2023年中考数学高频考点训练——锐角三角函数(有答案)
- 格式:docx
- 大小:1.62 MB
- 文档页数:21
2024年人教版九年级数学中考专题训练:锐角三角函数1.如图,在数学综合实践活动课上,两名同学要测量小河对岸大树BC 的高度,甲同学在点A 测得大树顶端B 的仰角为45°,乙同学从A 点出发沿斜坡走米到达斜坡上点D ,在此处测得树顶端点B 的仰角为26.7°,且斜坡AF 的坡度为1:2.(1)求乙同学从点A 到点D 的过程中上升的高度;(2)依据他们测量的数据求出大树BC 的高度.(参考数据:sin26.7°≈0.45,cos26.7°≈0.89,tan26.7°≈0.50)2.如图,在中,D 是上一点,,以为直径的经过点C ,交于点E ,过点E 作的切线交于点F.(1)求证:.(2)若,,求的长.3.如图1,在△ABC 中,AD ⊥BC 于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,BC=a ,AD=h .(1)求正方形PQMN 的边长(用a 和h 的代数式表示);ABC BC BD AD =AD O AB O BD EF BC ⊥5CD =2tan 3B =DF(2)如图2,在△ABC 中,在AB 上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC 内,连接BN 并延长交AC 于点N ,画NM BC 于点M ,画NP ⊥NM 交AB 于点P ,再画PQ ⊥BC 于点Q ,得到四边形PQMN ,证明四边形PQMN 是正方形;(3)在(2)中的线段BN 该线上截取NE=NM 连接EQ ,EM (如图3),当∠QEM=90°时,求线段BN 的长(用a ,h 表示)4.如图,在直角坐标系中有,O 为坐标原点,,,将此三角形绕原点O 顺时针旋转,得到,二次函数的图象刚好经过A ,B ,C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线与二次函数图象相交于M ,N 两点.①若,求k 的值;②证明:无论k 为何值,恒为直角三角形.5.如图,四边形ABCD 内接于,的半径为4,,对角线AC 、BD 相交于点P.过点P 分别作于点E ,于点F.(1)求证:四边形为正方形;(2)若,求正方形的边长;(3)设PC 的长为x ,图中阴影部分的面积为y ,求y 与x 之间的函数关系式,并写出y 的最大值.6.如图,已知一次函数的图象经过,两点,且与轴交于点,二次函数的图象经过点,,连接.Rt AOB ()03A ,()10B -,90︒Rt COD 2y ax bx c =++3l y kx k =-+:2PMN S = PMN O O 90ADC AB BC ∠=︒=,PE AD ⊥PF CD ⊥DEPF 2AD CD=DEPF 1y kx m =+()15A --,()04B -,x C 224y ax bx =++A C OA(1)求一次函数和二次函数的解析式.(2)求的正弦值.(3)在点右侧的轴上是否存在一点,使得与相似?若存在,求出点的坐标;若不存在,请说明理由.7.如图1,在四边形ABCD 中,AC 交BD 于点E ,△ADE 为等边三角形.(1)若点E 为BD 的中点,AD =4,CD =5,求△BCE 的面积;(2)如图2,若BC =CD ,点F 为CD 的中点,求证:AB =2AF ;(3)如图3,若AB ∥CD ,∠BAD =90°,点P 为四边形ABCD 内一点,且∠APD =90°,连接BP ,取BP 的中点Q ,连接CQ.当AB =,AD =,tan ∠ABC =2时,求CQ 的最小值.8.如图1,在矩形中,,.P ,Q 分别是,上的动点,且满足,E 是射线上一点,,设,.OAB ∠C x D BCD OAB D ABCD 4AB =30ACB ∠=︒AC CD 35DQ CP =AD AP EP =DQ x =AP y =(1)求y 关于x 的函数表达式.(2)当中有一条边与垂直时,求的长.(3)如图2,当点Q 运动到点C 时,点P 运动到点F.连结,以,为边作.①当所在直线经过点D 时,求的面积;②当点G 在的内部(不含边界)时,直接写出x 的取值范围.9.等边中,是中线,一个以点D 为顶点的30°角绕点D 旋转,使角的两边分别与,的延长线相交于点E ,F .交于点M ,交于点N .(1)如图①,若,求证:.(2)如图②,在绕点D 旋转的过程中:①探究三条线段,,之间的数量关系,并说明理由;②若,,求的长.10. 在平面直角坐标系中,对于和点不与点重合给出如下定义:若边,上分别存在点,点,使得点与点关于直线对称,则称点为的“翻折点”.(1)已知,若点与点重合,点与点重合,直接写出的“翻折点”的坐标;是线段上一动点,当是的“翻折点”时,求长的取值范围;PQE AC DQ FQ FQ PQ PQFG GF PQFG ABC ABC CD AC BC DF AC DE BC CE CF =DE DF =EDF ∠CD CE CF 6CE =2CF =DM xOy OAB (P O )OA OB M N O P MN P OAB ()30A,(0.B ①M A N B OAB P ②AB P OAB AP(2)直线与轴,轴分别交于,两点,若存在以直线为对称轴,且斜边长为的等腰直角三角形,使得该三角形边上任意一点都为的“翻折点”,直接写出的取值范围.11. 如图,在中,边绕点顺时针旋转得到线段,边绕点逆时针旋转得到线段,连接,点是的中点.(1)以点为对称中心,作点关于点的对称点,连接,.依题意补全图形,并证明;求证:;(2)若,且于,直接写出用等式表示的与的数量关系.12.如图1,菱形的边长为,,,分别在边,上,,,点从点出发,沿折线以的速度向点匀速运动不与点 C 重合 ;的外接圆与相交于点,连接交于点设点的运动时间为ts.(1) ;(2)若与相切,判断与的位置关系;求的长;(3)如图3,当点在上运动时,求的最大值,并判断此时与的位置关系; (4)若点在的内部,直接写出的取值范围.13.如图,已知菱形ABCD , E 为对角线AC 上一点.3(0)4y x b b =-+>x y A B AB 2OAB b ABC AB B α(0α180)︒<<︒BD AC C 180α︒-CE DE F DE F C F G BG DG ①AC DG =②DGB ACB ∠=∠α60=︒FH BC ⊥H FH BC ABCD 12cm B 60∠=︒M N AB CD.AM 3cm =DN 4cm =P M MB BC -1cm /s C ()APC O CD E PE AC F.P APE ∠=︒O AD ①O CD ② APCP BC CF PE AC N O t(1)[建立模型]如图1,连结BE,DE.求证:∠EBC=∠EDC.(2)[模型应用]如图2,F是DE延长线上一点,∠EBF=∠ABC,EF交AB于点G.①判断△FBG的形状,并说明理由.②若G为AB的中点,且AB=4,∠ABC=60°,求AF的长.(3)[模型迁移]F是DE延长线上一点,∠EBF=∠ABC,EF交射线AB于点G,且sin∠BAC=,BF//AC.求的值. 14.小明家住在某小区一楼,购房时开发商赠送了一个露天活动场所,现小明在活动场所正对的墙上安装了一个遮阳棚,经测量,安装遮阳棚的那面墙高,安装的遮阳棚展开后可以使正午时刻房前能有宽的阴影处以供纳凉.已知正午时刻太阳光与水平地面的夹角为,安装好的遮阳篷与水平面的夹角为,如下右图为侧面示意图.(参考数据:,,,,,)(1)据研究,当一个人从遮阳棚进出时,如果遮阳棚外端(即图中点C)到地面的距离小于时,则人进出时总会觉得没有安全感,就会不自觉的低下头或者用手护着头,请你通过计算,判断此遮阳棚是否使得人进出时具有安全感?(2)请计算此遮阳棚延展后的长度(即的长度).(结果精确到)15.