高一数学必修一公式大全
- 格式:docx
- 大小:29.79 KB
- 文档页数:14
高一数学必修一公式大全1. 代数篇1.1 代数基本性质•加法交换律:$\\displaystyle a+b=b+a$;•加法结合律:$\\displaystyle (a+b)+c=a+(b+c)$;•加法单位元:$\\displaystyle a+0=a$;•加法逆元:$\\displaystyle a+(-a)=0$;•乘法交换律:$\\displaystyle a\\cdot b=b\\cdot a$;•乘法结合律:$\\displaystyle (a\\cdot b)\\cdot c=a\\cdot (b\\cdot c)$;•乘法单位元:$\\displaystyle a\\cdot 1=a$;•乘法逆元:$\\displaystyle a\\cdot \\frac{1}{a}=1$。
1.2 一次函数•一次函数的一般式:$\\displaystyle y=ax+b$;•一次函数的斜率:$\\displaystyle a$;•一次函数的截距:$\\displaystyle b$;•一次函数的图像为直线。
1.3 二次函数•二次函数的一般式:$\\displaystyle y=ax^2+bx+c$;•二次函数的顶点坐标:$\\displaystyle \\left( -\\frac{b}{2a},-\\frac{D}{4a}\\right)$,其中$\\displaystyle D=b^2-4ac$;•二次函数的对称轴方程为$\\displaystyle x=-\\frac{b}{2a}$;•二次函数的图像为抛物线。
1.4 指数与对数•指数运算的基本性质:–$\\displaystyle a^m\\cdot a^n=a^{m+n}$;–$\\displaystyle (a^m)^n=a^{mn}$;–$\\displaystyle \\left( \\frac{a}{b}\\right)^n=\\frac{a^n}{b^n}$;–$\\displaystyle \\left( ab\\right) ^n=a^nb^n$;–$\\displaystyle (a^n)^m=a^{nm}$;–$\\displaystyle a^{0}=1$;–$\\displaystyle a^{-n}=\\frac{1}{a^n}$。
高一必修一所有知识点公式一、数学公式1. 数的四则运算公式- 相反数:a + (-a) = 0- 乘法的分配律:a(b + c) = ab + ac2. 二次根式的乘法公式- (a√b)(c√d) = ac√(bd)3. 平方差公式- a² - b² = (a + b)(a - b)4. 完全平方公式- a² + 2ab + b² = (a + b)²5. 因式分解公式- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)²- 二次根式的乘法公式:(a√b)(c√d) = ac√(bd)6. 二次方程求根公式- 一元二次方程ax² + bx + c = 0的根公式为:x = (-b±√(b²-4ac))/(2a)7. 三角函数公式- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a² = b² + c² - 2bc*cosA- 正切公式:tanA = sinA/cosA8. 任意角的三角函数公式- sin(-θ) = -sinθ- cos(-θ) = cosθ- tan(-θ) = -tanθ- sin(π - θ) = sinθ- cos(π - θ) = -cosθ- tan(π - θ) = -tanθ- sin(π + θ) = -sinθ- cos(π + θ) = -cosθ- tan(π + θ) = tanθ二、物理公式1. 动力学公式- 速度公式:v = s/t- 加速度公式:a = (v - u)/t - 牛顿第二定律:F = ma - 动量公式:p = mv- 冲量公式:J = Ft- 功率公式:P = W/t- 动能公式:E = (1/2)mv²2. 机械能守恒公式- 势能公式:Ep = mgh- 动能公式:Ek = (1/2)mv²- 机械能守恒公式:Ep + Ek = 常数3. 电学公式- 电流公式:I = Q/t- 电阻公式:R = V/I- 电阻、电流、电压关系:V = IR- 等效电阻公式(并联):1/R = 1/R₁ + 1/R₂ + ... - 等效电阻公式(串联):1/R = 1/R₁ + 1/R₂ + ...4. 磁学公式- 磁感应强度公式:B = μ₀H- 磁场中力的公式:F = qvBsinθ- 洛伦兹力公式:F = q(E + vBsinθ)5. 光学公式- 薄透镜公式:1/f = 1/v - 1/u- 放大率公式:β = v/u- 光速与折射率之间的关系:c = v/n三、化学公式1. 质量守恒定律- 反应前物质的质量 = 反应后物质的质量2. 摩尔关系公式- 物质的摩尔数 = 质量(g)/相对分子质量(g/mol) - 物质的摩尔数 = 浓度(mol/L) ×体积(L)3. 摩尔体积公式- 摩尔体积 = 体积(L)/物质的摩尔数4. 氧化还原反应电子转移公式- 氧化剂 + n e⁻ → 还原剂- 还原剂→ n e⁻ + 氧化剂5. 离子反应中的离子平衡公式- 平衡常数Kc = [C]c[D]d/[A]a[B]b以上是高一必修一所有知识点的公式,希望对你的学习有所帮助。
