八年级数学下册期末考试总复习·填空题专项(答案)
- 格式:docx
- 大小:266.05 KB
- 文档页数:15
2023年部编版八年级数学下册期末考试题(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是()A.±2 B.2 C.﹣2 D.162.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .439.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________. 4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图),设勾a=3,弦c=5,则小正方形ABCD 的面积是_______。
填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
2022—2023年人教版八年级数学下册期末试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .65.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②∠EAG=45°;③CE=2DE ;④AG ∥CF ;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④7.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE ⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用150 175 ______ …______(元)方式二的总费用90 135 ______ …______(元)(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、C6、D7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)12、-2 -33、60°或120°4、(﹣5,4).5、36、4.三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、-11x+,-143、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.4、略.5、(1)略(2)90°(3)AP=CE6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
2022—2023年人教版八年级数学下册期末考试题(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( ) A .﹣3 B .3 C .-13 D .132.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .6.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .37.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根8.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( )A .35°B .40°C .45°D .50°9.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.比较大小:3133.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.化简:x(4x +3y)-(2x +y)(2x -y)3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、D7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、<3、13k <<.4、255.5、(-2,0)6、20三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3xy+y 23、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)△AEF 、△OEB 、△OFC 、△OBC 、△ABC 共5个,EF=BE+FC ;(2)有,△EOB 、△FOC ,存在;(3)有,EF=BE-FC .5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
新人教版八年级数学下册期末考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.21273=___________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B5、D6、C7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、2x (x ﹣1)(x ﹣2).415、36、20三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、x+2;当1x =-时,原式=1.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、略5、(1)2;(2)60︒ ;(3)见详解6、(1)2元;(2)至少购进玫瑰200枝.。
2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
新人教版八年级数学(下册)期末复习题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或715 )A.点P B.点Q C.点M D.点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21a+8a=__________.3x2-x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
八年级下册数学期末试卷及答案-数学期末八下八年级下册数学期末试卷及答案一、选择题(本题共10小题,满分共30分)1.二次根式 $\sqrt{1}$,$2$,$12$,$30$,$x+2$,$40x^2$,$x^2+y^2$ 中,最简二次根式有()个。
A。
1个 B。
2个 C。
3个 D。
4个2.若式子 $\frac{x-2}{x-3}$ 有意义,则 $x$ 的取值范围为()。
A。
$x≥2$ B。
$x≠3$ C。
$x≥2$ 或$x≠3$ D。
$x≥2$ 且$x≠3$3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A。
7,24,25 B。
1,1,1 C。
3,4,5 D。
11,13,244.在四边形 $ABCD$ 中,$O$ 是对角线的交点,能判定这个四边形是正方形的是()A。
$AC=BD$,$AB\parallel CD$,$AB=CD$ B。
$AD\parallel BC$,$\angle A=\angle C$C。
$AO=BO=CO=DO$,$AC\perp BD$ D。
$AO=CO$,$BO=DO$,$AB=BC$5.如下左图,在平行四边形 $ABCD$ 中,$\angle B=80°$,$AE$ 平分 $\angle BAD$ 交 $BC$ 于点 $E$,$CF\parallelAE$ 交 $AE$ 于点 $F$,则 $\angle 1=$()第7题)A。
40° B。
50° C。
60° D。
80°6.表示一次函数$y=mx+n$ 与正比例函数$y=mnx$($m$,$n$ 是常数且$mn≠0$)图象是()A。
直线 B。
双曲线 C。
抛物线 D。
指数函数7.如图所示,函数 $y_1=\frac{x}{2}$ 和$y_2=\frac{14}{x+3}$ 的图象相交于($-1$,$1$),($2$,$2$)两点.当 $y_1>y_2$ 时,$x$ 的取值范围是()A。
八年级数学下册期末考试试卷(答案解析版)一.选择题1.下列各点中,位于直角坐标系第二象限的点是()A. (2,1)B. (﹣2,﹣1)C. (2,﹣1)D. (﹣2,1)2.在①平行四边形,②矩形,③菱形,④正方形中,既是轴对称图形,又是中心对称图形的是()A. ①②③④B. ②③C. ②③④D. ①③④3.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 54.下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等5.如图,如果CD是Rt△ABC的中线,∠ACB=90°,∠A=50°,那么∠CDB等于()A. 100°B. 110°C. 120°D. 130°6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AD的中点,如果OE=2,AD=6,那么▱ABCD的周长是()A. 20B. 12C. 24D. 87.若一个多边形的内角和等于900°,则这个多边形的边数是()A. 8B. 7C. 6D. 58.如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A. AB∥DC,AD=BCB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. OA=OC,OB=OD9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 610.对于函数y=x﹣1,下列结论不正确的是()A. 图象经过点(﹣1,﹣2)B. 图象不经过第一象限C. 图象与y轴交点坐标是(0,﹣1)D. y的值随x值的增大而增大11.函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x的不等式2x<ax+4的解集为()A. x<B. x<C. x>﹣D. x<﹣12.如图,在矩形ABCD中,AB=2,AD=3,BE=1,动点P从点A出发,沿路径A→D→C→E运动,则△APE 的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二.填空题13.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.点P(2,3)关于x轴的对称点的坐标为________.15.将直线y=2x向上平移4个单位,得到直线________.16.在一次函数y=﹣x+2的图象上有A(x1,y1),B(x2,y2)两点,若x1>x2,那么y1________y2.17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是________.18.如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC于点G,交边AE 于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)三.解答题19.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.20.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.21.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?22.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?23.△ABC在平面直角坐标系中的位置如图所示,△ABC的顶点均在格点上,其中每个小正方形的边长为1个单位长度,将△ABC绕原点O旋转180°得△A1B1C1.(1)在图中画出△A1B1C1;(2)写出点A1的坐标________;(3)求出点C所经过的路径长.24.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h 后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.26.如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】点的坐标【解析】【解答】A、(2,1)在第一象限,A不符合题意;B、(﹣2,﹣1)在第三象限,B不符合题意;C、(2,﹣1)在第四象限,C不符合题意;D、(﹣2,1)在第二象限,D符合题意.故答案为:D.【分析】依据第二象限各点的横坐标为负数,纵坐标为正数解答即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形;故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,然后依据上述方法进行判断即可.3.【答案】C【考点】勾股定理【解析】【解答】∵在Rt△ABC中,∠C=90°,AB=5,BC=3,∴AC= = =4.故答案为:C.【分析】依据勾股定理可得到AC=,然后将AB、BC的值代入计算即可.4.【答案】D【考点】直角三角形全等的判定【解析】【解答】两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故答案为:D.【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种,然后结合题目所给的条件进行判断即可.5.【答案】A【考点】直角三角形斜边上的中线【解析】【解答】∵CD是Rt△ABC的中线,∠ACB=90°,∴DC=DA,∴∠DCA=∠A=50°,∴∠CDB=∠DCA+∠A=100°,故答案为:A.【分析】首先依据在直角三角形中,斜边上的中线等于斜边的一半得到DC=DA,接下来,再依据等边对等角的性质得到∠DCA=∠A=50°,最后,依据三角形的外角的性质进行计算即可.6.【答案】A【考点】三角形中位线定理,平行四边形的性质【解析】【解答】∵▱ABCD对角线相交于点O,E是AD的中点,∴AB=CD,AD=BC=6,EO是△ABD的中位线,∴AB=2OE=4,∴▱ABCD的周长=2(AB+AD)=20.故答案为:A.【分析】首先依据平行四边形的性质可得到O为BD的中点,然后依据三角形的中位线的性质可得到AB=OE=4,然后再依据平行四边形的性质得到各边的长,最后再求得其周长即可.7.【答案】B【考点】多边形内角与外角【解析】【解答】设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7故答案为:B.【分析】设这个多边形的边数是n,然后依据多边形的内角和公可得到180°(n﹣2)=900°,最后,再解这个关于n的方程即可.8.【答案】A【考点】平行四边形的判定【解析】【解答】A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故答案为:A.【分析】首先结合图形确定出其中的已知条件,然后再依据平行四边形的判定定理逐项进行判断即可. 9.【答案】C【考点】利用频率估计概率【解析】【解答】∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,∴摸到红色球、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1﹣0.15﹣0.45=0.4,∴口袋中白色球的个数可能为0.4×40=16.故答案为:C.【分析】先求得摸到白球的频率,最后依据频数=总数×频率进行计算即可.10.【答案】B【考点】一次函数的性质【解析】【解答】A、当x=﹣1时,y=x﹣1=﹣1﹣1=﹣2,则图象经过点(﹣1,﹣2),A不符合题意;B、由于k>0,b<0,则图象经过第一、三、四象限,B符合题意;C、当x=0时,y=﹣1,则图象与y轴交点交点坐标是(0,﹣1),C不符合题意;D、由于k=1>0,所以y的值随x值的增大而增大,D不符合题意.故答案为:B.【分析】对于A,将(-1,-2)代入直线的解析式进行判断即可;对于B,依据题意可知k>0,b<0,然后再依据一次函数的图像和性质进行判断即可;对于C,当x=0时,求得对应的y值,从而可得到直线与y轴交点的坐标;对于D,依据一次函数的图像和性质进行判断即可.11.【答案】B【考点】一次函数与一元一次不等式【解析】【解答】把A(m,3)代入y=2x得2m=3,解得m= ,把A(,3)代入y=ax+4得3= a+4,解得a=﹣,解不等式2x<﹣x+4得x<.故答案为:B.【分析】将点A的坐标代入两直线的解析式可求得m、a的值,然后将a的值代入不等式,得到关于x的一元一次不等式,最后,再解这个不等式即可.12.【答案】A【考点】分段函数,一次函数的图象,根据实际问题列一次函数表达式【解析】【解答】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵BE=1,∴CE=BC﹣BE=2,①点P在AD上时,△APE的面积y= x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯﹣S△ADP﹣S△CEP,形AECD= (2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+ ﹣5+x,=﹣x+ ,∴y=﹣x+ (3<x≤5),③点P在CE上时,S△APE= ×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故答案为:A.【分析】分为点P在AD上、点P在CD上、点P在CE上三种情况列出三角形的面积与x的关系,即y与x的关系式,然后依据关系可得到函数的大致图像,故此可得到问题的答案.二.