数学兴趣小组在探究圆中图形的性质时,用到了半径是6的若干圆形纸片.45ABBG BC AB3m2m()AD63.4︒BC10︒100.17sin︒≈100.98cos︒≈100.18tan︒≈63.40.89sin︒≈63.40.45cos︒≈63.4 2.00tan︒≈2.3mBC0.1m(1)如图1,一张圆形纸片,圆心为O ,圆上有一点A ,折叠圆形纸片使得A 点落在圆心O 上,折痕交于B 、C 两点,求的度数.(2)把一张圆形纸片对折再对折后得到如图扇形,点M 是弧上一动点.①如图2,当点M 是弧中点时,在线段、上各找一点E 、F ,使得是等边三角形.试用尺规作出,不证明,但简要说明作法,保留作图痕迹.②在①的条件下,取的内心N ,则 .③如图3,当M 在弧上三等分点S 、T 之间(包括S 、T 两点)运动时,经过兴趣小组探究都可以作出一个是等边三角形,取的内心N ,请问的长度是否变化.如变化,请说明理由;如不变,请求出的长度.16.已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.17.如图1,在平面直角坐标系中,Rt △OAB 的直角边OA 在y 轴的正半轴上,且OA =6,斜边OB =10,点P 为线段AB 上一动点.O BAC ∠PQ PQ OP OQ EFM EFM EFM ON =PQ EFM EFM ONON )2y x bx c =++yA (4B(C -b c BC y DE )2y x bx c =++AB E AB F EF AEF ABC ∠E(1)请直接写出点B 的坐标;(2)若动点P 满足∠POB =45°,求此时点P 的坐标;(3)如图2,若点E 为线段OB 的中点,连接PE ,以PE 为折痕,在平面内将△APE 折叠,点A 的对应点为A′,当PA′⊥OB 时,求此时点P 的坐标;18.如图,在菱形中,对角线相交于点O ,,.动点P 从点A 出发,沿方向匀速运动,速度为;同时,动点Q 从点A 出发,沿方向匀速运动,速度为.以为邻边的平行四边形的边与交于点E .设运动时间为,解答下列问题:(1)当点M 在上时,求t 的值;(2)连接.设的面积为,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在的平分线上?若存在,求出t 的值;若不存在,请说明理由.19.在矩形中,点E 为射线上一动点,连接.ABCD AC BD ,10cm AB=BD =AB 1cm /s AD 2cm /s AP AQ ,APMQ PM AC ()()s 05t t <≤BD BE PEB ()2cm S PEC ∠ABCD BC AE(1)当点E 在边上时,将沿翻折,使点B 恰好落在对角线上点F 处,交于点G .①如图1,若,求的度数;②如图2,当,且时,求的长.(2)在②所得矩形中,将矩形沿进行翻折,点C 的对应点为C ′,当点E ,C ′,D 三点共线时,求的长.20.如图,在矩形ABCD 中,AB=2,BC=4,点E 在直线AB 上,连结DE ,过点A 作AF ⊥DE 交直线BC 于点F ,以AE 、AF 为邻边作平行四边形AEGF.直线DG 交直线AB 于点H.(1)当点E 在线段AB 上时,求证:△ABF ∽△DAE.(2)当AE=2时,求EH 的长.(3)在点E 的运动过程中,是否存在某一位置,使得△EGH 为等腰三角形.若存在,求AE 的长.21.如图1,等边三角形纸片中,,点D 在边上(不与点B 、C 重合),,点E 在边上,将沿折叠得到(其中点C ′是点C 的对应点).BC ABE AE BD AEBD BC =AFD ∠=4AB EF EC =BC ABCD ABCD AE BE ABC 12AB =BC 4CD =AC CDE DE 'C DE(1)当点C ′落在上时,依题意补全图2,并指出C ′D 与的位置关系;(2)如图3,当点C ′落到的平分线上时,判断四边形CDC ′E 的形状并说明理由;(3)当点C ′到的距离最小时,求的长;(4)当A ,C ′,D 三点共线时,直接写出∠AEC ′的余弦值.22.如图,四边形是菱形,其中,点E 在对角线上,点F 在射线上运动,连接,作,交直线于点G.(1)在线段上取一点T ,使,①求证:;②求证:;(2)图中,.①点F 在线段上,求周长的最大值和最小值;②记点F 关于直线的轴对称点为点N.若点N 落在的内部(不含边界),求的取值范围.AC AB ACB ∠AB CE ABCD 60ABC ∠=︒AC CB EF 60FEG ∠=︒DC BC CE CT =FET GEC ∠=∠FT CG =7AB =1AE =BC EFG AB EDC ∠CF答案解析部分1.【答案】(1)解:作DH ⊥AE 于H ,如图所示:在Rt △ADH中,∵,∴AH =2DH ,∵AH 2+DH2=AD 2,∴(2DH )2+DH 2=()2,∴DH =6(米).答:乙同学从点A 到点D 的过程中,他上升的高度为6米;(2)解:如图所示:过点D 作DG ⊥BC 于点G ,设BC =x 米,在Rt △ABC 中,∠BAC =45°,∴AC =BC =x ,由(1)得AH =2DH =12,在矩形DGCH 中,DH =CG =6,DG =CH =AH+AC =x+12,在Rt △BDG 中,BG =BC-CG =BC-DH =x-6,∵tan ∠BDG =,∴,解得:x≈24,12DH AH =BG DG626.70.512x tan x -=︒≈+答:大树的高度约为24米.【解析】【分析】(1)作DH ⊥AE 于H ,利用勾股定理可得AH 2+DH 2=AD 2,再结合AH =2DH ,可得(2DH )2+DH 2=(2,最后求出DH=6即可;(2)过点D 作DG ⊥BC 于点G ,设BC =x 米,则DH =CG =6,DG =CH =AH+AC =x+12,BG =BC-CG =BC-DH =x-6,再结合tan ∠BDG =, 可得,最后求出x 的值即可。
2023年中考数学选择题专项复习:锐角三角函数1.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M 处俯角为35°,则M,N之间的距离为()(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m 2.(2021•烟台)如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:
按键的结果为m;
按键的结果为n;
按键的结果为k.下列判断正确的是()
第1 页共13 页。
2023年中考数学一轮专题练习 ——锐角三角函数一、单选题(本大题共10小题)1. (天津市2022年)tan 45︒的值等于( )A .2B .1C D 2. (陕西省2022年(A 卷))如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A .B .C .D .3. (吉林省长春市2022年)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A .sin ABBCα=B .sin BCABα=C .sin ABACα=D .sin ACABα=4. (湖北省荆州市2022年)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B .C .13D .35. (四川省广元市2022年)如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos ∠APC 的值为( )A B .C .25D 6. (湖北省江汉油田、潜江、天门、仙桃2022年)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .13B .12C D 7. (贵州省黔东南州2022年)如图,PA 、PB 分别与O 相切于点A 、B ,连接PO 并延长与O 交于点C 、D ,若12CD =,8PA =,则sin ADB ∠的值为( )A .45 B .35C .34D .438. (云南省2022年)如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .13129. (湖南省湘潭市2022年)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 10. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共12小题) 11. (广东省2022年)sin30°的值为 .12. (山东省滨州市2022年)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则sin A = . 13. (江苏省扬州市2022年)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为 .14. (湖南省益阳市2022年)如图,在Rt △ABC 中,∠C =90°,若sin A =45,则cos B =_____.15. (江苏省常州市2022年)如图,在四边形ABCD 中,90A ABC ∠=∠=︒,DB 平分ADC ∠.若1AD =,3CD =,则sin ABD ∠= .16. (四川省凉山州2022年)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ⊥CD 于点C ,BD ⊥CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为 .17. (黑龙江省绥化市2022年)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=,则sin15︒的值为 . 18. (江苏省连云港市2022年)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A = .19. (山东省泰安市肥城市汶阳镇初级中学2021-2022学年)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠= .20. (广西河池市2022年)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN = .21. (四川省凉山州2022年)如图,在边长为1的正方形网格中,⊙O 是△ABC 的外接圆,点A ,B ,O 在格点上,则cos ∠ACB 的值是 .22. (湖南省湘西州2022年中考数学试卷)阅读材料:余弦定理是描述三角形中三边长度与一个角余弦值关系的数学定理,运用它可以解决一类已知三角形两边及夹角求第三边或者已知三边求角的问题.余弦定理是这样描述的:在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍. 用公式可描述为:a 2=b 2+c 2﹣2bc cos A b 2=a 2+c 2﹣2ac cos B c 2=a 2+b 2﹣2ab cos C现已知在△ABC 中,AB =3,AC =4,∠A =60°,则BC =_____. 三、解答题(本大题共9小题)23. (湖南省湘西州20222tan45°+|﹣3|+(π﹣2022)0.24. (2022年西藏中考数学真题试卷)计算:01|()tan 452+︒.25. (湖南省岳阳市2022年)计算:2022032tan 45(1))π--︒+--.26. (湖南省株洲市2022年)计算:()202212sin 30-︒.27. (2022年四川省乐山市中考数学真题)1sin 302-︒28. (湖南省常德市2022年中考数学试题)计算:213sin 30452-︒︒⎛⎫- ⎪⎝⎭29. (浙江省湖州市2022年)如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.30. (黑龙江省哈尔滨市2022年)先化简,再求代数式21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+.31. (黑龙江省哈尔滨市2021年)先化简,再求代数式2323111a a a a a +⎛⎫-÷⎪---⎝⎭的值,其中2sin 451a =︒-.参考答案1. 【答案】B 【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC , ∴根据正切定义,tan 1BCA AC∠==, ∵∠A =45°, ∴tan 451︒=, 故选 B . 2. 【答案】D 【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB . 【详解】解:∵26BD CD ==, ∴3CD =,∵直角ADC 中,tan 2C ∠=, ∴tan 326AD CD C =⋅∠=⨯=,∴直角ABD △中,由勾股定理可得,AB === 故选D . 3. 【答案】D 【分析】根据正弦三角函数的定义判断即可. 【详解】∵BC ⊥AC ,∴△ABC 是直角三角形, ∵∠ABC =α, ∴sin ACABα=, 故选:D . 4. 【答案】C 【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解. 【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°, 又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形, ∴OA =OB ,设OC =x ,则OB =2OC =2x , 则OB =OA =3x , ∴tan 133OC x OAP OA x ∠===. 5. 【答案】B 【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∥AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos ∠APC =cos ∠EDC 即可得答案. 【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∥AB , ∴∠APC =∠EDC .在△DCE 中,有EC DC 5DE ==, ∴22252025EC DC DE +=+==, ∴DCE ∆是直角三角形,且90DCE ∠=︒,∴cos ∠APC =cos ∠EDC=DC DE =故选:B . 6. 【答案】C 【分析】证明四边形ADBC 为菱形,求得∠ABC =30°,利用特殊角的三角函数值即可求解. 【详解】解:连接AD ,如图:∵网格是有一个角60°为菱形,∴△AOD 、△BCE 、△BCD 、△ACD 都是等边三角形, ∴AD = BD = BC = AC ,∴四边形ADBC 为菱形,且∠DBC =60°, ∴∠ABD =∠ABC =30°, ∴tan ∠ABC = tan30°= 故选:C . 7. 【答案】A 【分析】连结OA ,根据切线长的性质得出PA =PB ,OP 平分∠APB ,OP ⊥AP ,再证△APD ≌△BPD (SAS ),然后证明∠AOP =∠ADP +∠OAD =∠ADP +∠BDP =∠ADB , 利用勾股定理求出OP=10=,最后利用三角函数定义计算即可. 【详解】 解:连结OA∵PA 、PB 分别与O 相切于点A 、B , ∴PA =PB ,OP 平分∠APB ,OP ⊥AP , ∴∠APD =∠BPD , 在△APD 和△BPD 中, AP BPAPD BPD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△APD≌△BPD(SAS)∴∠ADP=∠BDP,∵OA=OD=6,∴∠OAD=∠ADP=∠BDP,∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,在Rt△AOP中,OP10=,∴sin∠ADB=84105 APOP==.故选A.8. 【答案】B 【分析】先根据垂径定理求出12CE CD=,再根据余弦的定义进行解答即可.