高一数学必修一知识点1、集合{a1,a2...an}子集个数公式:,真子集个数公式:2、重要不等式:3、基本不等式:4、一元二次函数、方程、不等式f(x)=ax²+bx+c。
对称轴:图像顶点坐标:与x轴有交点时x1= x2=x1+x2= x1x2=若a>0 ,x1>x2,f(x)>0的解集:5、函数单调性。
若x1>x2,当单调递增;当单调递减。
6、函数奇偶性。
当是奇函数;当是偶函数。
7、指数运算(a>0,b>0)a r a s= (a r)s= (ab)r=8、对数运算(a>0,a≠1,M>0,N>0)=log a MN= log a MNlog a M n =对数换底公式:log a b=9、方程f(x)=0有实数解⇔函数y=f(x)有⇔函数y=f(x)的图像与x轴有函数零点存在定理:y=f(x)在[a,b]上连续,f(a)f(b)<0,那么y=f(x)在区间(a,b)内至少有一个零点,即存在c ϵ(a,b),使得f(c)=0,这个c也是方程f(x)=0的解。
10、诱导公式(奇变偶不变,符号看象限)sin (π+α)= sin (-α)=cos (π+α)= cos (-α)=tan (π+α)= tan (-α)=sin (π-α)= sin (2π-α)=cos (π-α)= cos (2π-α)=tan (π-α)= tan (2π-α)=sin (2π+α)= sin (2π-α)=cos (2π+α)= cos (2π-α)=2、三角恒等变换sin (α+β) = sin (α-β)=cos (α-β) = cos (α+β)= Sin2α =cos2α= = = tan (α-β)= tan (α+β)=tan2α =sin ²= cos ²=tan ²= 2α 3、同角平方和公式:4、y=asin α+bcos α辅助角公式:5、A (x1,y1),B (x2,y2)两点间距离公式:6、勾股定理: 2α2α2α。
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高一数学必修1公式总结高一数学必修1公式总结:一、基本运算公式:1. 加法法则:a + b = b + a2. 乘法法则:a × b = b × a3. 减法法则:a - b ≠ b - a4. 除法法则:a ÷ b ≠ b ÷ a二、整式的加减法:1. 同类项相加减法则:同类项之间的系数相加减,字母部分保持不变。
2. 不同类项相加减法则:不能进行直接加减,需进行合并同类项。
3. 加减法运算例子:(3x + 5) + (2x - 3) = (5x + 2),(4x^2 + 3x - 1) - (2x^2 + 4) = (2x^2 + 3x - 5)三、整式的乘法:1. 乘法运算原则:对于两个整式相乘,应将每个整式的各项分别相乘,然后进行合并。
2. 乘法法则例子:(3x + 2)(4x - 1) = 12x^2 + 2x - 4四、整式的除法:1. 除法运算原则:先将除数与被除数的首项相除,得到商的首项,然后用被除数减去商的乘积,得到剩下的式子,再对剩下的式子进行除法运算。
2. 除法法则例子:(12x^2 + 2x - 4) ÷ (3x + 2) = 4x - 3五、一元二次方程:1. 一元二次方程标准形式:ax^2 + bx + c = 02. 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac))/(2a)六、线性不等式:1. 符号法则:若a > b,则乘以相同正数或除以相同负数,不等号方向不变;若a < b,则乘以相同正数或除以相同负数,不等号方向相反。
2. 线性不等式解法例子:2x - 3 < 7,解得 x > 5七、等差数列:1. 等差数列通项公式:an = a1 + (n - 1)d,其中 an 表示第n项,a1 表示首项,d 表示公差。
2. 等差数列求和公式:Sn = (n/2)(a1 + an),其中 Sn 表示前 n项和。
高一数学公式的运用在于平常的记忆和积累以及运用,要做到公式非常熟练地运用需要整理公式。
为方便大家的更好的运用公式,整理了以下公式希望给大家提供整理和借鉴。
公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin2=sincos2=costan2=tancot2=cot公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin=-sincos=-costan=tancot=cot公式三:任意角与-的三角函数值之间的关系:sin-=-sincos-=costan-=-tancot-=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin=sincos=-costan=-tancot=-cot公式五:利用公式一和公式三可以得到2与的三角函数值之间的关系:sin2=-sincos2=costan2=-tancot2=-cot公式六:/2及3/2与的三角函数值之间的关系:sin/2=coscos/2=-sintan/2=-cotcot/2=-tansin/2-=coscos/2-=sintan/2-=cotcot/2-=tansin3/2=-coscos3/2=sintan3/2=-cotcot3/2=-tansin3/2-=-coscos3/2-=-sintan3/2-=cotcot3/2-=tan以上Z其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