<b >填空题</b>13.【答案】20【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形的周长为20,故答案为20【分析】依据菱形的四条边相等可得到BC=AB=CD=AD=5,然后再求得菱形的周长即可.14.【答案】(2,﹣3)【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【分析】依据关于x轴对称点的横坐标互为相反数,纵坐标相等进行解答即可.15.【答案】y=2x+4【考点】一次函数图象与几何变换【解析】【解答】解:直线y=2x向上平移4个单位后得到的直线解析式为y=2x+4.故答案为:y=2x+4.【分析】当直线y=kx+b(k≠0)平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16.【答案】<【考点】一次函数的性质【解析】【解答】解:∵﹣1<0,∴直线y=﹣x+2上,y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【分析】已知k=-1<0,一次函数的性质可知y随x的增大而减小,然后依据两点的横坐标的大小可得到它们纵坐标的大小关系.17.【答案】36【考点】角平分线的性质【解析】【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积= ×18×4=36.故答案为:36.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,依据平分线的性质可得到OE=OD=OF,然后将三角形ABC 的面积转化为△ABO、△BCO、△ACO的面积之和求解即可.18.【答案】①④【考点】全等三角形的判定与性质,线段垂直平分线的性质,正方形的性质【解析】【解答】解:如图,设FG交AD于M,连接BE.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ADC=∠C=90°,∵DE=EC=2,在Rt△ADE中,AE= = =2 .∵AF=EF,∴DF= AE= ,故①正确,易证△AED≌△BEC,∴∠AED=∠BEC,∵DF=EF,∴∠FDE=∠FED=∠BEC,∴DF∥BE,∵BE与EG相交,∴DF与EG不平行,故②错误,∵AE⊥MG,易证AE=MG=2 ,由△AFM∽△ADE,可知= ,∴FM= ,FG= ,在Rt△EFG中,EG= = ,在Rt△ECG中,CG= = ,∴BG=BC﹣CG=4﹣= ,故④正确,∵EF≠EC,FG≠CG,∴△EGF与△EGC不全等,故③错误,故答案为①④.【分析】设FG交AD于M,连接BE.对于①先依据勾股定理求得AE的长,然后依据直角三角形斜边上中线依据斜边的一半可得到DF的长;对于②,先证明DF∥BE,然后依据过一点有且只有一条直线与已知直线平行进行判断即可;对于③,依据全等三角形的判定定理可对③作出判断;对于④,先依据相似三角形的性质可求得FM和FG的长,然后依据勾股定理可求得EG和CG的长,最后依据BG=BC﹣CG可求得BG的长.三.<b >解答题</b>19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.20.【答案】(1)解:∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角(2)解:S四边形ABCD=S△ABC+S△ADC= •AB•B C+ •AD•DC=234(m2).【考点】勾股定理的应用【解析】【分析】(1)连接AC,先根据勾股定理求出AC的长,再依据勾股定理的逆定理得到∠D是直角;(2)由题意可知S四边形ABCD=S△ABC+S△ADC,然后将四边形ABCD的面积转化为两个直角三角形的面积之和求解即可.21.【答案】(1)60;0.05(2)解:频数分布直方图如图所示,(3)解:视力正常的人数占被调查人数的百分比是×100%=70%.【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.故答案为:(1)1;2;(2)见解答过程;(3)70%.【分析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.22.【答案】(1)解:根据题意可知:当0<x≤6时,y=2x;(2)解:根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6(3)解:∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【考点】一次函数的应用【解析】【分析】(1)当0<x≤6时,根据“水费=用水量×2”可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×2+(用水量-6)×3”可得出y与x的函数关系式;(3)当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x-6中,得到关于x的一元一次方程,然后求得x的值即可.23.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)(2,﹣4)(3)解:由勾股定理可得,CO=∴点C所经过的路径长为:×2×π× = π.【考点】图形的旋转,旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,点A1的坐标为(2,﹣4),(3)由勾股定理可得,CO= 10∴点C所经过的路径长为:×2×π× = π.故答案为:(1)见解答过程;(2)(2,﹣4);(3)π.【分析】(1)根据旋转角度、旋转方向、旋转中心,确定出对应点的位置,然后顺次连结对应点可得到△A1B1C1;(2)根据点A1在坐标系中的位置可得到点A1的坐标;(3)点C所经过的路径为以O为圆心,为半径的半圆,然后再依据弧长公式进行计算即可.24.【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)解:∵四边形ABCD是矩形,∴CD=AB= ,在Rt△CDF中,cos∠DCF= ,∠DCF=30°,∴CF= =2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2【考点】菱形的判定,矩形的性质【解析】【分析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF ≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.25.【答案】(1)解:200÷2=100(km/h).答:当0<x<2时,乙车的速度为100km/h.(2)解:甲车的速度为(400﹣200)÷2.5=80(km/h),甲、乙两车到达目的地的时间为400÷80=5(h).设乙车与甲车相遇后y乙与x的关系式为y乙=kx+b,将点(2.5,200)、(5,400)代入y乙=kx+b,,解得:,∴乙车与甲车相遇后y乙与x的关系式为y乙=80x(2.5≤x≤5).(3)解:根据题意得:y乙= ,y甲=400﹣80x(0≤x≤5).当0≤x<2时,400﹣80x﹣100x=20,解得:x= >2(不合题意,舍去);当2≤x<2.5时,400﹣80x﹣200=20,解得:x= ;当2.5≤x≤5时,80x﹣(400﹣80x)=20,解得:x= .综上所述:当x的值为或时,两车相距20km.【考点】一次函数的应用【解析】【分析】(1)先根据函数图像确定乙车行驶2小时所行驶的路程,然后再根据速度=路程÷时间求解即可;(2)依据函数图像可得到甲车行驶2.5行驶的路程,然后根据速度=路程÷时间可求出甲车的速度,由时间=路程÷速度可求出甲、乙两车到达目的地的时间,再结合二者相遇的时间,利用待定系数法即可求出乙车与甲车相遇后y乙与x的关系式;(3)根据数量关系,找出y甲、y乙关于x的函数关系式,分0≤x<2、2≤x<2.5和2.5≤x≤5三种情况,列出关于x的一元一次方程,最后解关于x的一元一次方程即可.26.【答案】(1)解:∵点B是直线AB:y= x+4与y轴的交点坐标,∴B(0,4),∵点D是直线CD:y=﹣x﹣1与y轴的交点坐标,∴D(0,﹣1);(2)解:如图1,∵直线AB与CD相交于M,∴M(﹣5,),∵点P的横坐标为x,∴点P(x,﹣x﹣1),∵B(0,4),D(0,﹣1),∴BD=5,∵点P在射线MD上,即:x≥0时,S=S△BDM+S△BDP= ×5(5+x)= x+ ,(3)解:如图,由(1)知,S= x+ ,当S=20时,x+ =20,∴x=3,∴P(3,﹣2),①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GE,设E'(m,n),∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1),∵M(﹣5,),∴= ,=1,∴m=8,n= ,∴E'(8,),②当AB为对角线时,同①的方法得,E(﹣9,6),③当MP为对角线时,同①的方法得,E''(﹣2,﹣),即:满足条件的点E的坐标为(8,)、(﹣9,6)、(﹣2,﹣).【考点】直线与坐标轴相交问题【解析】【分析】(1)将x=0代入函数解析式得到对应的y值,从而可得到点B和点D的坐标;(2)将所求三角形的面积转为△BDM和△BDP的面积之和,然后依据三角形的面积公式列出函数关系式即可;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.。
人教版八年级数学下册期末复习填空题含答案第16章二、填空题(每小题3分,共18分)13.计算:13 ×27 =__3__.14.在实数范围内分解因式:x 5-9x =.15.如果两个最简二次根式3a -1 与2a +3 能合并,那么a =__4__.16.如图,在数轴上点A 表示的数为a ,化简:a +a 2-4a +4 =__2__.17.已知a -b =- 2 ,ab =13 ,则代数式a 2+b 2-2ab +a 2+b 2+ab 的值等于_.18.观察下列各式:12+1 = 2 -1,13+2 = 3 - 2 ,14+3= 4 - 3 ,……请你从上述等式中找出规律,并利用这一规律计算:⎝ ⎛⎭⎪⎫13+2+14+3+15+4+……+12 020+ 2 019 ( 2 020 + 2 )=__2_018__.第17章二、填空题(每小题3分,共18分)13.在Rt △ABC 中,∠C =90°,若a ∶b =3∶4,c =20,则a =__12__,b =__16__.14.若边长为a 的正方形的面积等于长为b +c ,宽为b -c 的长方形的面积,则以a ,b ,c 为三边长的三角形是__直角__三角形.15.如图,在Rt △ABC 中,∠ACB =90°,AC =5 cm ,BC =12 cm.以BC 为边作等边三角形△BCD,CD交AB于点F,过D作DE⊥DB,使DE=AC,连接BE,则△ACF和△BDF的周长之和为__42__cm.16.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC,已知AB=5,DE=1,BD=8,AC+CE的最小值为__10__.第16题图17.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出的尺寸(单位:mm)计算两圆孔中心A和B的距离为__150_mm__.第17题图18.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1 cm的速度移动;点Q从点B沿BC边向点C以每秒2 cm的速度移动,如果同时出发,则第3秒,△BPQ的面积为__18__cm2.第18题图第18章二、填空题(每小题3分,共18分)13.如图,若直线AE∥BD,点C在直线BD上,且AE=5,BD=8,△ABD 的面积为16,则△ACE的面积为__10__.第13题图14.菱形周长为40,一条对角线长为16,则另一条对角线为__12__,这个菱形的面积为__96__.15.如图,将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE,点D,F分别是斜边AB,AE的中点,连接CD,CF,则四边形ADCF的形状是__菱形__.第15题图16.(哈尔滨中考)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E,若DE=DC=1,AE=2EM,则BM的长为5__.第16题图17.如图,正方形ABCD中,E为AB的中点,FE⊥AB,AF=2AE,FC交BD于点O,则∠DOC的度数为__60°__.第17题图18.(深圳中考)如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC =∠ABF ,其中正确结论的序号是__①②③__.第18题图期中复习二、填空题(每小题3分,共18分)13.要使代数式x +13x -2在实数范围内有意义,则x 的取值范围为__x ≥-1且x ≠23 __.14.(淮安中考)在四边形ABCD 中,AB =DC ,AD =BC ,请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是__∠A =90°或∠B =90°或∠C =90°或∠D =90°或AC =BD__.(写出一种即可)15.已知a 2+b -2 =4a -4,则ab 的平方根是__±_.16.如图,两个正方形的面积分别是64和49,则AC 的长为__17__. 第16题图17.(丽水中考)我国三国时期数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”,如图①所示,在图②中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ ∥AB ,则正方形EFGH 的边长为__10__.第17题图18.如图,正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且AE =EF =FA.有下列结论:①△ABE ≌△ADF ;②CE =CF ;③∠AEB =75°;④BE +DF =EF ;⑤S △ABE +S △ADF =S △CEF .其中正确的是__①②③⑤__(只填写序号). 第18题图第19章二、填空题(每小题3分,共18分)13.A ,B 两地相距180千米,火车由A 地驶往B 地,行驶的速度为160千米/时,它距离B 地的路程s(千米)与所行驶的时间t(时)之间的关系式是__s =180-160t__,s 是t 的__一次__函数.14.直线y =3x -12与x 轴交点坐标是__(4,0)__,与y 轴的交点坐标是__(0,-12)__,与两坐标轴围成的三角形的面积是__24__.15.已知函数y =2x -1与函数y =52 -32 x 的图象交点如图所示,则方程组⎩⎪⎨⎪⎧3x +2y =5,2x -y =1 的解为__⎩⎪⎨⎪⎧x =1,y =1 __. 第15题图16.某市出租车收费标准如下表,设行驶的路程为x 千米,出租车的运价为y 元,则当0≤x ≤3时,y =__6__;当x>3时,y 与x 的函数关系式为__y =2.1x -0.3__.17.如图,经过点B(-2,0)的直线y =kx +b 与直线y =4x +2相交于点A(-1,-2),则不等式4x +2<kx +b<0的解集是__-2<x<-1__.18.如图,在平面直角坐标系中,等边△ABC 的边BC 在x 轴上,其中点B(2,0),C(4,0).将△ABC 向左平移,当点A 落在直线y =12 x +1上时,平移的距离是.第20章二、填空题(每小题3分,共18分)13.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是__88__分.14.数据1,2,3,2,3,2,4的平均数是__177 __,众数是__2__,中位数是__2__.15.(北海中考)一组数据:1,-1,0,4的方差是__3.5__.16.(2018·青岛)已知甲、乙两组数据的折线图如图所示,设甲、乙两组数据的方差分别为s 2甲 ,s 2乙 ,则s 2甲 __>__s 2乙 (选填“>”“=”或“<”). 17.一组数据9,9,x ,7的众数与平均数相等,则中位数是__9__.18.下列几种说法:①数据2,2,3,4的众数为2;②数据1,0,0,1,0的中位数和众数相等;③数据11,11,11,11,11的方差为1;④若一组数据a ,b ,c 的平均数为10,则新数据a +1,b +1,c +1的平均数为10;⑤已知一组数据x 1,x 2,…,x n 的方差是s 2,则新的一组数据ax 1+1,ax 2+1,…,ax n +1(a 为常数,a ≠0)的方差是a 2s 2.其中正确的有__①②⑤__.(填序号即可)期末复习一二、填空题(每小题3分,共18分)13.计算:(48 -327 )÷ 3 =__-5__.14.(广州中考)一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是__m>-2__.15.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是__8__.16.已知直角坐标平面内的△ABC 三个顶点A ,B ,C 的坐标分别为(4,3),(1,2),(3,-4),则△ABC 的形状是__直角三角形__.17.甲乙两地相距50千米,星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发__23 或43 __小时,行进中的两车相距8千米.第17题图18.如图,已知平面直角坐标系中的三点分别为A(2,3),B(6,3),C(4,0).现要找到一点D ,使得四个点构成的四边形是平行四边形,那么点D 的坐标是__(0,0)或(4,6)或(8,0)__.第18题图期末复习二二、填空题(每小题3分,共18分)13.计算( 3 -2)( 3 +2)的结果是__-1__.14.近年来,A 市市民汽车拥有量持续增长,2014年至2018年该市汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x =__22__.15.若一条直线经过点(-1,1)和点(1,5),则这条直线与x 轴的交点坐标为__⎝ ⎛⎭⎪⎫-32,0 __. 16.(2018·咸宁)如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为__(-1,5)__.第16题图17.(2018·温州)如图,直线y =-33 x +4与x 轴,y 轴分别交于A ,B 两点,点C 是OB 的中点,点D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.第17题图18.(2018·重庆)A,B两地之间的路程为240 km,甲、乙两车沿同一线路从A 地出发到B地,分别以一定的速度匀速行驶.甲车先出发40 min后,乙车才出发,途中乙车发生故障,修车耗时20 min.随后,乙车车速比发生故障前减少了10 km/h(仍保持匀速前行),且甲、乙两车同时到达B地.若甲、乙两车之间的路程y(km)与甲车行驶时间x(h)之间的关系如图所示,则乙车修好时,甲车离B地的路程还有__90__km.。