【详解】解:∵AB是⊙O的直径,AB⟂CD.∴112,902CE CD OEC==∠=︒,OC=12AB=13,∴12 cos13CEOCEOC∠==.故选:B.9. 【答案】A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a,则较长的直角边为a+1,再接着利用勾股定理得到关于a的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tanα的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a,则较长的直角边为a+1,其中a>0,∴a2+(a+1)2=5,其中a>0,解得:a1=1,a2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .10. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明()DOF COE ASA ≌得到EC =FD ,再证明()EAC FBD SAS ≌得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即AE BF ⊥;②通过等弦对等角可证明45OPA OBA ∠=∠=︒;③通过正切定义得tan BE BP BAE AB AP ∠==,利用合比性质变形得到CE BP AP BP BE ⋅-=,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE ⋅-=∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒∴AOP AEC ∽ ∴OP AO CE AE= ∴OP AE CE AO⋅= ∴OP AE BP AP BP AO BE⋅⋅-=⋅ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC==设正方形边长为5a ,则BC =5a ,OB =OC , 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅== ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF∴S 四边形OECF = S △DOF +S △COF = S △COD∵S △COD =14ABCD S 正方形∴S 四边形OECF =14ABCD S 正方形所以⑤正确;综上,①②③⑤正确,④错误,故选 B11. 【答案】12【详解】根据特殊角的三角函数值计算即可:sin30°=12. 故答案为:1212. 【答案】1213 【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∵∠C =90°,AC =5,BC =12,∴AB=13,∴sin A =1213BC AB =.故答案为:1213.13. 【详解】 解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c⎛⎫+= ⎪⎝⎭,求出a c =或a c =∴在Rt ABC 中:in s a c A ==,故答案为: 14. 【答案】45 【分析】根据三角函数的定义即可得到cos B =sin A =45. 【详解】解:在Rt △ABC 中,∠C =90°,∵sin A =BC AB =45, ∴cos B =BC AB =45. 故答案为:45. 【点睛】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A +∠B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.15. 【分析】 过点D 作BC 的垂线交于E ,证明出四边形ABED 为矩形,BCD △为等腰三角形,由勾股定理算出DE BD =【详解】解:过点D 作BC 的垂线交于E ,90DEB ∴∠=︒90A ABC ∠=∠=︒,∴四边形ABED 为矩形,//,1DE AB AD BE ∴==,ABD BDE ∴∠=∠, BD 平分ADC ∠,ADB CDB ∴∠=∠,//AD BE ,ADB CBD ∴∠=∠,∴∠CDB =∠CBD3CD CB ∴==,1AD BE ==,2CE =∴,DE ∴BD ∴sinBE BDE BD ∴∠==,sin ABD ∴∠=故答案为:16. 【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.17. 【分析】根据sin()sin cos cos sin αβαβαβ-=-代入进行计算即可.【详解】解:sin15sin(4530)︒=︒-︒=sin 45cos30cos45sin30︒︒︒︒-=12==故答案为: 18. 【答案】45 【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC =, ∴4sin =5CE A AC =, 故答案为:45.19. 【答案】725【分析】根据折叠的性质结合勾股定理求得GE 5=,BC=AD=8,证得Rt △EGF ~Rt △EAG ,求得253EA =,再利用勾股定理得到DE 的长,即可求解. 【详解】矩形ABCD 中,GC=4,CE =3,∠C=90︒,∴5==,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90︒,∴BG=GF=GC=4,∴BC=AD=8,∵∠AGB+∠AGF+∠EGC+∠EGF=180︒,∴∠AGE=90︒,∴Rt△EGF~Rt△EAG,∴EG EFEA EG=,即535EA=,∴253 EA=,∴73 =,∴773sin DAE25253DEAE∠===,故答案为:725.20. 【答案】58##0.625【分析】先判断出四边形ABEF是正方形,进而判断出△ABG≌△BEH,得出∠BAG=∠EBH,进而求出∠AOB=90°,再判断出△AOB~△ABG,求出OA OB=△OBM~△OAN,求出BM=1,即可求出答案.【详解】解:∵点E,F分别是BC,AD的中点,∴11,22AF AD BE BC==,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,AD=BC,∴12AF BE AD==,∴四边形ABEF是矩形,由题意知,AD=2AB,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG ≌△BEH (SAS ),∴∠BAG =∠EBH ,∴∠BAG +∠ABO =∠EBH +∠ABO =∠ABG =90°, ∴∠AOB =90°,∵BG =EH =25BE =2, ∴BE =5,∴AF =5,∴AG =∵∠OAB =∠BAG ,∠AOB =∠ABG , ∴△AOB ∽△ABG , ∴OA OB AB AB BG AG ==,即52OA OB ==∴OA OB ==, ∵OM ⊥ON ,∴∠MON =90°=∠AOB ,∴∠BOM =∠AON ,∵∠BAG +∠FAG =90°,∠ABO +∠EBH =90°,∠BAG =∠EBH , ∴∠OBM =∠OAN ,∴△OBM ~△OAN , ∴OB BM OA AN=, ∵点N 是AF 的中点, ∴1522AN AF ==,∴52BM =,解得:BM =1, ∴AM =AB -BM =4, ∴552tan 48AN AMN AM ∠===. 故答案为:5821. 【分析】 取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ⊥AB ,则OB ==cos ∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∴OD ⊥AB ,∴∠ODB =90°,∴OB ==cos ∠DOB =13OD OB ==, ∵OA =OB ,∴∠BOD =12∠AOB ,∵∠ACB =12∠AOB ,∴∠ACB =∠DOB ,∴cos ∠ACB = cos ∠DOB =故答案为:22. 