tancot=1sincsc=1cossec=1商的关系:sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系:sin^2cos^2=11tan^2=sec^21cot^2=csc^2两角和差公式⒉两角和与差的三角函数公式sin=sincoscossinsin-=sincos-cossincos=coscos-sinsincos-=coscossinsintantantan=1-tantantan-tantan-=1tantan倍角公式⒊二倍角的正弦、余弦和正切公式升幂缩角公式sin2=2sincoscos2=cos^2-sin^2=2cos^2-1=1-2sin^22tantan2=1-tan^2半角公式⒋半角的正弦、余弦和正切公式降幂扩角公式1-cossin^2/2=21coscos^2/2=21-costan^2/2=1cos万能公式⒌万能公式2tan/2sin=1tan^2/21-tan^2/2cos=1tan^2/22tan/2tan=1-tan^2/2和差化积公式-sinsin=2sin----cos---22-sin-sin=2cos----sin----22-coscos=2cos-----cos-----22-cos-cos=-2sin-----sin-----22积化和差公式sincos=cossin=coscos=sinsin=总结以上就是高一数学公式汇总的所有内容,希望对大家有所帮助!此内容来自求学网,原文链接:。
高一数学必修一数学必背数学公式本文档旨在为高一学生提供一份必背数学公式的参考,以便在研究数学时能够快速查阅和应用这些重要的数学公式。
以下是一些高一数学必修一的常用数学公式:1. 代数公式1.1. 二次方程的根公式对于二次方程 $ax^2 + bx + c = 0$,其根公式为:$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$1.2. 因式分解公式对于二次方程$ax^2 + bx + c = 0$,求解其因式分解的公式为:$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$其中 $x_1$ 和 $x_2$ 分别为二次方程的根。
2. 几何公式2.1. 周长和面积公式2.1.1. 矩形的周长和面积矩形的周长公式为:$$C = 2(a + b)$$矩形的面积公式为:$$S = ab$$其中 $a$ 和 $b$ 为矩形的两条边长。
2.1.2. 圆的周长和面积圆的周长公式为:$$C = 2\pi r$$圆的面积公式为:$$S = \pi r^2$$其中 $r$ 为圆的半径。
2.2. 直角三角形的三边关系对于直角三角形,有以下三边关系:2.2.1. 毕达哥拉斯定理设直角三角形的两条直角边分别为 $a$ 和 $b$,斜边为 $c$,则有:$$a^2 + b^2 = c^2$$2.2.2. 正弦定理设直角三角形的一个角为 $A$,斜边为 $c$,另外两边分别为$a$ 和 $b$,则有:$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$2.2.3. 余弦定理设直角三角形的一个角为 $A$,另外两边分别为 $a$ 和 $b$,斜边为 $c$,则有:$$c^2 = a^2 + b^2 - 2ab\cos A$$以上是一些高一数学必修一的常用数学公式,希望能对您的学习有所帮助。
请根据实际需求和学习内容,合理选择并尽量熟练掌握这些公式。
高一数学必修一公式归纳一.三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))积化和差2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsin二.集合与函数概念一,集合有关概念1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.2,集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.(4)集合元素的三个特性使集合本身具有了确定性和整体性.3,集合的表示:{…}如{我校的队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}2.集合的表示方法:列举法与描述法.注意啊:常用数集及其记法:非负整数集(即自然数集)记作:n正整数集n或n+整数集z有理数集q实数集r关于"属于"的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a(a列举法:把集合中的元素一一列举出来,然后用一个大括号括上.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3]2的解集是{x(r|x-3]2}或{x|x-3]2}4,集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}三,集合间的基本关系1."包含"关系—子集注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合.反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba2."