2022—2023年部编版八年级数学(下册)期末练习及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 2.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60° 4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④8.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .210.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm.3.使x2-有意义的x的取值范围是________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.(1)已知x35y352x2-5xy+2y2的值.(2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、D5、C6、A7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.23、x2≥4、20°.5、56、6三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、(1)42,(2)13+-3、±34、(1)略;(2)结论:四边形ACDF是矩形.理由见解析.5、(1)120°;(2)180°-α;(3)OB+OC=2OF6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
八年级下册数学期末试卷复习练习(Word 版含答案) 一、选择题 1.若式子4x -在实数范围内有意义,则x 的取值范围是( ) A .4x >B .4x <C .4x ≥D .4x ≤ 2.若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( ) A .4、6、8B .3、4、5C .5、12、13D .1、3、10 3.已知四边形ABCD ,以下有四个条件.能判四边形ABCD 是平行四边形的有( )A .//AB CD ,AD BC =B .AB AD =,BC CD = C .A B ∠=∠,C D ∠=∠ D .//AB CD ,//AD BC 4.甲、乙、丙、丁四人进行射击测试,记录每人10次射击成绩,得到各人的射击成绩平均数和方差如表中所示,则成绩最稳定的是( )统计量甲 乙 丙 丁 平均数9.2 9.2 9.2 9.2 方差 0.60 0.620.50 0.44 A .甲 B .乙 C .丙 D .丁5.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .2B .322C .32D .256.如图,在ABC 中,∠B+∠C =α,按图进行翻折,使////,//B D C G BC B E FG ''',则∠C 'FE 的度数是( )A .2αB .90°﹣2αC .α﹣90°D .2α﹣180°7.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若6EF =,13BC =,△的面积为()CD=,则BCD5A.60 B.48 C.30 D.158.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有()①图1中的BC长是8cm,②图2中的M点表示第4秒时y的值为24cm2,③图1中的CD长是4cm,④图2中的N点表示第12秒时y的值为18cm2.A.1个B.2个C.3个D.4个二、填空题9.在函数y=3x+中,自变量x的取值范围是_______.10.已知一个菱形有一个内角为120︒,周长为16cm,那么该菱形的面积等于________ .11.长方形的一条对角线的长为10cm,一边长为6cm,它的面积是________cm2. 12.如图,在矩形ABCD中,点E在AD上,且EC平分BED∠,若1AB=,45∠=︒,则DE的长为__________.EBC13.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.14.如图,矩形ABCD中,对角线AC和BD交于点O,过O的直线分别交AD和BC于点E、F,已知AD=4 cm,图中阴影部分的面积总和为6 cm 2,则矩形的对角线AC长为___cm.15.在平面直角坐标系中,Q 是直线122y x =-+上的一个动点,将Q 绕点(1,0)P 顺时针旋转90︒,得到点Q '连接OQ ',则OQ '的最小值为__________.16.如图,AD 是ABC 的中线,45,ADC ∠=︒把ADC 沿AD 折叠,使点C 落在点'C 处,'BC 与BC 的长度比是_______________________.三、解答题17.计算:(1)218﹣6×31272+-; (2)(5﹣2)2﹣(13﹣2)(13+2);(3)(1+3)•(2﹣3);(4)332232---. 18.笔直的河流一侧有一旅游地C ,河边有两个漂流点A ,B .其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,为方便游客决定在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =5千米,CH =4千米,BH =3千米. (1)判断△BCH 的形状,并说明理由;(2)求原路线AC 的长.19.下图各正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点都称为格点.(1)在图①中,画出一条以格点为端点,长度为8的线段AB .(2)在图②中,以格点为顶点,画出三边长分别为3,22,5的三角形. 20.如图所示,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,垂足为O ,连接AE ,CF .(1)求证:四边形AFCE 为菱形;(2)求AF 的长.21.阅读,并回答下列问题:公元322r a r a a+≈+2的近似值. (12211+1321212≈+=⨯2看23124⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭2≈___________≈______________;依次算法,所得2的近似值会越来越精确.(22取近似值577408时,求近似公式中的a 和r 的值. 22.某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数关系式;(2)当每千克干果降价3元时,超市获利多少元?23.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为秒.(1)直接写出的面积(用含的代数式表示).(2)当点M落在BC边上时,求的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的的值;若不存在请说明理由(不能添加辅助线).24.请你根据学习函数的经验,完成对函数y=|x|﹣1的图象与性质的探究.下表给出了y 与x的几组对应值.x…﹣3﹣2﹣10123…y…m10﹣1012…【探究】(1)m=;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y随x的增大而增大时,x的取值范围是;【拓展】(4)函数y1=﹣|x|+1的图象与函数y=|x|﹣1的图象交于两点,当y1≥y时,x的取值范围是;(5)函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是,该四边形的面积为18时,则b的值是.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(Ⅰ)若设AP=x,则PC=,QC=;(用含x的代数式表示)(Ⅱ)当∠BQD=30°时,求AP的长;(Ⅲ)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】x-≥,由题意得,40解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.2.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、42+62≠82,不符合勾股定理的逆定理,故本选项符合题意;B 、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C 、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D 、12+32=2,符合勾股定理的逆定理,故本选项符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.D解析:D【解析】【分析】根据平行四边形的判定方法进行分析即可.【详解】解:.A 、//AB CD ,AD BC =,不能判断四边形为平行四边形,故不符合题意; B 、AB AD =,BC CD =,不能判断四边形为平行四边形,故不符合题意;C 、A B ∠=∠,CD ∠=∠,不能判断四边形为平行四边形,故不符合题意;D 、//AB CD ,//AD BC ,可以根据两组对边分别平行的四边形是平行四边形进行判定,故符合题意;故选:D .【点睛】本题考查了平行四边形的判定方法,解题的关键是:熟练掌握平行四边形的判定方法. 4.D解析:D【解析】【分析】根据方差的性质:方差越小,表示数据波动越小,也就是越稳定,据此进行判断即可.【详解】解:∵甲、乙、丙、丁的方差分别为0.60,0.62,0.50,0.44,又∵0.44<0.50<0.60<0.62,∴丁的方差最小即丁的成绩最稳定,故选D .【点睛】此题主要考查方差的应用,解题的关键是熟知方差的性质.5.B解析:B【分析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD =6,应用两次勾股定理分别求BE 和a .【详解】解:过点D 作DE ⊥BC 于点E ,由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2.∴AD =a ,∴12BC •DE =12AD •DE =12a •DE =a ,∴DE =2,当点F 从D 到B 6,∴BD 6,Rt △DBE 中,BE 22BD DE -2∵ABCD 是菱形,∴EC =a 2,DC =a ,Rt △DEC 中,a 2=22+(a 22,解得a =322, 故选:B .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.6.D解析:D【解析】【分析】设∠ADB′=γ,∠AGC′=β,∠CEB′=y ,∠C′FE =x ,利用平行线的性质,三角形内角和定理构建方程组即可解决问题.【详解】解:设∠ADB′=γ,∠AGC′=β,∠CEB′=y ,∠C′FE =x ,∵////''B D C G BC ,∴B γ=∠,C β=∠,∴γ+β=∠B+∠C =α,∵EB′∥FG ,∴∠CFG =∠CEB′=y ,∴x+2y =180°①,根据平行线的性质和翻折的性质可得:B γ=∠,//'BD B E ,∴y B =∠,∵γ+y =2∠B ,同理可得出:β+x =2∠C ,∴γ+y+β+x =2α,∴x+y =α②,②×2﹣①可得x =2α﹣180°,∴∠C′FE =2α﹣180°.故选:D .【点睛】本题考查三角形内角和定理,平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.7.C解析:C【解析】【分析】连接BD ,根据三角形中位线定理求出BD ,根据勾股定理的逆定理得到∠BDC =90°,然后求得面积即可.【详解】解:连接BD ,∵E 、F 分别是A B 、AD 中点,∴BD =2EF =12,∵CD 2+BD 2=25+144=169,BC 2=169,∴CD 2+BD 2=BC 2,∴∠BDC =90°,∴S △DBC =12BD •CD =12×12×5=30,故选:C .【点睛】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.D解析:D【分析】①根据题意得:动点P在GC上运动的时间是2秒,又由动点的速度,可得GC和BC的长;②由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得y的值;③动点P在DC上运动的时间是2秒,又由动点的速度,可得CD的长;④根据图2中的N点表示第12秒时,表示点P到达H点,即可得出△ABP的面积;【详解】解:①根据函数图象可以知:从0到2,y随x的增大而增大,经过了2秒,P运动了4cm,因而CG=4cm,BC=8cm;②第4秒时P到达D点.P在CD段时,底边AB不变,高不变,因而面积不变,面积y=12×6×8=24cm2;③第4秒时P到达D点.由图象可知CD=2⨯2=4cm④图2中的N点表示第12秒时,表示点P到达H点.AF=BC+DE=8+2⨯3=14,所以AH=AF-FH=14-2⨯4=6.△ABP的面积=12⨯6⨯6=18cm2.则四个结论正确;故选D【点睛】此题考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题9.x≥﹣3【解析】【分析】根据二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【详解】解:根据题意得:x+3≥0,解得:x≥﹣3.故答案为:x≥﹣3.【点睛】本题考查了函数自变量的确定,熟练掌握二次根式有意义的条件是解题的关键.10.E解析:2【解析】【分析】作AE BC⊥于E,由三角函数求出菱形的高AE,再运菱形面积公式=底×高计算即可;【详解】作AE BC ⊥于E ,如图所示,∵四边形ABCD 是菱形,周长为16cm ,120BCD ∠=︒,∴4AB BC cm ==,60B ∠=︒, ∴()3sin 4sin 60423AE AB B cm ==⨯︒=⨯=, ∴菱形的面积()242383BC AE cm ==⨯=. 故答案为283cm .【点睛】本题主要考查了菱形的性质,结合三角函数的计算是解题的关键.11.48【解析】【分析】先根据勾股定理求出长方形的另一条边,然后根据面积公式计算即可.【详解】解:∵长方形的一条对角线的长为10cm ,一边长为6cm ,由勾股定理可知:长方形的另一条边221068-=cm∴长方形的面积为:6×8=48 cm 2.故答案为:48.【点睛】此题考查的是勾股定理和长方形的面积,掌握用勾股定理解直角三角形是解决此题的关键. 12.D 21【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,求得 AE =AB =1,然后依据勾股定理可求得BC 的长;【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC =∠BCE ,∵EC 平分∠DEB ,∴∠DEC =∠BEC ,∴∠BEC=∠ECB,∴BE=BC,∵四边形ABCD是矩形,=∴∠A=90°,AD BC∵∠ABE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=1,由勾股定理得:BE==,∴BC=AD=BE,∴=-,DE AD AE11.【点睛】本题考查了矩形的性质,等腰三角形的性质与判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.13.A解析:y=x+3【解析】因为一次函数y=kx+3的图象过点A(1,4),所以k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案是:y=x+3【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).14.A解析:5【解析】∵阴影部分的面积总和为6 cm 2,∴矩形面积为12 cm 2;∴AB×AD=12,∴AB=12÷4=3cm.∴5AC cm15.【分析】利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题.【详解】解:作轴于点,轴于,,,,在和△中,,△, 解析:5【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q '的坐标,进而可得点Q '所在直线的函数关系式,然后根据勾股定理求解即可解决问题.