【分析】从阅读可得:BC 2=AB 2+AC 2﹣2AB AC cos A ,将数值代入求得结果.【详解】解:由题意可得,BC 2=AB 2+AC 2﹣2AB •AC •cos A=32+42﹣2×3×4cos60°=13,∴BC故答案为:【点睛】本题考查了阅读理解能力,特殊角锐角三角函数值等知识,解决问题的关键是公式的具体情景运用.23. 【答案】6【分析】先计算算术平方根、绝对值、零指数幂、特殊角三角函数值,再合并即可.【详解】解:原式=4﹣2×1+3+1=4﹣2+3+1=6【点睛】此题考查的是算术平方根、绝对值、零指数幂、特殊角三角函数值,掌握其运算法则是解决此题的关键.24. 【答案】2【分析】根据绝对值的意义,零指数幂的定义,数的开方法则以及特殊角的三角函数的值代入计算即可.【详解】解:01|()tan 452+︒11-2=【点睛】此题考查了实数的运算,熟练掌握运算法则和方法是解本题的关键. 25. 【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.26. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()2022112sin 3013213132-︒=+-⨯=+-=. 27. 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.【详解】 解:原式113322=+-=. 28. 【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=1142-⨯+1=.29. 【答案】AC =4,sin A =35 【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∵∠C =90°,AB =5,BC =3,∴4AC .3sin 5BC A AB ==.30. 【答案】11x -,2【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得.【详解】 解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅-11x =-∵2112x =⨯+=∴原式==31. 【答案】11a +,【分析】先算分式的减法,再把除法化为乘法进行约分化简,最后代入求值,即可求解.【详解】解:原式=223(1)23111a a a a a a ++-⎛⎫-⋅ ⎪--⎝⎭=33231(1)(1)a a a a a a +---⋅+- =1(1)(1)a a a a a -⋅+- =11a +,当2sin 451a =︒-=21=1时,原时。
中考数学专题训练---锐角三角函数的综合题分类及答案一、锐角三角函数1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.(1)求之间的距离(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)35. 【解析】 【分析】(1)解直角三角形即可得到结论;(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,'30CE AA ==3Rt △ABC 中,求得DC=333,然后根据三角函数的定义即可得到结论. 【详解】解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,∴AB=sin 30AC︒=6012=120(m )(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3在Rt △ABC 中, AC=60m ,∠ADC=60°,∴DC=333∴3∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235答:从无人机'A 上看目标D 235【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以2114ACBS MDS AB⎛⎫==⎪⎝⎭V,所以S△MCB=12S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=25S1,由于1EBDS MES EB=V,从而可知52MEEB=,设ME=5x,EB=2x,从而可求出AB=14x,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】(1)∵MD∥BC,∴∠DME=∠CBA,∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC , ∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V , ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBDS MES EB=V , ∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x , ∵12MD ME AB BC ==,∴BC=10x , ∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.3.如图,反比例函数() 0k y k x=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒. (1)求k 的值及点B 的坐标; (2)求tanC 的值.【答案】(1)2k =,()1,2B --;(2)2. 【解析】【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数()0ky k x=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出Ctan 即可.【详解】(1)∵点A (1,a )在2y x =上, ∴a =2,∴A (1,2),把A (1,2)代入 ky x= 得2k =, ∵反比例函数()0ky k x=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,∴()12B --, ;(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,∵90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=,∴AD 22OD 1tanC tan AOD =∠===.【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD 是关键.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=;②当90POE∠=o时,1010254cos cos25OCCQQCO AOC====∠∠,∴252OP DQ CD CQ CD==-=-2571622=-=,∵501013OP<<,∴72OP=(舍去);③当90PEO∠=o时,∵//CD AB,∴AOQ DQO∠=∠,∵AOP∆≌ODQ∆,∴DQO APO∠=∠,∴AOQ APO∠=∠,∴90AEO AOP∠=∠=o,此时弦CD不存在,故这种情况不符合题意,舍去;综上,线段OP的长为8.5.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或【解析】试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.