相等"关系(5≥5,且5≤5,则5=5)实例:设a={x|x2-1=0}b={-1,1}"元素相同"结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b①任何一个集合是它本身的子集.a(a②真子集:如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)③如果a(b,b(c,那么a(c④如果a(b同时b(a那么a=b3.不含任何元素的集合叫做空集,记为φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.四,集合的运算1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.3,交集与并集的性质:a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,a∪φ=a,a∪b=b∪a.4,全集与补集(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)记作:csa即csa={x(x(s且x(a}。
高一数学必修一数学公式总结高一数学必修一的数学公式是数学学习中重要的基础,为了掌握高一数学必修一中的数学知识,有必要熟练掌握一些数学公式。
1.程:方程是数学中用以描述不同物理现象和运动规律的重要数学概念,它是由未知量和已知量之间的一种表达式。
比如,方程一般可以写成 ax+b=0形式,其中a,b是已知量,x是未知量,“=”表示等式。
2.线函数方程:直线函数方程是一种特殊的形式,它可以用 y = ax + b表示,其中 a 为斜率,b 为 y截距。
3. 一次函数:一次函数是一种记录一次运动变化规律的数学模型,它可以用 y = ax2 + bx + c表示,其中 a 为系数,b 为常数项,c 为常数项。
4. 二次函数:二次函数是一种记录二次运动变化规律的数学模型,它可以用 y = ax2 + bx + c表示,其中 a 为系数,b 为常数项,c 为常数项。
5. 三角函数:三角函数是一类函数,它以三角形为基本图形,表示特定的三角问题,如正弦函数、余弦函数、正切函数、反正弦函数、反余弦函数和反正切函数等。
6.函数:幂函数是一类函数,它以x的幂为变量,常以f(x) = axm 来表达,其中a,m分别为常数,m可以是正数、负数以及小数,特别的,当m = 1时,它就变成了一次函数。
7.数函数:对数函数是指以对数作为自变量,而指数作为因变量的函数,一般以y = loga xa>0,a 1)来表达,其中a为一个常数,也叫做对数的底数,x 为一个基数,两者的乘积就是loga x的意义,常用的对数有余弦对数、正弦对数和正切对数。
8.坐标函数:极坐标函数是一类函数,它以极坐标为基本数学模型,可以用 r=f(θ)表达,其中 r极坐标表示的半径,θ极坐标表示的角度,f(θ)极坐标函数表达式,常用的极坐标函数有正弦极坐标函数、余弦极坐标函数和正切极坐标函数。
在高一数学学习中,以上这些数学公式对我们来说都是非常重要的,因为它们可以帮助我们把握不同的数学概念,以及更深入地理解数学知识。
高一数学必修1公式总结1. 直线的表示方法•点斜式:已知直线上一点P(x1, y1),且已知直线的斜率为k,则直线方程为:y - y1 = k(x - x1)•一般式:已知直线的方程为Ax + By + C = 0,则直线方程为此一般式2. 平面直角坐标系中的距离•两点之间的距离公式:设P1(x1,y1)和P2(x2,y2)为直角坐标系中的两个点,则两点之间的距离为:d = sqrt((x2-x1)^2 + (y2-y1)^2)•点到直线的距离公式:已知点P(x1, y1)到直线Ax + By + C = 0的距离为:d = |Ax1 + By1 + C| / sqrt(A^2 + B^2)•点到平面的距离公式:已知点P(x1, y1, z1)到平面Ax + By + Cz + D = 0的距离为:d = |Ax1 + By1 + Cz1 + D| / sqrt(A^2 + B^2 + C^2)3. 函数的性质•奇函数:对于任意x,若有f(-x) = -f(x),则函数f(x)为奇函数•偶函数:对于任意x,若有f(-x) = f(x),则函数f(x)为偶函数•单调递增:对于任意x1 < x2,若有f(x1) <= f(x2),则函数f(x)为单调递增函数•单调递减:对于任意x1 < x2,若有f(x1) >= f(x2),则函数f(x)为单调递减函数4. 二次函数的性质和图像•顶点坐标:对于二次函数f(x) = ax^2 + bx + c,其中a ≠ 0,顶点的坐标为:x = -b / (2a)y = f(x)•对称轴:二次函数的对称轴为经过顶点的直线,其方程为:x = -b / (2a)•函数图像开口方向:当a > 0时,二次函数的图像开口向上;当a < 0时,二次函数的图像开口向下•函数图像与坐标轴的交点:二次函数与x轴的交点为其根,可以通过求解方程f(x) = 0来求得;二次函数与y轴的交点为函数常数项c所确定的点(0, c)5. 三角函数的基本关系式•正弦定理:对于任意三角形ABC,三个边长分别为a, b, c,对应的角度为A, B, C,则有:a / sin(A) = b / sin(B) = c / sin(C)•余弦定理:对于任意三角形ABC,三个边长分别为a, b, c,对应的角度为A, B, C,则有:c^2 = a^2 + b^2 - 2ab * cos(C)•正切定理:对于任意三角形ABC,三个边长分别为a, b, c,对应的角度为A, B, C,则有:tan(A) = (2 * R) / a6. 