【详解】 解:作QM x ⊥轴于点M ,Q N x '⊥轴于N ,90PMQ PNQ QPQ ∠=∠'=∠'=︒,90QPM NPQ PQ N NPQ ∴∠+∠'=∠'+∠'=︒,QPM PQ N ∴∠=∠',在PQM 和△Q PN '中,90PMQ PNQ QPM PQ NPQ PQ ∠=∠'=︒⎧⎪∠=∠'⎨⎪='⎩, PQM ∴△≌△()Q PN AAS ',PN QM ∴=,Q N PM '=,设1(,2)2Q m m -+,|1|Q N PM m ∴'==-,1|2|2QM m =-+, 1|3|2ON m ∴=-, 1(32Q m ∴'-,1)m -, 设点(Q x ',)y ',则1321x m y m⎧=-⎪⎨⎪=-⎩', 整理,得:25y x '=-,则点(Q x ',)y '在直线25y x '=-上,设直线25y x '=-与x 轴,y 轴的交点分别为E 、F ,如图,当OQ EF '⊥时,OQ '取得最小值,令0y '=,则250x -=, 解得52x =, ∴25OE =, 令0x =,则5y '=-,∴5OF =,在Rt OEF 中,222255()5522EF OE OF ++, 当OQ EF '⊥时,则1122OEF S EF OQ OE OF =⋅'=⋅△, ∴5525552OE OF OQ EF ⨯⋅'== OQ ∴'5 5【点睛】本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换-旋转,勾股定理,表示出点Q '的坐标以及点Q '所在直线的函数关系式是解题的关键.16.【分析】设BD=CD=x ,由题意可知∠ADC=45°,且将ADC 沿AD 折叠,故,则可运用勾股定理,将用x 进行表示,即可得出的值.【详解】解:∵点D 是BC 的中点,设BD=CD=x ,则BC=2x 22【分析】设BD=CD=x ,由题意可知∠ADC=45°,且将ADC 沿AD 折叠,故ADC'=45∠︒,则Rt C'DB △可运用勾股定理,将BC'用x 进行表示,即可得出BC':BC 的值.【详解】解:∵点D是BC的中点,设BD=CD=x,则BC=2x,∠︒,C'D=x,又∵∠ADC=45°,将ADC沿AD折叠,故ADC'=45∴C'DC=C'DB=90∠∠︒,C'DB△是直角三角形,根据勾股定理可得:,∴:,2.【点睛】本题主要考察了折叠问题与勾股定理,解题的关键在于通过折叠的性质,得出直角三角形,并运用勾股定理.三、解答题17.(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣【分析】(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;(2)直接利用乘法公式化简,再合并得出答案;(3)直接利用解析:(1)3;(2)﹣3)﹣4【分析】(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;(2)直接利用乘法公式化简,再合并得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用二次根式的性质化简,进而得出答案.【详解】解:(1)633=3;(22)22)(3)(•(23(4)11-11【点睛】本题主要考查了二次根式的混合运算以及立方根的性质,正确化简二次根式是解题关键.18.(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△解析:(1)直角三角形,理由见解析;(2)原来的路线AC的长为256千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米,在Rt△ACH中,由已知得AC=x,AH=x-3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x-3)2+42,解这个方程,得x=256,答:原来的路线AC的长为256千米.【点睛】本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.19.(1)见解析;(2)见解析【解析】【分析】(1)根据实际上直角边长为2和2的直角三角形的斜边长,即可解答;(2)实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直解析:(1)见解析;(2)见解析【解析】【分析】(1)根据8实际上直角边长为2和2的直角三角形的斜边长,即可解答;(2)22实际上是直角边长为2和2的直角三角形的斜边长,5实际上是直角边长为2和1的直角三角形的斜边长,即可解答.【详解】(18实际上直角边长为2和2的直角三角形的斜边长,如图①线段AB即为所求线段;(2)本题中22实际上是直角边长为2和25长为2和1的直角三角形的斜边长,据此可找出如图②中的三角形即为所求.【点睛】本题主要考查了勾股定理,解题的关键是确定直角三角形的直角边长后根据边长画出所求的线段和三角形.20.(1)见解析;(2)AF=5【分析】(1)根据EF是AC的垂直平分线可以得到AF=CF,AE=CE,再只需证明△AFO≌△CEO即可得到答案;(2)根据四边形AECF是菱形可以得到AE=EC解析:(1)见解析;(2)AF=5【分析】(1)根据EF是AC的垂直平分线可以得到AF=CF,AE=CE,再只需证明△AFO≌△CEO即可得到答案;(2)根据四边形AECF是菱形可以得到AE=EC=x,则BE=8-x,然后利用勾股定理求解即可.【详解】解:(1)∵EF是AC的垂直平分线,∴AF =CF ,AE =CE ,AO =CO∵四边形ABCD 是矩形,∴AF ∥EC∴∠FAO =∠ECO ,∠AFO =∠CEO ,在△AFO 和△CEO 中,AFO CEO AO COFAO ECO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO ≌△CEO (AAS ),∴AF =EC ,∴AF =FC =AE =EC ,∴四边形AECF 是菱形;(2)由(1)得AE =CE =AF ,设AE =CE =AF =x ,则BE =8-x ,∵四边形ABCD 是矩形,∴∠B =90°,在直角三角形ABE 中222AB BE AE +=,∴()22248x x +-=, 解得x =5,∴AF =5,21.(1);(2)或 ;或【解析】【分析】根据近似公式计算出近似值的过程和方法计算的近似值和确定a 和r 的值.【详解】(1)根据近似公式可知:≈故答案为;(2)∵∴∴∴整理,解析:(1)1343222-+⨯;1712(2)1712a =或2417;1144r =-或2289 【解析】【分析】的近似值和确定a 和r 的值.【详解】(1≈1343222-+⨯≈1712故答案为1343222-+⨯;1712(2)∵2r a a≈≈+ ∴225772408a r r a a ⎧+=⎪⎨+=⎪⎩∴5772()408r a a =⨯- ∴25772()2408a a a +⨯-= 整理,22045774080a a -+= 解得:1712a =或2417a = ∴1144r =-或2289r = 故答案为1712a =或2417 ;1144r =-或2289 【点睛】本题考查二次根式的估算,审清题意,根据题目所给的近似公式计算是解题关键. 22.(1)y=10x+100(0<x <20);(2)当每千克干果降价3元时,超市获利2210元【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x=3代入求出销售量,再根据解析:(1)y =10x +100(0<x <20);(2)当每千克干果降价3元时,超市获利2210元【分析】(1)由待定系数法即可得到函数的解析式;(2)根据(1)的解析式将x=3代入求出销售量,再根据每千克利润×销售量=总利润列式求解即可.【详解】解:(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,2120 4140k bk b+=⎧⎨+=⎩,解得:10100kb=⎧⎨=⎩,∴y与x之间的函数关系式为:y=10x+100(0<x<20);(2)根据题意得,销售量y=10×3+100=130,(60-3-40)×130=2210(元),答:当每千克干果降价3元时,超市获利2210元.【点睛】本题考查的是一次函数的应用,解题的关键是利用待定系数法求出y与x之间的函数关系式,此类题目主要考查学生分析、解决实际问题能力,又能较好的考查学生“用数学”的意识.23.(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是解析:(1);(2);(3)存在,如图2(见解析),当时,;如图3(见解析),当时,;如图4(见解析),当时,.【分析】(1)先根据线段中点的定义可得,再根据矩形的性质、角平分线的定义可得,从而可得是等腰直角三角形,然后根据等腰直角三角形的性质可得AH的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得,从而可得,再根据三角形中位线定理可得是的中位线,从而可得,然后与(1)所求的建立等式求解即可得;(3)分①当点H是AB的中点时,;②当点Q与点E重合时,;③当时,三种情况,分别求解即可得.【详解】(1)由题意得:,点Q为AP的中点,,四边形ABCD是矩形,,是BAD的角平分线,,,是等腰直角三角形,,则的面积为;(2)如图1,四边形PQHM是平行四边形,,点M在BC边上,,点Q为AP的中点,是的中位线,,由(1)知,,则,解得;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则,四边形PQHM是平行四边形,,,在和中,,,由(2)可知,此时;②如图3,当点Q与点E重合时,在和中,,,,则,解得;③如图4,当时,四边形ABCD是矩形,四边形PQHM是平行四边形,,,在和中,,,,,在中,,是等腰直角三角形,,,在中,,是等腰直角三角形,,则由得:,解得;综上,如图2,当时,;如图3,当时,;如图4,当时,.【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解.【详解】解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0,故答案为:x≥0;(4)画出函数y1=﹣|x|+1的图象如图,由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1,故答案为:﹣1≤x≤1;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图:由图象得:y1=﹣|x|+1的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,y2=﹣|x|+3的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∴函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∵y=|x|﹣1,y2=﹣|x|+b(b>0),∴y与y2的图象围成的正方形的对角线长为b+1,∵该四边形的面积为18,∴1(b+1)2=18,2解得:b=5(负值舍去),故答案为:正方形,5.【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.25.(Ⅰ)6﹣x,6+x;(Ⅱ)2;(Ⅲ)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形解析:(Ⅰ)6﹣x,6+x;(Ⅱ)2;(Ⅲ)线段DE的长度不会改变.DE=3【分析】(1)根据等边三角形的性质可知AB=BC=AC=6,然后根据题意解答即可;(2)在(1)的基础上,再利用直角三角形30°所对的边等于斜边的一半进行解答即可. (3) 作QF⊥AB,交直线AB的延长线于点F,连接QE,PF;根据题意和等边三角形的性质证明△APE≌△BQF(AAS),进一步说明四边形PEQF是平行四边形,最后说明DE=AB,即可说明DE的长度不变.【详解】解:(Ⅰ)∵△ABC是边长为6的等边三角形,∴AB=BC=AC=6,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,故答案为6﹣x,6+x;(Ⅱ)∵在Rt △QCP 中,∠BQD =30°,∴PC =12QC ,即6﹣x =12(6+x ),解得x =2,∴AP =2;(Ⅲ)当点P 、Q 运动时,线段DE 的长度不会改变.理由如下:作QF ⊥AB ,交直线AB 的延长线于点F ,连接QE ,PF ,又∵PE ⊥AB 于E ,∴∠DFQ =∠AEP =90°,∵点P 、Q 速度相同,∴AP =BQ ,∵△ABC 是等边三角形,∴∠A =∠ABC =∠FBQ =60°,在△APE 和△BQF 中,∵∠AEP =∠BFQ =90°,∴∠APE =∠BQF ,∴在△APE 和△BQF 中,AEP BFQ A FBQ AP BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△APE ≌△BQF (AAS ),∴AE =BF ,PE =QF 且PE ∥QF ,∴四边形PEQF 是平行四边形,∴DE =12EF ,∵EB +AE =BE +BF =AB ,∴DE =12AB ,又∵等边△ABC 的边长为6,∴DE =3,∴当点P 、Q 运动时,线段DE 的长度不会改变.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、平行四边形的判定和性质,其中灵活运用等边三角形的性质和全等三角形的判定是解答本题的关键.。
2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。
1.(2018•昭阳区模拟)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是13.2.(2018•怀柔区一模)一个多边形的内角和是720°,则它是六边形.3.(2018•东莞市校级一模)一个多边形的每一个外角为30°,那么这个多边形的边数为12.4.(2018•陕西模拟)一个正多边形的内角是外角的2倍,则这个正多边形是6边形.5.(2018•吴中区一模)若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.6.(2018•郑州一模)如图所示,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,∠ABC=120°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC.∵AB=AF,∴四边形ABEF 是菱形.∵四边形ABEF是菱形,且周长为40,∴AB=AF=40÷4=10.∵BF=10,∴△ABF是等边三角形,∴∠ABF=60°,∴∠ABC=2∠ABF=120°.故答案为:120°.7.(2018•山西二模)如图,在▱ABCD中,E为CD的中点,BF⊥AE,垂足为F,AD=AE=1,∠DAE=30°,EF=﹣1.【解答】解:延长AE交BC的延长线于点G,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠D=∠ECG,∵E为CD的中点,∴DE=CE,∴△ADE≌△GCE,∴AD=CG=1,AE=EG=1,∵BF⊥AE,∠DAE=30°,∴BF=BG=1,∴FG==,∴EF=FG﹣EG=﹣1,故答案为﹣18.(2018•青岛模拟)如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE 上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为18.【解答】解:∵∠AFB=90°,点D是AB的中点,∴DF=AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:189.(2018•吉林模拟)如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE=16cm2,S△BQC=25cm2,则图中阴影部分的相交于点P,BF与CE相交于点Q,若S△APD面积为41cm2.【解答】解:连接E、F两点,∵四边形ABCD是平行四边形,∴AB∥CD,=S△BCF,∴△EFC的FC边上的高与△BCF的FC边上的高相等,∴S△EFC=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=16cm2,S△BQC=25cm2,∴S△EFQ∴S=41cm2,故答案为:41.四边形EPFQ10.(2018•长丰县二模)如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t,则当以A、M、E、F为顶点的四边形是平行四边形时,t=或【解答】解:①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=9+3t﹣12,解得t=,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=12﹣9﹣3t,解得t=,综上所述,t=或s时,以A、M、E、F为顶点的四边形是平行四边形.11.(2018•大兴区一模),则的值是3.12.(2018•白云区一模)若分式的值为0,则a=﹣3.13.(2018•澧县三模)化简(x﹣)÷(1﹣)的结果是x﹣1.14.(2018•罗平县三模)阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为28元.15.(2018•牡丹江二模)若关于x的方程无解,则m的值为1.16.(2018•东城区一模)化简代数式(x+1+)÷,正确的结果为2x.17.