点动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。
如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。
但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。
如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。
荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。
在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。
另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。
结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。
第一章1-1什么是结构:房屋、桥梁、隧道、大坝等用以担负预定任务、支撑荷载的建筑物。
结构力学的研究对象主要是杆系结构,其主要任务是:1、研究结构在荷载等因素作用下的内里和位移的计算。
2、研究结构的稳定计算,以及在动力荷载作用下的动力反应。
3、研究结构的组成规则和合理形式等问题。
1-2什么是荷载:作用在结构上的主动力。
按作用时间分:恒载和活载按作用位置分:固定荷载和移动荷载按产生的动力效应大小:静力荷载和动力荷载静力荷载:是指大小、方向和位置不随时间变化或者变化很缓慢的荷载,它不致结构产生显著的加速度,因而可以略去惯性力的影响。
动力荷载:是指随时间迅速变化的荷载,它将引起结构振动,使结构产生不容忽视的加速度,因而必须考虑惯性力的影响。
1-4什么是结构的计算简图:对实际结构加以简化,表现其主要特点,略去次要因素,用一个简化的图形来代替实际结构,这个图形就是结构的计算简图。
如何结构的计算简图:1杆件的简化:常以其轴线代表。
2支座和结点简化:3荷载的简化:常简化为集中荷载及线分布荷载。
4体系的简化:将空间结构转化为平面结构。
1-5支座:把结构和基础联系起来的装置。
1)活动铰支座2)固定铰支座3)固定支座4)滑动支座结点:结构中杆件相互连接处。
刚结点、铰结点、组合结点。
1-6按照几何特征分:杆系结构、薄壁结构、实体结构杆系结构受力特性:梁:是一种受弯构件,轴线通常为直线,当荷载垂直于梁轴线时,横截面上的内力只有弯矩和剪力,没有轴力。
拱:拱的轴线为曲线且在竖向荷载作用下会产生水平反力(推力),这使得拱比跨度、荷载相同的梁的弯矩及剪力都要小,而有较大的轴向压力。
刚架:由直杆组成并具有刚结点,各杆均为受弯杆,内力通常是弯矩、剪力、轴力都有桁架:由直杆组成,但所有结点均为铰结点,当只受到作用于结点的集中荷载时各杆只产生轴力组合结构:由桁架和梁或者桁架和钢架组合在一起的结构有些只受轴力,另一些同时还承受着弯矩和剪力悬索结构:主要承重构件为悬挂于塔、柱上的缆索,只受轴向拉力。
结构力学简答题1、结构动力分析的目的:是确定结构在动力荷载作用下的内力和变形,并通过动力分析确定结构的动力特性。
1、动力荷载的类型:(1)是否随时间变化:静荷载和动荷载(2)是否已预先确定:确定性荷载和非确定性荷载(3)随时间变化的规律:周期荷载:简谐荷载和非简谐周期荷载;非周期荷载:冲击荷载和一般任意荷载。
2、结构动力计算的特点:(1)动力反应要计算全部时间点上的一系列解,比静力计算复杂且要消耗很多的计算时间。
(2)由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要影响。
3、结构离散化的方法:集中质量法、广义坐标法、有限元法。
本质是无限自由度问题转化为有限自由度的过程。
4、有限元法:(1)与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系上插值,而是采用了分片的插值,因此形函数的表达式可以相对简单。
(2)与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,与集中质量法相同。
5、广义坐标:能决定质点系几何位置的彼此独立的量。
选择原则:解题方便。
6、动力自由度:结构体系在任意瞬时的一切可能的变形中,决定全部质量位置所需的独立参数的数目。
动力自由度不完全取决于质点的数目,也与结构是否静定有关。
静力自由度:确定体系在空间中的位置所需的独立参数的数目。
前者是由于系统的弹性变形而引起的各质点的位移分量,后者是指结构中的刚体由于约束不足而产生的刚体位移。
7、有势力:(1)每一个力的大小和方向只决定于体系所有各质点的位置。
(2)体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与路径无关。
(3)沿任何封闭路线所作的功为零。
8、实位移:如果位移不仅满足约束方程,而且满足运动方程和初始条件,则称为体系的实位移。
可能位移:满足所有约束方程的位移称为体系的可能位移。
虚位移:在某一固定时刻,体系在约束许可的情况下产生的任意组微小位移。
动力荷载名词解释
动力荷载名词解释:
1、基本概念根据土的性质和作用,按材料力学规律计算结构或构件在外力作用下,其内力的变化规律称为动力荷载。
它包括结构自重、附加动力作用(振动作用)、风力、水力、冰荷载、雪荷载等。
动力荷载与静荷载相比,作用效果更显著,危害也较大,且其分布范围一般小于静荷载,因而必须采取一定的措施来保证结构安全。
2、特点①只考虑结构或构件本身重量,而忽略其他作用; ②只考虑竖向作用,不考虑侧向或水平作用; ③对地震作用不考虑; ④当作用效果是一次的,不发生累积效应。
3、形式动力荷载的形式可以归纳为两类:①独立型。
即一种动力荷载单独存在。
如自重和附加动力作用均独立于结构自重之外; ②组合型。
指由两种或多种动力荷载共同作用的复合效应,有几种荷载效应共同起作用,一种荷载效应起主导作用。
2、设计依据⑴基本规定:必须考虑支承材料及结构上的自重和地基上的附加应力。
⑵最大允许荷载:取最不利组合进行验算的荷载效应。
3、计算方法⑴概念设计法,即以动力系数k来代替荷载效应组合的概念进行设计。
⑵材料设计法:将荷载效应和材料效应分开,以其中一个效应作为[gPARAGRAPH3],再按概率理论计算出相应的荷载效应组合,而另一个效应则作为荷载的设计值,这样就可求得材料的限制设计值。
4、设计方法的选择动力荷载的分项系数应取小值,否则会影响材料强度的充分利用。
5、极限状态①概念设计法:即在结构的整体极限状态的基础上考虑所有影响因素,用逐步筛选法
选取破坏机理,然后通过构造措施使结构满足承载能力极限状态的一种设计方法。
⑵正常使用极限状态:又称标准设计法,它以破坏概率来表示构件的设计使用程度,适用于有重要意义的建筑物,常用于抗震设防区。
③弹性分析:即以弹性力学原理为基础,根据结构在荷载作用下的内力和变形,通过数学方法建立其内力和变形之间的关系式,来求得结构的极限承载力和刚度。
⑷塑性分析:即以塑性力学原理为基础,根据结构在荷载作用下的内力和变形,通过解析法或有限元法建立结构与荷载的动力联系,来求得结构的极限承载力和刚度。
5、地基与基础一般建筑场地为天然地基时,承受的动力荷载效应为:
3、基本要求:确保构件正常工作时各构件不发生破坏。