指数函数的性质与常用公式•幂函数的定义:对于任意实数a > 0,且a ≠ 1,指数函数f(x) = a^x 是以a为底的幂函数•幂函数的性质:指数函数f(x) = a^x具有以下性质:–a^0 = 1,其中a ≠ 0–a^1 = a,其中a ≠ 0–对于任意实数x1和x2,有a^x1 * a^x2 = a^(x1 + x2),其中a ≠ 0–对于任意实数x1和x2,有(a x1)x2 = a^(x1 * x2),其中a ≠ 0–对于任意实数x1和x2,有(a^x1) / (a^x2) = a^(x1 - x2),其中a ≠ 0,且x2 ≠ 0•常用公式:–乘方公式:已知a^x = a^y,其中a ≠ 0,a ≠ 1,则有x = y–对数公式:对于任意实数a > 0,且a ≠ 1,以a为底的对数函数f(x) = log_a(x)定义为a^f(x) = x以上是高一数学必修1的公式总结,希望对您有所帮助!。
高一数学必修一知识点总结及公式在高一数学必修一课程中,我们学习了许多重要的数学知识点和公式。
这些知识点和公式对我们理解数学问题、解决数学难题都具有重要作用。
下面将对这些知识点和公式进行总结。
1. 一元一次方程与不等式- 一元一次方程的一般形式为ax + b = 0,其中a和b为常数,x为未知数。
- 一元一次不等式的解集表示一组使不等式成立的实数。
2. 二元一次方程组- 二元一次方程组是由两个一元一次方程组成的方程组。
- 通过消元法、代入法或加减法等方法,可以求解二元一次方程组中的未知数。
3. 平面直角坐标系与直线方程- 平面直角坐标系由x轴和y轴组成,可以用来表示点的位置。
- 直线方程的一般形式为y = kx + b,其中k为斜率,b为截距。
4. 直线与圆的位置关系- 判断直线与圆的位置关系常用圆的方程和直线方程。
- 当直线与圆相交时,可以通过求解方程组来确定交点。
5. 因式分解- 因式分解是将一个多项式分解成若干个乘积的形式。
- 常见的因式分解方法有提公因式法、配方法和完全平方式等。
6. 二次函数及其图像- 二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数。
- 二次函数的图像为抛物线,可以通过求顶点、轴对称等方法来研究其性质。
7. 平面向量- 平面向量是具有大小和方向的量。
- 平面向量可以表示位移、速度、力等物理量。
8. 三角函数- 三角函数是用来描述角度与边长之间的关系的函数。
- 常见的三角函数包括正弦函数、余弦函数和正切函数等。
9. 三角恒等式与解三角形- 三角恒等式是指在三角函数中成立的等式。
- 解三角形可以通过已知边长或已知角度来确定三角形的边长和角度。
10. 几何向量- 几何向量是具有大小和方向的有向线段。
- 几何向量可以进行加法、减法、数乘等运算。
以上为高一数学必修一知识点的总结及公式的简要介绍。
掌握这些知识点和公式对于进一步学习数学和解题非常重要。
希望同学们能够加强对这些知识的理解和运用,在数学学习中取得更好的成绩!。
高一数学必修一公式默写-打印版介绍这份文档提供了高一数学必修一的公式默写内容,可以用于打印,以便学生在研究和复过程中使用。
公式列表以下是高一数学必修一的公式列表:1. 一次函数的标准方程:$$y = kx + b$$2. 一次函数的斜率公式:$$k = \frac{{y_2 - y_1}}{{x_2 -x_1}}$$3. 二次函数的标准方程:$$y = ax^2 + bx + c$$4. 二次函数的顶点坐标:$$x_v = -\frac{b}{{2a}}, y_v = -\frac{{\Delta}}{{4a}}$$5. 二次函数的判别式:$$\Delta = b^2 - 4ac$$6. 二次函数的轴对称线方程:$$x = -\frac{b}{{2a}}$$7. 平方差公式:$$(a + b)(a - b) = a^2 - b^2$$8. 二项式定理:$$(a + b)^n = C_n^0 \cdot a^n \cdot b^0 + C_n^1 \cdot a^{n-1} \cdot b^1 + \ldots + C_n^n \cdot a^0 \cdot b^n$$9. 直角三角形勾股定理:$$a^2 + b^2 = c^2$$10. 三角形面积公式:$$S = \frac{1}{2} \cdot a \cdot b \cdot\sin(C)$$使用说明学生可以使用这份打印版文档进行公式默写练。
建议按照顺序逐个默写公式,并在旁边标注出公式的名称。
默写过程中可以对照课本内容,以确保正确记忆和理解公式。
小结这份文档为高一数学必修一的公式默写提供了方便的打印版,能够帮助学生复习和记忆数学公式。
学生可以根据自己的需要,通过不断的练习来提高默写公式的准确性和熟练度。