(2018•江油市一模)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则满足条件的整数a的值是﹣2.18.(2017秋•定陶县期末)已知=+,则整式A﹣B=﹣1.19.(2017秋•邵阳期末)如果分式方程有增根,则增根是x=3.20.(2018春•高邮市期中)不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.21.(2018春•工业园区校级期中)分式、的最简公分母是6x3y2.22.(2018•南海区校级二模)已知a与b互为相反数,则代数式a2+2ab+b2﹣2018的值为﹣2018.23.(2018•长清区模拟)分解因式a3﹣6a2+9a=a(a﹣3)2.24.(2018•繁昌县二模)因式分解:(2a+b)2﹣2b(2a+b)=(2a+b)(2a﹣b).25.(2018•锡山区校级一模)因式分解:a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(a+2b)(a﹣2b).26.(2018•井研县模拟)分解因式:(y+2x)2﹣(x+2y)2=3(x+y)(x﹣y).27.(2018•江城区一模)分解因式:ax4﹣9ay2=a(x2+3y)(x2﹣3y).28.(2018•天门模拟)已知ab=2,a﹣2b=﹣3,则a3b﹣4a2b2+4ab3的值为18.29.(2018•南开区模拟)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=(y﹣1)2(x﹣1)2.30.(2017秋•庆云县期末)因式分解:9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(3a+2b)(3a﹣2b)31.(2018•二道区模拟)如图,平面直角坐标系中,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为2.32.(2018•红桥区模拟)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC 绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=30°.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,33.(2018•锡山区校级一模)如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=100°.【解答】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.34.(2018•汕头模拟)如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为 1.5.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.5,∴CD=BC﹣BD=3.5﹣2=1.5.35.(2018•山西模拟)如图,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE(填是由AB平移所得,AC与BD不平行,则AC+BD与AB的大小关系是:AC+BD=AB.“>”“<”或“=”)【解答】解:由平移的性质知,AB与CE平行且相等,所以四边形ACEB是平行四边形,BE=AC,当B、D、E不共线时,∵AB∥CE,∠DCE=∠AOC=60°,∵AB=CE,AB=CD,∴CE=CD,∴△CED是等边三角形,∴DE=AB,根据三角形的三边关系知BE+BD=AC+BD>DE=AB,即AC+BD>AB.当D、B、E共线时,AC+BD=AB.36.(2017秋•孝义市期末)如图,在Rt△ABC中,AC=4,BC=,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为.【解答】解:连接CE,作EF⊥BC于F,由旋转变换的性质可知,∠CAE=60°,AC=AE,∴△ACE是等边三角形,∴CE=AC=4,∠ACE=60°,∴∠ECF=30°,∴EF=CE=2,由勾股定理得,CF==2,∴BF=BC﹣CF=,由勾股定理得,BE==,37.(2018•牡丹江二模)若不等式组有3个整数解,则a的取值范围是﹣3≤a<﹣2.38.(2018•铁西区模拟)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b 与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为﹣4<x<﹣.39.(2018•黑龙江模拟)若关于x的一元一次不等式组无解,则m的取值范围为m≥﹣2.40.(2018•滨州一模)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有105块.41.(2017秋•盐城期末)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.42.(2017•兴庆区校级二模)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售但要保证利润率不低于5%,问至多可以打几折?若设可以打x折,则列出的不等式是1200×﹣800≥800×5%.43.(2017春•民勤县校级期末)某宾馆底楼客房比二楼少5间,某旅游团48人,若全部安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排在二楼,每间3人,房间不够,每间4人,有房间没有住满4人,该宾馆低楼有客房10间.44.(2017春•海南期末)若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是9≤m<12.45.(2017春•双鸭山期末)已知不等式组的解集为﹣1<x<2,则(m+n)2017=1.46.(2017春•盐城期末)不等式>﹣1的所有正整数解的和为10.47.(2018•天心区校级模拟)如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=32°.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.48.(2018•黄浦区二模)如图,在四边形ABCD中,∠ABC=∠ADC=90°,AC=26,BD=24,M、N分别是AC、BD的中点,则线段MN的长为5.【解答】解:连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM=13,又N是BD的中点,∴BN=DN=BD=12,∴MN==5,故答案为:5.49.(2018•老河口市模拟)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.50.(2018•大渡口区二模)如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=10.【解答】解:连接AE,BE,过E作EG⊥BC于G,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC﹣CF=12﹣x,BG=BC+CG=8+x,∴12﹣x=8+x,解得x=2,∴AF=12﹣2=10.故答案为:10.51.(2017秋•姑苏区期末)如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=3.【解答】解:如图,过点P作PE⊥OA于E,∵∠AOB=30°,OP平分∠AOB,∴∠AOP=∠BOP=15°.∵PC∥OB,∴∠BOP=∠OPC=15°,∴∠PCE=∠AOP+∠OPC=15°+15°=30°,又∵PC=6,∴PE=PC=3,∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,∴PD=PE=3,故答案为3.52.(2017秋•淮南期末)如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为6﹣4.【解答】解:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点F,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF=∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=x,则EF=BE=x,BD=DF=2﹣x,在Rt△BED中,DE2+BE2=BD2,∴x2+x2=(2﹣x)2,解得x1=﹣2﹣2(负值舍去),x2=﹣2+2,∴△DEF的面积为(﹣2+2)×(﹣2+2)÷2=6﹣4.故答案为:6﹣4.53.(2017秋•浉河区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D 为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【解答】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB 的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP 或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,54.(2017秋•五莲县期末)如图,在等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,且DE长为1,则BC长为2.【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵DE=1,∴AC=2.故答案为:255.(2017秋•郾城区期末)如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠BEO的度数是64°.【解答】解:连结OB,∵∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=∠ABO=29°,∵AB=AC,∠BAC=58°,∴∠ABC=∠ACB=61°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=29°,∴∠1=61°﹣29°=32°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=32°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=32°,∴∠OEC=180°﹣32°﹣32°=116°.∴∠BEO=180°﹣116°=64°.故答案为64°.56.(2017秋•柯桥区期末)如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC 于点E,PF⊥BC于点F,连接PB,PC,若PD=PE=PF,∠BAC=64°,则∠BPC的度数为32°.【解答】解:∵PD=PE=PF,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,∴CP 平分∠ACF ,BP 平分∠ABC ,∴∠PCF=∠ACF ,∠PBF=∠ABC ,∴∠BPC=∠PCF ﹣∠PBF=×(∠ACF ﹣∠ABC )=∠BAC=32°,故答案为:32°.57.(2017秋•肇源县期末)如图,在△ABC 中,∠B=30°,∠C=∠B ,AB=2cm ,点P 从点B 开始以1cm/s 的速度向点C 移动,当△ABP 要以AB 为腰的等腰三角形时,则运动的时间为 2s 或6s .【解答】解:当AB=AP 时,点P 与点C 重合,如图1所示,过点A 作AD ⊥BC 于点D ,∵∠B=30°,AB=2cm ,∴BD=AB•cos30°=2×=3cm ,∴BC=6cm ,即运动的时间6s ;当AB=BP 时,∵AB=2cm ,∴BP=2cm ,∴运动的时间2s .58.(2018春•上杭县期中)如图△ABC 中,点M 是BC 的中点,∠ACB=90°,AC=5,BC=12,AN 平分∠BAC ,AN ⊥CN ,则MN= 4 .【解答】解:如图所示,延长CN ,交AB 于点D ,∵∠ACB=90°,AC=5,BC=12, ∴AB=13,∵AN 平分∠BAC ,AN ⊥CN ,∴∠ACD=∠ADC ,∴AC=AD=5,∴CN=DN ,即N 是CD 的中点,又∵点M 是BC 的中点,∴MN 是△BCD 的中位线,∴MN=BD=(AB ﹣AD )=(13﹣5)=4,故答案为:4.59.(2018春•武清区期中)在在△ABC 中,∠ACB=90°,∠A=30°,BC=4,则斜边AB 上的中线长是 4 .【解答】解:如图,∵∠ACB=90°,∠A=30°,∴AB=2BC=2×4=8,∴斜边AB上的中线长=AB=4.故答案为:4.60.(2018春•历城区期中)一个等腰三角形的底边长为5,一腰上中线把其周长分成的两部分的差为3,则这个等腰三角形的腰长为8.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)﹣(5+x)=3或(5+x)﹣(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;61.(2017•凉山州二模)等腰三角形的一个角为30°,则它的另外两内角分别为75°、75°或30°、120°.【解答】解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.62.(2017•天桥区三模)如图,在△ABC中,AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则∠ABE的度数为36°.【解答】解:∵AB=AC,∠C=72°,∴∠A=36°,∵D是AB的中点,点E在AC上,DE⊥AB,∴EA=EB,∴∠ABE=∠A=36°,故答案为:36°.63.(2017•宜城市模拟)若实数x、y满足|x﹣5|+=0,则以x、y的值为边长的等腰三角形的周长为18或21.【解答】解:根据题意得,x﹣5=0,y﹣8=0,解得x=5,y=8,①5是腰长时,三角形的三边分别为5、5、8,∵5+5>8,∴不组成三角形,周长为18;②5是底边时,三角形的三边分别为5、8、8,能组成三角形,周长=8+8+5=21.综上所述,等腰三角形的周长是18或21.故答案为:18或21.64.(2017•深圳模拟)如图,在△ABC中,∠ACB=90°,BC=6,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN 交AB于点D,交AC于点E,连接CD,则DE的长为3.【解答】解:根据作法可知:DE是AC的垂直平分线,即DE⊥AC,AE=CE,∵∠ACB=90°,∴DE∥BC,∴AD=BD,∴DE=BC==3,故答案为:3.65.(2017•江岸区校级模拟)如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=55度.【解答】解:∵∠AFD=145°,∴∠CFD=35°又∵FD⊥BC于D,DE⊥AB于E∴∠C=180°﹣(∠CFD+∠FDC)=55°∵AB=AC∴∠B=∠C=55°,∴∠A=70°根据四边形内角和为360°可得:∠EDF=360°﹣(∠AED+∠AFD+∠A)=55°∴∠EDF为55°.故填55.66.(2016秋•淮安期末)若等腰三角形的顶角为50°,则它的底角为65°.【解答】解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65.故填65.。