试题解析:(1)①法一:轴对称作法,判断:AH=PH,AH⊥PH证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,∠HPC=∠HCPBD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)法一:轴对称作法考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由得:,∴.即PD=法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆6.如图,矩形OABC 中,A(6,0)、C(0,23)、D(0,33),射线l 过点D 且与x轴平行,点P 、Q 分别是l 和x 轴的正半轴上的动点,满足∠PQO =60º.(1)点B 的坐标是 ,∠CAO = º,当点Q 与点A 重合时,点P 的坐标 为 ;(2)设点P 的横坐标为x ,△OPQ 与矩形OABC 重叠部分的面积为S ,试求S 与x 的函数关系式和相应的自变量x 的取值范围.【答案】(1)(6,23). 30.(3,33)(2)()()()()243x 430x 331333x x 3x 5232S {23x 1235x 9543x 9x +≤≤-+-<≤=-+<≤>【解析】解:(1)(6,23). 30.(3,33). (2)当0≤x≤3时, 如图1,OI=x ,IQ=PI•tan60°=3,OQ=OI+IQ=3+x ;由题意可知直线l∥BC∥OA,可得EF PE DC31==OQ PO DO333==,∴EF=13(3+x),此时重叠部分是梯形,其面积为:EFQO14343S S EF OQ OC3x x43 233==+⋅=+=+梯形()()当3<x≤5时,如图2,()HAQEFQO EFQO221S S S S AH AQ243331333x43x3=x x32232∆=-=-⋅⋅=+---+-梯形梯形。
2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。
2023年中考数学----锐角三角函数综合知识回顾与专项练习题(含答案解析)知识回顾1. 锐角三角函数的定义: 在Rt △ABC 中,∠C=90°.①正弦:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sin A . 即sin A =∠A 的对边除以斜边=c a 。
②余弦:锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cos A . 即cos A =∠A 的邻边除以斜边=cb 。
③正切:锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tan A . 即tan A =∠A 的对边除以∠A 的邻边=ba 。
2. 特殊角的锐角三角函数值计算3. 直角三角形的性质①直角三角形的两锐角互余。
②直角三角形斜边上的中线等于斜边的一半。
③含30°的直角三角形中,30°角所对的直角边等于斜边的一半。
④直角三角形的两直角边的成绩等于斜边乘以斜边上的高线。
⑤直角三角形的勾股定理。
4. 解直角三角形:特殊角利用直角三角形角的关系,边的关系以及边角关系求解直角三角形。
5. 解直角三角形的坡度文问题: 坡角:坡面与水平面的夹角α。
坡度(坡比):坡面的铅直高度h 和水平宽度l 的比。
一般用i 表示,常写成i=1:m 的形式。
等于坡角的正切值。
在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题。
应用领域:①测量领域;②航空领域 ③航海领域:④工程领域等。
6. 解直角三角形的仰角俯角问题: 仰角:向上看的视线与水平线的夹角。
俯角:向下看的视线与水平线的夹角。
解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决。
2023年中考九年级数学高频考点专题训练--锐角三角函数一、综合题1.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交∠O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为∠O切线;(2)若sin∠BAC=35,求tan∠AFO的值.2.如图,一个正方体木箱沿斜面下滑,正方体木箱的边长BE为2m,斜面AB的坡角为∠BAC,且tan∠BAC= 3 4.(1)当木箱滑到如图所示的位置时,AB=3m,求此时点B离开地面AC的距离;(2)当点E离开地面AC的距离是3.1m时,求AB的长.3.如图,在∠ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与∠ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.4.如图,以∠ABC的一边AB为直径的半圆O与边AC,BC的交点分别为点E,点D,且D是BE⌢的中点.(1)若∠A=80°,求∠DBE的度数.(2)求证:AB=AC.(3)若∠O 的半径为5cm,BC=12cm,求线段BE的长.5.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且∠DAM和∠BCE相似,求点M坐标.6.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC∠OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD∠OF于点D.(1)当AC的长度为多少时,∠AMC和∠BOD相似;(2)当点M恰好是线段AB中点时,试判断∠AOB的形状,并说明理由;(3)连结BC.当S∠AMC=S∠BOC时,求AC的长.7.如图1,在∠ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A 重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F,D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;,其他条件不(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= √6+√22变,求线段AM的长.8.(1)【基础巩固】如图1,在∠ABC中,D,E,F分别为AB,AC,BC上的点,DE∠BC,BF=CF,AF交DE于点G,求证:DG= EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG∠DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在∠ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∠BD交AD于点G,EF∠EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.9.在锐角∠ABC中,AB=4,BC=5,∠ACB=45°,将∠ABC绕点B按逆时针方向旋转,得到∠DBE.(1)当旋转成如图①,点E在线段CA的延长线上时,则∠CED的度数是度;(2)当旋转成如图②,连接AD、CE,若∠ABD的面积为4,求∠CBE的面积;(3)点M为线段AB的中点,点P是线段AC上一动点,在∠ABC绕点B按逆时针方向旋转过程中,点P的对应点P′,连接MP′,如图③,直接写出线段MP′长度的最大值和最小值.10.如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么tan∠1tan∠2的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当∠DCG为等腰三角形时,求BE长.11.