高一数学必修一公式总结高一数学必修一公式总结一、几何公式1. 长方形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长 ×边长3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 平行四边形的面积公式:面积 = 底边 ×高5. 梯形的面积公式:面积 = (上底 + 下底) ×高 ÷ 26. 圆的面积公式:面积= π × 半径²7. 半圆的面积公式:面积= π × 半径² ÷ 28. 球的表面积公式:表面积= 4π × 半径²9. 球的体积公式:体积= 4/3π × 半径³10. 圆柱体的表面积公式:表面积= 2π × 半径² + 2π × 半径 ×高11. 圆柱体的体积公式:体积= π × 半径² ×高12. 圆锥的表面积公式:表面积= π × 半径 ×斜高+ π × 半径²13. 圆锥的体积公式:体积= 1/3 × π × 半径² ×高14. 圆台的表面积公式:表面积= π × (上底半径 + 下底半径 + 斜高)15. 圆台的体积公式:体积= 1/3 × π × (上底半径² + 上底半径 ×下底半径 + 下底半径²) ×高二、代数公式1. 二次方程的求根公式:x = (-b±√(b²-4ac))/(2a)2. 二次函数的顶点坐标公式:顶点坐标 = (-b/2a, f(-b/2a))3. 二次函数的对称轴公式:对称轴的方程为 x = -b/2a三、三角函数公式1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:c² = a² + b² - 2abcosC3. 三角形的海伦公式:面积= √(p × (p-a) × (p-b) × (p-c))其中,p = (a + b + c)/2四、概率公式1. 事件的概率公式:P(A) = N(A)/N(S)其中,P(A)表示事件A的概率,N(A)表示事件A的样本空间中的元素个数,N(S)表示样本空间中的元素个数。
高一数学必修一公式高一数学必修一公式 11高一数学必修一公式【和差化积】2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb 【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sina=b/sinb=c/sinc=2r 注:其中 r 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosb 注:角b是边a和边c的夹角弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式s=1/2xlxr乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1xx2=c/a 注:韦达定理【判别式】b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根【两角和公式】sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)【倍角公式】tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))【降幂公式】(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2【万能公式】令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。
高中数学必修一公式整理一、几何公式1、直线:(1) 直线的方程是y=kx+b,其中k为斜率,b为y轴截距;(2) 直线的斜率的计算公式:斜率K=(点1的纵坐标减去点2的纵坐标)除以(点1的横坐标减去点2的横坐标)。
2、平面图形(1) 三角形三边关系:任意一边长加上另外两边长,总长度要大于第三边。
(2) 三角形面积公式:面积 = (底边×高)÷2(3) 矩形的面积公式:面积 = 长×宽(4) 圆的面积公式:面积= π × 半径×半径二、代数公式1、平方差(1) 一元二次方程的解法:ax²+bx+c=0,解法为:x={-b±√(b²-4ac) }/2a(2) 二元二次方程的解法:ax²+bxy+cy²+dx+ey+f=0,解法为:x=(-be+√(b²-4ac)(-de+√(d²-4af))/(2a);y=(2a(-be+√(b²-4ac))/(-de+√(d²-4af))。
2、二次函数(1) 二次函数公式:y=ax²+bx+c,其中a不等于0(2) 二次函数的对称轴:x轴的方程为: x= -b/2a(3) 二次函数的极值的计算:极值的 x 值为: -b/2a , 极值的 y 值为:y=a(-b/2a)²+b(-b/2a)+c三、数列公式1、等差数列公式(1) 求和公式:Sn=n(a1+an)/2,其中n为项数,a1为首项,an为末项;(2) 首项公式:a1=Sn/n-(n-1)d,其中n为项数,Sn为该数列的前n项和,d为公差;(3) 末项公式:an=a1+(n-1)d,其中a1为首项,n为项数,d为公差;(4) 公差公式:d=(an-a1)/(n-1),其中an为末项,a1首项,n为项数;2、等比数列的公式(1) 求和公式:Sn=a1(1-qn)/(1-q),其中a1为首项,q为公比,n为项数;(2) 首项公式:a1=Sn(1-q)/(1-qn),其中Sn为该数列的前n项和,q为公比,n为项数;(3) 末项公式:an=a1q(n-1),其中a1为首项,q为公比,n为项数;(4) 公比公式:q=(an/a1)^(1/(n-1)),其中an为末项,a1首项,n为项数;。
高一数学必修一前三章公式总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修一前三章公式总结A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
高一数学必修一公式大全一名高中生,要有最科学的学习方法,才能事半功倍。
比如,在数学学习当中,高一同学要能够学会检查和分析,要掌握自己学习的进度,还要愿意动脑记忆,高一的数学也是如此,小编在这里整理了相关资料,希望能帮助到您。