人教版 八年级数学下册 期末综合复习一、选择题(本大题共12道小题) 1. 计算(2x +1)(2x -1)的结果为 ( ) A .4x 2-1B .2x 2-1C .4x -1D .4x 2+12. 把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( ) A .xB .2xC .x +4D .x (x +4)3. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为()A .abB .0C .2abD .3ab4. 如图,△ABE ≌△ACD ,∠A =60°,∠B =25°,则∠DOE 的度数为()A .85°B .95°C .110°D .120°5.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°6. 下列哪一个度数可以作为某一个多边形的内角和 () A .240° B .600°C .540°D .2180°7. (2020·天津)计算221(1)(1)x x x +++的结果是( )A.11x+B.21(1)x+C. 1D. 1x+8. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是A.2 B.3C3D59. 下列长度的三条线段能组成钝角三角形的是( )A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P ,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A.90°B.120 C.135°D.150°12.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD ,则∠A的度数是( )A.45°B.50°C.55°D.80°二、填空题(本大题共12道小题)13.图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)14. (2020·武威)分解因式:a2+a=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).16.如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是____ ____.17.将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC即为∠AOB的平分线,理由是______________________.18.如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM +MN的值最小时,∠OCM的度数为________.19. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.20. 若a-b=3x-y=2则a2-2ab+b2-x+y=________.21.如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC =18,则△AMN的周长为________.22. 计算:1x2-6x+9÷x+3x-3·(9-x2).解:原式=1(x-3)2÷x+3x-3·(3+x)(3-x)……第一步=1(x-3)2·x-3x+3·(3+x)(3-x)……第二步=1.……第三步回答:(1)上述过程中,第一步使用的公式用字母表示为__________________________;(2)由第二步得到第三步所使用的运算方法是____________;(3)以上三步中,从第________步开始出现错误,本题的正确答案是__________.23. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.24. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.三、作图题(本大题共2道小题)25.利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.26. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.28. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+. (1)下列分式中,属于真分式的是()A.B.C.-D.(2)将假分式化成整式与真分式的和的形式.29. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.30.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.31. 在△ABC中,∠A=90°,∠B=30°,AC=6 cm,点D从点A出发以1 cm/s的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,设运动时间为t s,解决以下问题:(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?32. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学下册 期末综合复习-答案一、选择题(本大题共12道小题) 1. 【答案】A2. 【答案】D3. 【答案】D4.【答案】C [解析]∵△ABE ≌△ACD ,∴∠B =∠C =25°.∵∠A =60°,∠C =25°,∴∠BDO =∠A +∠C =85°.∴∠DOE =∠B +∠BDO =85°+25°=110°.5. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A【解析】本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.本题可先通分,继而进行因式约分求解本题.221(1)(1)x x x +++21(1)x x +=+,因为10x +≠,故211=(1)1x x x +++.故选:A .8. 【答案】D【解析】由作法得CE ⊥AB ,则∠AEC=90°, AC=AB=BE+AE=2+1=3,在Rt △ACE 中,=.故选D .9.【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B 选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D 选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A 选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C 选项正确.10.【答案】C [解析]如图,作PP′垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于点N ,将P′N 沿竖直方向向上平移河宽个单位长度,得到PM ,PM -MN -NQ 即所求.根据“两点之间,线段最短”,QP′最短,即PM +NQ 最短.观察选项,选项C 符合题意.11.【答案】C [解析]在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.12. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.∵AB ∥CF ,∴∠3=∠1. ∵AD ∥CE ,∴∠2=∠4.∴∠BAD =∠3+∠4=∠1+∠2=∠FCE.∵∠FCE =180°-∠E -∠F =180°-80°-50°=50°,∴∠BAD =∠FCE =50°.二、填空题(本大题共12道小题)13. 【答案】②④⑥①③⑤14. 【答案】a 2+a =a (a +1).故答案为:a (a +1).15. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).16. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等17. 【答案】角的内部到角的两边距离相等的点在角的平分线上18.【答案】10° [解析]作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°.∴∠OCM=10°.19. 【答案】(a+3)(a-3)3(a-3)3(a+3)(a-3)20. 【答案】7[解析] a2-2ab+b2-x+y=(a-b)2-(x-y).把a-b=3x-y=2代入得原式=32-2=7.21. 【答案】30 [解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】(1)a2-2ab+b2=(a-b)2,a2-b2=(a+b)(a-b)(2)约分(3)三-123. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.24. 【答案】解:如图.故填3,4,5,6,n.三、作图题(本大题共2道小题)25. 【答案】解:如图,四边形A1B1C1D1即为所求.26. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.28. 【答案】解:(1)C(2)==+=m-1+.29. 【答案】解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.30. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.31. 【答案】(1)根据题意可得AD =t ,CD =6-t ,CE =2t. ∵△DEC 为等边三角形,∴CD =CE ,即6-t =2t ,解得t =2.∴当t 的值为2时,△DEC 为等边三角形.(2)∵∠A =90°,∠B =30°,∴∠C =60°. ①当∠DEC 为直角时,∠EDC =30°,∴CE =12CD ,即2t =12(6-t),解得t =65;②当∠EDC 为直角时,∠DEC =30°,∴CD =12CE ,即6-t =12·2t ,解得t =3.综上,当t 的值为65或3时,△DEC 为直角三角形.32. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n n n n n n x y z x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪ ⎪⎝⎭⎝⎭.。
八年级下册数学期末试卷复习练习(Word 版含答案) 一、选择题 1.式子1x -在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≥0C .x >1D .x ≥1 2.下列条件中,不能判断ABC (a 、b 、c 为三边,A ∠、B 、C ∠为三内角)为直角三角形的是( )A .2221,2,3a b c ===B .::3:4:5a b c =C .A B C ∠+∠=∠D .::3:4:5A B C ∠∠∠= 3.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .44.期间,红星中学门卫对周末提前返校的5名学生进行体温检测,记录如下:36.1℃,36.5℃,36.9℃,36.5℃,36.6℃,则这5名学生体温的众数是( )A .36.1℃B .36.6℃C .36.5℃D .36.9℃ 5.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O .CE ⊥AD 于点E ,AB =23,AC =4,BD =8,则CE =( )A .72B .2217C .4217D .76.如图,在平行四边形纸片ABCD 中,对角线AC 与BD 相交于点E ,∠AEB =45°,BD =4,将纸片沿对角线AC 对折,使得点B 落在点B ′的位置,连接DB ',则DB '的长为( )A .22B .23C .42D .15 7.△ABC 中,AB =6,BC =5,AC =7,点D 、E 、F 分别是三边的中点,则△DEF 的周长为( )A .5B .9C .10D .188.一个容器内有进水管和出水管,开始4min 内只进水不出水,在随后的8min 内既进水又出水,第12min 后只出水不进水.进水管每分钟的进水量和出水量每分钟的出水量始终不变,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象有下列说法:①进水管每分钟的进水量为5L ;②412x ≤≤时,5154y x =+;③当12x =时,30y =;④当15y =时,3x =,或17x =.其中正确说法的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题9.若二次根式1x -在实数范围内有意义,则x 的取值范围是______________. 10.如图,菱形ABCD 的边长为5cm ,正方形AECF 的面积为18cm 2,则菱形的面积为 ___cm 2.11.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠AOD =60°,AD =4,则AB =___.12.如图,已知矩形ABCD 的对角线AC 的长为10cm ,顺次连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为______cm .13.定义:对于一次函数y kx b =+,我们把点(),b k 称为这个一次函数的伴随点.已知一次函数4y x m =+-的伴随点在它的图象上,则=m __________.14.在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC =___________.(结果保留根号)15.在平面直角坐标系中,矩形OABC 的顶点O 为坐标原点,顶点A ,C 分别在x 轴和y 轴上,OA =4,OC =3,D 为AB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,则点E 的坐标为_____.16.如图所示,将矩形ABCD 沿直线AE 折叠(点E 在边CD 上),折叠后顶点D 恰好落在边BC 上的点F 处,若AD =5,AB =4,则EC 的长是_____.三、解答题17.计算:(1)1632(2)2055+;(3)2214524-;(4)11 12333-⎛⎫+-- ⎪⎝⎭.18.湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得30BC=米,50AC=米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.19.如图,在4×3正方形网格中,每个小正方形的边长都是1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段,点A固定在格点上.(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a=,b=;(2)请你画出顶点在格点上且边长为5的所有菱形ABCD,你画出的菱形面积为;20.已知:如图,在ABC中,AD是BAC∠的平分线,//,//DE AC DF AB.求证:四边形AEDF是菱形.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.24.已知:直线364y x=+与x轴、y轴分别相交于点A和点B,点C在线段AO上.将BCO∆沿BC折叠后,点O恰好落在AB边上点D处.(1)直接写出点A、点B的坐标:(2)求AC的长;(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接回答:①符合要求的P点有几个?②写出一个符合要求的P点坐标.25.某数学活动小组在一次活动中,对一个数学问题作如下研究:(1)如图1,△ABC中分别以AB,AC为边向外作等腰△ABE和等腰△ACD使AE=AB,AD =AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.(2)如图2,△ABC中分别以AB,AC为边向外作等腰Rt△ABE和等腰Rt△ACD,∠EAB=∠CAD=90°,连接BD,CE,若AB=4,BC=2,∠ABC=45゜,求BD的长.(3)如图3,四边形ABCD中,连接AC,CD=BC,∠BCD=60°,∠BAD=30°,AB=15,AC=25,求AD的长.【参考答案】一、选择题1.D解析:D【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可得出结果.【详解】10x ∴-≥.解得1≥x .故选D .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 2.D解析:D【分析】综合勾股定理以及直角三角形的性质逐项分析即可.【详解】A 、∵2221,2,3a b c ===,∴222+=a b c ,ABC 是以C ∠为直角的直角三角形,不符合题意;B 、∵::3:4:5a b c =,∴222+=a b c ,ABC 是以C ∠为直角的直角三角形,不符合题意;C 、∵A B C ∠+∠=∠,180A B C ∠+∠+∠=︒,∴90C ∠=︒,ABC 是以C ∠为直角的直角三角形,不符合题意;D 、∵::3:4:5A B C ∠∠∠=,180A B C ∠+∠+∠=︒,∴45A ∠=︒,60B ∠=︒,75C ∠=︒,ABC 不是直角三角形,符合题意;故选:D .【点睛】本题考查直角三角形的性质,熟练掌握勾股定理以及直角三角形的基本性质是解题关键. 3.C解析:C【解析】【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.4.C解析:C【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据,进行求解即可.【详解】解:∵36.5℃出现了两次,出现的次数最多,∴这组数据的众数为36.5℃,故选C .【点睛】本题主要考查了众数的定义,解题的关键在于能够熟知众数的定义.5.C解析:C【分析】先根据平行四边形的性质可得2,4CD AB OC OD ====,再根据勾股定理的逆定理可得AC CD ⊥,然后利用勾股定理可得AD 的长,最后利用三角形的面积公式即可得.【详解】解:四边形ABCD 是平行四边形,4,8AB AC BD ===,112,422CD AB OC AC OD BD ====∴==, 22241216OC CD OD ∴+=+==,COD ∴是直角三角形,AC CD ⊥,在Rt ACD △中,AD ==1122Rt ACD S AD CE AC CD =⋅=⋅, 11422∴⨯=⨯⨯解得CE = 故选:C .【点睛】本题考查了平行四边形的性质、勾股定理、勾股定理的逆定理等知识点,熟练掌握勾股定理的逆定理是解题关键.6.A解析:A【解析】【分析】 先利用平行四边形的性质得到122BE DE BD ===,再由折叠的性质得到45BEA B EA '==∠∠,2B E BE '==,由此可得到90B ED '=∠,再利用勾股定理求解即可.【详解】解:∵四边形ABCD 是平行四边形, ∴122BE DE BD ===, 由折叠的性质可知:45BEA B EA '==∠∠,2B E BE '==,∴90B EB BEA B EA ''∠=∠+∠=, ∴18090B ED B EB ''==∠-∠,∴在直角三角形B ED '中2222B D B E ED ''=+=,故选A .【点睛】本题主要考查了平行四边形的性质,折叠的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解.7.B解析:B【解析】【分析】根据三角形中位线定理求得,,DE DF EF ,进而求得三角形的周长.