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠D=85°,则∠C =.(2)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求对角线AC的长.(3)已知:如图2,在平面直角坐标系xOy中,四边形ABCD是“等对角四边形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣√3),点D在y轴上,抛物线y=ax2+bx+c(a<0)过点A、D,且当﹣2≤x≤2时,函数y=ax2+bx+c取最大值为3,求二次项系数a的值.12.如图,已知BC为∠O的直径,点D为CE⌢的中点,过点D作DG∠CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是∠O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.13.已知:如图,AB为∠O的直径,C是BA延长线上一点,CP切∠O于P,弦PD∠AB于E,过点B作BQ∠CP于Q,交∠O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3√3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 √3,连接QC交BC于点M,求QM的长.14.定义:一边上的中线与另一边的夹角为30°的三角形称作美妙三角形。
中考数学专项复习《锐角三角函数》练习题(附答案)一、单选题1.如图,在△ABC中CA=CB=4,cosC=14,则sinB的值为()A.√102B.√153C.√64D.√1042.在Rt△ABC中,△C=90°,cosA=35,那么tanB=()A.35B.45C.43D.34 3.如图,在Rt△ABC中∠ACB=90°,BC=1,AB=2则下列结论正确的是()A.sinA=√32B.tanA=12C.cosB=√32 D.tanB=√34.如图,已知△ABC内接于△O,△BAC=120°,AB=AC,BD为△O的直径,AD=6,则BC的长为()A.2√3B.6C.2√6D.3√3 5.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里6.在矩形ABCD中AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F设∠AGE=α(0°<α<90°),下列四个结论:①AE= CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=1cos2α,正确的个数是()A.1B.2C.3D.4 7.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得△PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.11−sinαB.11+sinαC.11−cosαD.11+cosα8.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,下列结论:①△ABC的形状是等腰三角形;②△ABC的周长是2√10+√2;③点C到AB边的距离是38√10;④tan∠ACB的值为2,正确的个数为()A .0个B .1个C .2个D .3个9.在Rt△ABC 中△ACB=90°,BC=1,AB=2,则下列结论正确的是( )A .sinA=√32B .cosA=√32C .tanA=12D .cotA=√3310.已知:如图,正方形网格中∠AOB 如图放置,则cos∠AOB 的值为( )A .2√55B .2C .12D .√5511.如图,菱形ABCD 的周长为20cm ,DE△AB ,垂足为E ,cosA=45,则下列结论中正确的个数为( )①DE=3cm ;②EB=1cm ;③S 菱形ABCD =15cm 2A .3个B .2个C .1个D .0个12.如图,在Rt △ABC 中 ∠ABC =90°,以其三边为边向外作正方形,连接EH ,交AC 于点P ,过点P 作PR ⊥FG 于点R.若tan∠AHE =12,EH =8√5,则PR 的值为( )A.10B.11C.4√5D.5√5二、填空题13.如图,在RtΔABC中∠B=90°,AB=3 ,BC=4 ,点M、N分别在AC、AB两边上,将ΔAMN沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当ΔDCM是直角三角形时,则tan∠AMN的值为.14.如图,在△ABC中∠ABC=60°,AB=6,BC=10将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1,A1落在边BC上,连接AC1,则AC1的长为.15.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C 的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.16.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.17.如图,某高为60米的大楼AB旁边的山坡上有一个“5G”基站DE,从大楼顶端A 测得基站顶端E的俯角为45°,山坡坡长CD=10米,坡度i=1:√3,大楼底端B 到山坡底端C的距离BC=30米,则该基站的高度DE=米.18.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,则2号楼的高度为(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)三、综合题19.(1)已知Rt△ABC中△C=90°,△A=30°,BC= √3,解直角三角形.(2)已知△ABC中△A=45°,AB=4,BC=3,求AC的长.20.如图1,已知∠PAQ=60°.请阅读下列作图过程,并解答所提出的问题.△如图2,以点A为圆心,任意长为半径画弧,分别与AP,AQ交于B,C两点;△如图3,分别以B,C两点为圆心,以大于12BC的长为半径画弧,两弧交于点D;△如图4,作射线AD,连接BC,与AD交于点E.问题:(1)∠ABC的度数为.(2)若AB=4,求AE的长.21.如图,在△ABC中△C=60°,△O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是△O的切线;(2)若AB=2 √3,求图中阴影部分的面积.(结果保留π和根号)22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中在OA的位置时俯角△EOA=30°,在OB的位置时俯角△FOB=60°,若OC△EF,点A比点B高7cm.求:(1)单摆的长度(√3≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).23.已知:如图,AB是△O的直径,C是△O上一点,OD△BC于点D,过点C作△O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与△O相切;(2)连接AD并延长交BE于点F,若OB=9,sin△ABC= 23,求BF的长.24.如图,AB是△O的直径,OE垂直于弦BC,垂足为F,OE交△O于点D,且△CBE=2△C.(1)求证:BE与△O相切;(2)若DF=9,tanC= 34,求直径AB的长.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】A8.【答案】C9.【答案】B10.【答案】D11.【答案】A12.【答案】B13.【答案】1或214.【答案】1415.【答案】(20√3−20)16.【答案】√31817.【答案】(25﹣5 √3)18.【答案】45.8米19.