一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A?B, B?C ,那么 A?C④如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CSA= 韦恩图示性质 A A=AA Φ=ΦA B=B AA B AA B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .4.设集合A= ,B= ,若A B,则的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x|x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。
记作f:A→B6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1 任取x1,x2∈D,且x1○2 作差f(x1)-f(x2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x1)-f(x2)的正负);○5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1) 凑配法2) 待定系数法3) 换元法4) 消参法10.函数最大(小)值(定义见课本p36页)○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域:⑴ ⑵2.设函数的定义域为,则函数的定义域为_ _3.若函数的定义域为,则函数的定义域是4.函数,若,则=6.已知函数,求函数,的解析式7.已知函数满足,则= 。
8.设是R上的奇函数,且当时, ,则当时 =在R上的解析式为9.求下列函数的单调区间:⑴ (2)10.判断函数的单调性并证明你的结论.11.设函数判断它的奇偶性并且求证:.三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA)) 积化和差 2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)和差化积 sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB-ctgA+ctgB=sin(A+B)/sinAsin集合与函数概念一,集合有关概念1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.2,集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.(4)集合元素的三个特性使集合本身具有了确定性和整体性.3,集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}2.集合的表示方法:列举法与描述法.注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:n正整数集 n*或 n+ 整数集z 有理数集q 实数集r关于"属于"的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作a∈a ,相反,a不属于集合a 记作a(a列举法:把集合中的元素一一列举出来,然后用一个大括号括上.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2}4,集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二,集合间的基本关系1."包含"关系—子集注意:有两种可能(1)a是b的一部分,;(2)a与b 是同一集合.反之: 集合a不包含于集合b,或集合b不包含集合a,记作ab或ba2."相等"关系(5≥5,且5≤5,则5=5)实例:设a={x|x2-1=0} b={-1,1} "元素相同"结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b 的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a 等于集合b,即:a=b①任何一个集合是它本身的子集.a(a②真子集:如果a(b,且a( b那就说集合a是集合b的真子集,记作ab(或ba)③如果 a(b, b(c ,那么 a(c④如果a(b 同时 b(a 那么a=b3. 不含任何元素的集合叫做空集,记为φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.三,集合的运算1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.3,交集与并集的性质:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.4,全集与补集(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)记作: csa 即 csa ={x (x(s且 x(a}(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.(3)性质:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u数学必修11. 集合(1)集合的含义与表示①通过实例,了解集合的含义,体会元素与集合的“属于”关系。