【详解】解:∵点D ,E 分别AB 、BC 的中点,AC =7,∴DE =12AC =3.5,同理,DF =12BC =2.5,EF =12AB =3,∴△DEF 的周长=DE +EF +DF =9,故选:B .【点睛】本题考查了三角形中位线定理,理解三角形中位线定理是解题的关键.8.C解析:C【分析】根据图象可知进水的速度为5(L/min),再根据第10分钟时容器内水量为27.5L可得出水的速度,从而求出第12min时容器内水量,利用待定系数法求出4≤x≤12时,y与x之间的函数关系式,再对各个选项逐一判断即可.【详解】解:由图象可知,进水的速度为:20÷4=5(L/min),故①说法正确;出水的速度为:5−(27.5−20)÷(10−4)=3.75(L/min),第12min时容器内水量为:20+(12−4)×(5−3.75)=30(L),故③说法正确;15÷3=3(min),12+(30−15)÷3.75=16(min),故当y=15时,x=3或x=16,故说法④错误;设4≤x≤12时,y与x之间的函数关系式为y=kx+b,根据题意,得420 1027.5k bk b+=⎧⎨+=⎩,解得5415kb⎧=⎪⎨⎪=⎩,所以4≤x≤12时,y=54x+15,故说法②正确.所以正确说法的个数是3个.故选:C.【点睛】此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.二、填空题9.1≥x【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵二次根式1x -在实数范围内有意义,∴1x -≥0,解得:1≥x .故答案为1≥x .【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键. 10.A解析:24【解析】【分析】由正方形的性质可求AC 的长,由勾股定理可求BO 的值,可求BD 的值,即可求菱形ABCD 的面积.【详解】解:如图,连接AC ,BD 交于O ,∵正方形AECF 的面积为18cm 2,∴正方形AECF 的边长为32,∴AC 2=6(cm ),∴AO =3(cm ),∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =DO ,∴BO 22AB AO -(cm ),∴BD =2BO =8(cm ),∴菱形ABCD 的面积=12AC ×BD =24(cm 2),故答案为:24.【点睛】本题考查正方形的性质,菱形的性质,勾股定理,熟练运用正方形的性质是本题的关键. 11.B解析:43【解析】【分析】由矩形对角线的性质得到AO DO =,结合题意证明ADO △是等边三角形,解得BD 的长,在Rt ABD △中,理由勾股定理解题即可.【详解】解:矩形ABCD 中,AC=BD 且AO=OC ,BO=DOAO DO ∴=ADO ∴△是等腰三角形∠AOD =60°ADO ∴△是等边三角形AD DO AO ∴==AD =44DO ∴=28BD DO ∴==Rt ABD △中 22228443AB BD AD =-=-=故答案为:43.【点睛】本题考查矩形的性质、等边三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键. 12.B解析:20【分析】首先根据矩形的性质得出10cm BD AC ==,然后利用三角形中位线的性质求解即可.【详解】连接BD ,∵四边形ABCD 是矩形,∴10cm BD AC ==.∵E 、F 、G 、H 分别是矩形四条边的中点,∴115cm,5cm 22EH FG BD EF GH AC ======, ∴四边形EFGH 的周长为5420cm ⨯=,故答案为:20.【点睛】本题主要考查矩形的性质和三角形中位线的性质,掌握矩形的性质是关键.13.43【分析】先写出4y x m =+-的伴随点,再根据伴随点在它的图象上代入一次函数解析式,计算即可求得m .【详解】解:4y x m =+-的伴随点为(),4m -,因为4y x m =+-伴随点在它的图象上,则有44m m -=+- 解得43m =. 故答案为:43. 【点睛】本题考查一次函数图象上点的坐标特征. 一次函数图象上任意一点的坐标都满足函数关系式y=kx+b .14.E 解析:3【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据△EFD ∽△GFC 得出CG 与DE 的倍数关系,并根据BG=BC+CG 进行计算即可.【详解】延长EF 和BC ,交于点G .∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE 中,又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG=∠DEF .∵AD ∥BC ,∴∠G=∠DEF ,∴∠BEG=∠G ,∴.由∠G=∠DEF ,∠EFD=∠GFC ,可得△EFD ∽△GFC , ∴122CG CF CF DE DF CF ===. 设CG=x ,DE=2x ,则AD=9+2x=BC .∵BG=BC+CG ,∴,解得,∴BC=9+2(32-3)=62+3.故答案为62+3.考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质.15.(,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解析:(83,0)【分析】作点D关于x轴对称点F,根据题意求出D点的坐标,从而得到F点的坐标,同时连接CF,则CF与x轴的交点即为所求E点,此时满足△CDE的周长最小,利用CF的解析式求解即可.【详解】解:作点D关于x轴对称点F,如图,∵四边形OABC是矩形,∴OC=BD=3,点C的坐标为()0,3,∵D为AB边的中点,∴AD=32,∵OA=4,∴D 点的坐标为34,2⎛⎫ ⎪⎝⎭,则F 点的坐标为34,2⎛⎫- ⎪⎝⎭, 根据轴对称的性质可得:EF =ED ,∴C △CDE =CD +CE +DE =CD +CE +EF ,其中CD 为定值,当CE +EF 值最小时,△CDE 周长最小,此时点C ,E ,F 三点共线,设直线CF 的解析式为:()0y kx b k =+≠,将()0,3和34,2⎛⎫- ⎪⎝⎭代入解析式得: 3342b k b =⎧⎪⎨+=-⎪⎩,解得:983k b ⎧=-⎪⎨⎪=⎩, ∴直线CF 的解析式为:938y x =-+, 令0y =,得:9308x -+=, 解得:83x =, ∴点E 坐标(83,0), 故答案为:803⎛⎫ ⎪⎝⎭,. 【点睛】本题考查一次函数与轴对称的综合运用,理解最短路径的求解方法,熟悉待定系数法求一次函数解析式是解题关键.16.5【分析】由折叠可得,.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设,则,在中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知,,∵四边形ABCD 是矩形解析:5【分析】由折叠可得5AD AF ==,DE EF =.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设EC x =,则4DE EF x ==-,在Rt CEF 中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知5AD AF ==,DE EF =,∵四边形ABCD 是矩形,∴在Rt ABF 中,3BF ==,∴532CF BC BF =-=-=.设EC x =,则4DE EF x ==-,∴在Rt CEF 中,222+=CF CE EF ,即2222(4)x x +=-,解得: 1.5x =.故EC 的长为1.5.故答案为1.5.【点睛】本题考查折叠的性质,矩形的性质和勾股定理.利用数形结合的思想是解答本题的关键.三、解答题17.(1)2;(2)3;(3)143;(4)【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指解析:(1)2;(2)3;(3)143;(4【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指数幂化简,再合并同类项即可.【详解】(1)2==,(21535==,(31311143=⨯=,(4113333-⎛⎫-= ⎪⎝⎭【点睛】本题考查的是二次根式的混合运算,将各个式子化为最减是解答此题的关键. 18.(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【详解】(1)因为是直角三角形,所以由勾股定解析:(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【详解】(1)因为ABC 是直角三角形,所以由勾股定理,得222AC BC AB =+.因为50AC =米,30BC =,所以22250301600AB =-=.因为0AB >,所以40AB =米.即A ,B 两点间的 距离是40米.(2)过点B 作BD AC ⊥于点D . 因为1122ABC S AB BC AC BD =⋅=⋅△, 所以AB BC AC BD ⋅=⋅. 所以30402450AB BC BD AC ⋅⨯===(米), 即点B 到直线AC 的距离是24米.【点睛】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式.19.(1);(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为的所有菱形ABCD ,,然后求出面积即可.【详解】解:如图,(1)∵a 是图解析:(12)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2ABCD ,,然后求出面积即可.【详解】解:如图,(1)∵a是图中能用网格线段表示的最小无理数,∴22112a=+=,∵b是图中能用网格线段表示的最大无理数,224225b=+=;(2)∵22215+=,即可画出图形,如图,菱形ABC1D1和菱形ABC2D2即为所求;菱形ABC1D1的面积为12442⨯⨯=;菱形ABC2D2223110+=,故菱形ABC2D2的面积为1101052;5ABCD的面积为4或5.【点睛】本题主要考查了应用设计与作图以及勾股定理等知识,熟练掌握菱形的性质是解题关键.20.见解析.【分析】根据四边形是平行四边形,再证明有一组邻边相等即可.【详解】解:∵,∴四边形是平行四边形,∵平分,∴,∵,∴,∴,∴,∴平行四边形是菱形.【点睛】本题考查了解析:见解析.【分析】根据//,//DE AC DF AB 四边形AEDF 是平行四边形,再证明有一组邻边相等即可.【详解】解:∵//,//DE AC DF AB ,∴四边形AEDF 是平行四边形,∵AD 平分BAC ∠,∴12∠=∠,∵//DE AC ,∴23∠∠=,∴13∠=∠,∴AE DE =,∴平行四边形AEDF 是菱形.【点睛】本题考查了平行线的性质,菱形的判定,等腰三角形的判定,解题关键是熟练运用相关性质,准确进行推理证明.21.(1)﹣i ,1,;(2)﹣i ﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i ,i4=i2•i2计算即可得出答案; (2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i ,1,20221i i i--;(2)﹣i ﹣6;(325.【解析】【分析】(1)根据题目所给条件可得i 3=i 2•i ,i 4=i 2•i 2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a +bi =4+3i ,求出a 、b ,即可得出答案.【详解】(1)i 3=i 2•i =﹣1×i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,设S =i +i 2+i 3+…+i 2021,iS =i 2+i 3+…+i 2021+i 2022,∴(1﹣i )S =i ﹣i 2022,∴S =20221i i i--,故答案为﹣i ,1,20221i i i--; (2)(1+i )×(3﹣4i )﹣(﹣2+3i )(﹣2﹣3i )=3﹣4i +3i ﹣4i 2﹣(4﹣9i 2)=3﹣i +4﹣4﹣9=﹣i ﹣6;(3)a +bi =2543i -=25(43)(43)(43)i i i +-+=10075169i ++=4+3i , ∴a =4,b =3,x ,0)到点A (0,4),B (24,3)的最小距离,∵点A (0,4)关于x 轴对称的点为A '(0,﹣4),连接A 'B 即为最短距离,∴A 'B 25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)80元/人;(2)y1=48x ,y2=;(3)A 旅游团30人,B 旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2解析:(1)80元/人;(2)y 1=48x ,y 2=80(010)64160(10)x x x x ≤≤⎧⎨+>⎩;(3)A 旅游团30人,B 旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2)利用待定系数法求正比例函数解析式求出1y ,分010x 与10x >,利用待定系数法求2y 与x 的函数关系式即可;(3)设A 团有x 人,表示出B 团的人数为(50)x -,然后分010x 与10x >两种情况,根据(2)的函数关系式列出方程求解即可.【详解】解:(1)8001080÷=(元/人),答:不打折的门票价格是80元/人;(2)设110y k =,解得:48k =,148y x ∴=,当010x 时,设280y x =,当10x >时,设2y mx b =+,则10800201440m b m b +=⎧⎨+=⎩, 解得:64m =,160b =,264160y x ∴=+,280(010)64160(10)x x y x x ⎧∴=⎨+>⎩; (3)设A 旅游团x 人,则B 旅游团(50)x -人,若010x ,则8048(50)3040x x +-=,解得:20x ,与10x 不相符,若10x >,则6416048(50)3040x x ++-=,解得:30x =,与10x >相符,503020-=(人),答:A 旅游团30人,B 旅游团20人.【点睛】本题考查了一次函数的应用,利用了待定系数法求一次函数解析式,准确识图获取必要的信息是解题的关键,(3)要注意分情况讨论.23.(1)等边三角形;(2)成立,理由见解析;(3)或.【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.解析:(1)等边三角形;(2)成立,理由见解析;(3)或. 【分析】(1)根据题意先判断出四边形ABCE 和四边形ACDE 都是梯形.得出FG 为梯形ABCE 的中位线,GH 为梯形ACDE 的中位线.从而得出,.即证明为等边三角形.(2)先判断出PF ,PG 是△ABC 和△CDE 的中位线,再判断出∠FPG =∠FCH ,进而证明△FPG ≌△FCH ,得出结论FG =FH ,∠PFG =∠CFH ,最后证明出∠GFH=,即证明△FGH 为等边三角形.(3)①当点E 在AE 上时,先求出CM ,进而求出AM ,即可求出AD ,再判断出,进而求出BE=AD=2,,即可判断出,再求出BN 、EN ,进而求出BD ,最后即可求出FH ,即可得出结果;②当点D 在AE 的延长线上时同①的方法即可得出结果.【详解】(1)∵ABC 和都为等边三角形,且边长不相等.∴,.∴四边形ABCE和四边形ACDE都是梯形.又∵F、G、H分别是BC、AE、CD中点,∴FG为梯形ABCE的中位线,GH为梯形ACDE的中位线.∴,.∴,.∴为等边三角形.故答案为:等边三角形.(2)取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°.又F,G,H分别是BC,AE,CD的中点,∴FP=12AB,FC=12BC,CH=12CD,PG=12CE,PG∥CE,PF∥AB.∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°.∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°-∠PCE.∴∠FCH=360°-∠ACB-∠ECD-∠PCE=360°-60°-60°-(180°-∠GPC)=60°+∠GPC.∴∠FPG=∠FCH.∴△FPG≌△FCH(SAS).∴FG=FH,∠PFG=∠CFH.∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°.∴△FGH为等边三角形.所以成立.(3)①当点D在AE上时,如图,∵ABC是等边三角形,∴,.∵是等边三角形,∴,,过点C作于M,∴,在中,根据勾股定理得,,在中,根据勾股定理得,, ∴,∵,∴,∴,连接BE,在和中,,∴(SAS),∴BE=AD=2, ,∵,∴,∴,过点B作于N,∴,在中,,∴,∴,DN=DE-EN=3,连接BD,根据勾股定理得:,∵点H是CD中点,点F是BC中点,∴FH是的中位线,∴,由(2)可知,△FGH为等边三角形.∴△FGH的周长.②当点D在AE的延长线上时,如图,同理可求,所以△FGH的周长.即满足条件的△FGH的周长位或.【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,含30角的直角三角形的性质,三角形的中位线定理.属于几何变换综合题,综合性强,较难.24.(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6).【解析】【分析】(1)利用待定系数法解决问题即可.(2)由翻折不变性可知,OC=CD解析:(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6).【解析】【分析】(1)利用待定系数法解决问题即可.(2)由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.(3)①根据平行四边形的定义画出图形即可判断.②利用平行四边形的性质求解即可解决问题.【详解】解:(1)对于直线364y x=+,令x=0,得到y=6,∴B(0,6),令y=0,得到x=8-,∴A(8-,0);(2)∵A(8-,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴228610AB+=,由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,∴AD=AB-BD=4,设CD=OC=x,在Rt △ADC 中,∵∠ADC=90°,∴AD 2+CD 2=AC 2,∴42+x 2=(8-x )2,解得:x=3,∴OC=3,AC=OA -OC=8-3=5.(3)①符合条件的点P 有3个,如图所示:②∵A (-8,0),C (-3,0),B (0,6),当AB 为对角线时,1//BP AC ,由平行四边形的性质,得15BP AC ==,∴P 1(-5,6);当AB 为边时,//AB CP ,点P 在第三象限时,有点B 向下平移6个单位,向左平移3个单位得到点C ,∴点A 向下平移6个单位,向左平移3个单位得到点P 2,∴P 2(-11,-6);点P 在第二象限时,有35BP AC ==,∴P 3(5,6);∴点P 的坐标为:(-5,6)或(-11,-6)或(5,6).【点睛】本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.25.(1)CE=BD ,见解析;(2)6;(3)20【分析】(1)证△EAC ≌△BAD 即可;(2)证△EAC ≌△BAD ,得BD=CE ,易得∠EBC=90゜,从而在Rt △EBC 中运用勾股定理即可求得结解析:(1)CE =BD ,见解析;(2)6;(3)20(1)证△EAC ≌△BAD 即可;(2)证△EAC ≌△BAD ,得BD =CE ,易得∠EBC =90゜,从而在Rt △EBC 中运用勾股定理即可求得结果;(3)连接BD ,把△ACD 绕点D 顺时针旋转60゜得到△EBD ,连接AE ,则可得BE =AC ,△ADE 是等边三角形,从而易得AB ⊥AE ,在Rt △BAE 中由勾股定理可求得AE ,也即AD 的长.【详解】(1)∵∠EAB =∠CAD∴∠BAC +∠EAB =∠BAC +∠CAD即∠EAC =∠BAD在△EAC 和△BAD 中AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△BAD (SAS )∴CE =BD(2)∵∠EAB =∠CAD =90゜∴∠BAC +∠EAB =∠BAC +∠CAD即∠EAC =∠BAD∵△EAB 、△CAD 都是等腰直角三角形,且∠EAB =∠CAD =90゜∴AE =AB =4,∠EBA =45゜,AC =AD∴由勾股定理得:BE ==在△EAC 和△BAD 中AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△BAD (SAS )∴CE =BD∵∠EBC =∠EBA +∠ABC =45゜+45゜=90゜∴在Rt △EBC中,由勾股定理得:6CE∴BD =6(3)如图,连接BD∵CD =BC ,∠BCD =60゜∴△BCD 是等边三角形把△ACD 绕点D 顺时针旋转60゜得到△EBD ,点E 与点A 对应,连接AE则BE =AC =25,△ADE 是等边三角形∴∠DAE =60゜,AD =AE∴∠BAE =∠BAD +∠DAE =30゜+60゜=90゜在Rt△BAE中,由勾股定理得:2222=-=-=251520AE BE AB∴AD=20【点睛】本题是三角形的综合题,考查了三角形全等的判定与性质,等腰三角形的性质,等边三角形的判定与性质,勾股定理,旋转变换,第三问作旋转变换是关键,也是难点.本质上来说,前两问也可看成把△EAC绕A点逆时针旋转的角度一定角度而得到△BAD.。
1.(2018•昭阳区模拟)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是13.2.(2018•怀柔区一模)一个多边形的内角和是720°,则它是六边形.3.(2018•东莞市校级一模)一个多边形的每一个外角为30°,那么这个多边形的边数为12.4.(2018•陕西模拟)一个正多边形的内角是外角的2倍,则这个正多边形是6边形.5.(2018•吴中区一模)若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.6.(2018•郑州一模)如图所示,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.AE,BF相交于点O,若四边形ABEF 的周长为40,BF=10,∠ABC=120°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC.∵AB=AF,∴四边形ABEF 是菱形.∵四边形ABEF是菱形,且周长为40,∴AB=AF=40÷4=10.∵BF=10,∴△ABF是等边三角形,∴∠ABF=60°,∴∠ABC=2∠ABF=120°.故答案为:120°.7.(2018•山西二模)如图,在▱ABCD中,E为CD的中点,BF⊥AE,垂足为F,AD=AE=1,∠DAE=30°,EF=﹣1.【解答】解:延长AE 交BC 的延长线于点G ,∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC ,∴∠D=∠ECG ,∵E 为CD 的中点,∴DE=CE ,∴△ADE ≌△GCE ,∴AD=CG=1,AE=EG=1,∵BF ⊥AE ,∠DAE=30°,∴BF=BG=1,∴FG==,∴EF=FG ﹣EG=﹣1,故答案为﹣18.(2018•青岛模拟)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F 是线段DE 上一点,连接AF ,BF ,若AB=16,EF=1,∠AFB=90°,则BC 的长为 18 .【解答】解:∵∠AFB=90°,点D 是AB 的中点,∴DF=AB=8,∵EF=1,∴DE=9, ∵D 、E 分别是AB ,AC 的中点,∴BC=2DE=18,故答案为:189.(2018•吉林模拟)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD , ∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2,故答案为:41.10.(2018•长丰县二模)如图,四边形ABCD 中,AD ∥BC ,AD=8cm ,BC=12cm ,M是BC上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t,则当以A、M、E、F为顶点的四边形是平行四边形时,t=或【解答】解:①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=9+3t﹣12,解得t=,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=12﹣9﹣3t,解得t=,综上所述,t=或s时,以A、M、E、F为顶点的四边形是平行四边形.11.(2018•大兴区一模),则的值是3.12.(2018•白云区一模)若分式的值为0,则a=﹣3.13.(2018•澧县三模)化简(x﹣)÷(1﹣)的结果是x﹣1.14.(2018•罗平县三模)阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为28元.15.(2018•牡丹江二模)若关于x的方程无解,则m的值为1.16.(2018•东城区一模)化简代数式(x+1+)÷,正确的结果为2x.17.(2018•江油市一模)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则满足条件的整数a的值是﹣2.18.(2017秋•定陶县期末)已知=+,则整式A﹣B=﹣1.19.(2017秋•邵阳期末)如果分式方程有增根,则增根是x=3.20.(2018春•高邮市期中)不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.21.(2018春•工业园区校级期中)分式、的最简公分母是6x3y2.22.(2018•南海区校级二模)已知a与b互为相反数,则代数式a2+2ab+b2﹣2018的值为﹣2018.23.(2018•长清区模拟)分解因式a3﹣6a2+9a=a(a﹣3)2.24.(2018•繁昌县二模)因式分解:(2a+b)2﹣2b(2a+b)=(2a+b)(2a﹣b).25.(2018•锡山区校级一模)因式分解:a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(a+2b)(a﹣2b).26.(2018•井研县模拟)分解因式:(y+2x)2﹣(x+2y)2=3(x+y)(x﹣y).27.(2018•江城区一模)分解因式:ax4﹣9ay2=a(x2+3y)(x2﹣3y).28.(2018•天门模拟)已知ab=2,a﹣2b=﹣3,则a3b﹣4a2b2+4ab3的值为18.29.(2018•南开区模拟)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=(y﹣1)2(x﹣1)2.30.(2017秋•庆云县期末)因式分解:9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(3a+2b)(3a﹣2b)31.(2018•二道区模拟)如图,平面直角坐标系中,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为2.32.(2018•红桥区模拟)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC 绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=30°.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,33.(2018•锡山区校级一模)如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=100°.【解答】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.34.(2018•汕头模拟)如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD 的长为 1.5.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.5,∴CD=BC﹣BD=3.5﹣2=1.5.35.(2018•山西模拟)如图,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE 是由AB平移所得,AC与BD不平行,则AC+BD与AB的大小关系是:AC+BD= AB.(填“>”“<”或“=”)【解答】解:由平移的性质知,AB与CE平行且相等,所以四边形ACEB是平行四边形,BE=AC,当B、D、E不共线时,∵AB∥CE,∠DCE=∠AOC=60°,∵AB=CE,AB=CD,∴CE=CD,∴△CED是等边三角形,∴DE=AB,根据三角形的三边关系知BE+BD=AC+BD>DE=AB,即AC+BD>AB.当D、B、E共线时,AC+BD=AB.36.(2017秋•孝义市期末)如图,在Rt△ABC中,AC=4,BC=,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为.【解答】解:连接CE,作EF⊥BC于F,由旋转变换的性质可知,∠CAE=60°,AC=AE,∴△ACE是等边三角形,∴CE=AC=4,∠ACE=60°,∴∠ECF=30°,∴EF=CE=2,由勾股定理得,CF==2,∴BF=BC﹣CF=,由勾股定理得,BE==,37.(2018•牡丹江二模)若不等式组有3个整数解,则a的取值范围是﹣3≤a<﹣2.38.(2018•铁西区模拟)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b 与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为﹣4<x <﹣.39.(2018•黑龙江模拟)若关于x的一元一次不等式组无解,则m的取值范围为m≥﹣2.40.(2018•滨州一模)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有105块.41.(2017秋•盐城期末)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.42.(2017•兴庆区校级二模)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售但要保证利润率不低于5%,问至多可以打几折?若设可以打x折,则列出的不等式是1200×﹣800≥800×5%.43.(2017春•民勤县校级期末)某宾馆底楼客房比二楼少5间,某旅游团48人,若全部安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排在二楼,每间3人,房间不够,每间4人,有房间没有住满4人,该宾馆低楼有客房10间.44.(2017春•海南期末)若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是9≤m<12.45.(2017春•双鸭山期末)已知不等式组的解集为﹣1<x<2,则(m+n)2017=1.46.(2017春•盐城期末)不等式>﹣1的所有正整数解的和为10.47.(2018•天心区校级模拟)如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN=32°.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.48.(2018•黄浦区二模)如图,在四边形ABCD中,∠ABC=∠ADC=90°,AC=26,BD=24,M、N分别是AC、BD的中点,则线段MN的长为5.【解答】解:连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM=13,又N是BD的中点,∴BN=DN=BD=12,∴MN==5,故答案为:5.49.(2018•老河口市模拟)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.50.(2018•大渡口区二模)如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=10.【解答】解:连接AE,BE,过E作EG⊥BC于G,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC﹣CF=12﹣x,BG=BC+CG=8+x,∴12﹣x=8+x,解得x=2,∴AF=12﹣2=10.故答案为:10.51.(2017秋•姑苏区期末)如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC ∥OB交OA于C,若PC=6,则PD=3.【解答】解:如图,过点P作PE⊥OA于E,∵∠AOB=30°,OP平分∠AOB,∴∠AOP=∠BOP=15°.∵PC∥OB,∴∠BOP=∠OPC=15°,∴∠PCE=∠AOP+∠OPC=15°+15°=30°,又∵PC=6,∴PE=PC=3,∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,∴PD=PE=3,故答案为3.52.(2017秋•淮南期末)如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则△DEF的面积为6﹣4.【解答】解:∵AD是△ABC的角平分线,∠ACB=90°,DE⊥AB,∴∠CAD=∠EAD,DE=CD,AE=AC=2,∵AD的垂直平分线交AB于点F,∴AF=DF,∴∠ADF=∠EAD,∴∠ADF=∠CAD,∴AC∥DE,∴∠BDE=∠C=90°,∴△BDF、△BED是等腰直角三角形,设DE=x,则EF=BE=x,BD=DF=2﹣x,在Rt△BED中,DE2+BE2=BD2,∴x2+x2=(2﹣x)2,解得x1=﹣2﹣2(负值舍去),x2=﹣2+2,∴△DEF的面积为(﹣2+2)×(﹣2+2)÷2=6﹣4.故答案为:6﹣4.53.(2017秋•浉河区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D 为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【解答】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB 的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP 或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,54.(2017秋•五莲县期末)如图,在等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,且DE长为1,则BC长为2.。