【答案】(1)解:在Rt△ABC中△C=90°,△A=30°∴△B=90°-△A=60°,AB=2BC=2 √3∴AC= √AB2−BC2=√(2√3)2−(√3)2=3;(2)解:如图,过点B作BD△AC于D∵△A=45°∴△ABD=△A=45°∴AD=BD∵AB=4,AD2+BD2=AB2∴AD=BD= 2√2在Rt△BCD中BC=3∴CD=√BC2−BD2=1∴AC=AD+CD= 2√2+1.20.【答案】(1)60°(2)由作图可知AB=AC,AD平分∠PAQ∴AE⊥BC.∵∠PAQ=60°∴∠BAE=30°.在Rt△ABC中AE=AB⋅cos30°=4×√32=2√3.答:AE的长为2√3.21.【答案】(1)解:如图,连接OA;∵△C=60°∴△AOB=120°;而OA=OB∴△OAB=△OBA=30°;而AB=AP∴△P=△ABO=30°;∵△AOB=△OAP+△P∴△OAP=120°﹣30°=90°∴PA是△O的切线.(2)解:如图,过点O作OM△AB,则AM=BM= √3∵tan30°= OMAM sin30°=OMAO∴OM=1,OA=2;∴S△AOB=12·AB·OM= 12× 2√3×1= √3S扇形OAB =120π⋅22360= 4π3∴图中阴影部分的面积= 4π3−√3.22.【答案】(1)解:如图,过点A作AP△OC于点P,过点B作BQ△OC于点Q∵△EOA=30°、△FOB=60°,且OC△EF∴△AOP=60°、△BOQ=30°设OA=OB=x则在Rt△AOP中OP=OAcos△AOP= 1 2x在Rt△BOQ中OQ=OBcos△BOQ= √32x由PQ=OQ﹣OP可得√32x﹣12x=7解得:x=7+7 √3≈18.9(cm)答:单摆的长度约为18.9cm(2)解:由(1)知,△AOP=60°、△BOQ=30°,且OA=OB=7+7 √3∴△AOB=90°则从点A摆动到点B经过的路径长为90⋅π⋅(7+7√3)180≈29.295答:从点A摆动到点B经过的路径长为29.295cm 23.【答案】(1)证明:连接OC∵OD△BC∴△COE=△BOE在△OCE和△OBE中∵{OC=OB∠COE=∠BOEOE=OE∴△OCE△△OBE∴△OBE=△OCE=90°,即OB△BE∵OB 是△O 半径∴BE 与△O 相切.(2)解:过点D 作DH△AB ,连接AD 并延长交BE 于点F∵△DOH=△BOD ,△DHO=△BDO=90°∴△ODH△△OBD∴OD OB =OH OD =DH BD又∵sin△ABC= 23,OB=9 ∴OD=6易得△ABC=△ODH∴sin△ODH= 23 ,即 OH OD = 23∴OH=4∴DH= √OD 2−OH 2 =2 √5又∵△ADH△△AFB∴AH AB = DH FB 1318 = 2√5FB∴FB= 36√51324.【答案】(1)证明:∵OE 垂直于弦BC∴△BOE+△OBF=90°∵△CBE=2△C , △BOE=2△C∴△CBE=△BOE∴△CBE+△OBF=90°∴△OBE=90°∴BE 与△O 相切;(2)解:∵OE 垂直于弦BC∴△CFD=△BFO=90°,CF=BF.∵DF=9,tanC= 34∴CF=BF=12.设半径长是x,则OF=x-9在Rt△BOF中∵x2=(x-9)2+122∴x= 25 2∴直径AB=25.。
中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。
xx 。
]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。
2023年九年级中考数学专题培优训练:锐角三角函数一、选择题1.sin60°的值等于( )A. B. C. D.2.若一个三角形三个内角度数比为1:2:3,那么这个三角形最小角正切值为( ) A. 13 B. 12 C.33 D.323.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧上的一点,则cos ∠APB 的值是( )A.45°B.1C.D.无法确定4.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=1.5,BC=2,则cosB 的值是( )A. B. C. D.5.在△ABC 中,∠C=90°,AC=3,AB=4,欲求∠A 的值,最适宜的做法是( )A.计算tanA 的值求出B.计算sinA 的值求出C.计算cosA 的值求出D.先根据sinB 求出∠B ,再利用90°-∠B 求出6.如图,A,B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠BAC=90°,∠ACB=40°,则AB等于( )A.asin40°米B.acos40°米C.atan40°米D.atan40°米7.底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米8.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于点D,连接BE.设∠BEC=ɑ,则sinɑ的值为( )二、填空题9.△ABC中,∠A,∠B都是锐角,若sinA=32,cosB=12,则∠C= .10.如图,△ABC的顶点都在方格纸的格点上,则sinA=________.11.如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______ 米.12.活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8 m,则走这个活动楼梯从A点到C点上升的高度BC为________.13.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:2≈1.414,3≈1.732)14.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD,AC分别交于点E,F,且∠ACB=∠DCE,tan∠ACB=22,BC=2cm.以下结论:①CD=2cm;②AE=DE;③CE是⊙O的切线;④⊙O的面积等于32π.其中正确的结论有.(填序号)三、解答题15.计算:.16.计算:(﹣12)﹣1﹣|3﹣1|+2sin60°+(π﹣4)0.17.+(2+1)0-(12)-1-2tan45°+|-2|.18.计算:|-2|+(13)-1×(π-2)0-9+(-1)2-2sin30°•tan45°19.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB=∠ACB ,过点B 作BE ⊥AB 交AC 于点E.(1)求证:AC ⊥BD ;(2)若AB=14,cos ∠CAB=,求线段OE 的长.1127|32|()2cos603--+-+︒1820.芜湖长江大桥采用低塔斜拉桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2 m,两拉索底端距离AD为20 m,请求出立柱BH的长.(结果精确到0.1 m,3≈1.732)21.两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4)22.如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)参考答案1.C2.C3.C4.A.5.C6.C7.B8.A9.答案为:60°.10.答案为:5 511.答案为:(米).12.答案为:4 2 m13.答案为:566.14.答案为:①②③.15.解:原式=-23-1.16.解:原式=4;17.解:原式=32-1.18.解:原式=2.19.解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.20.解:设DH=x米,∵∠CDH=60°,∠H=90°,在Rt△CHD中,∴CH=DH·tan 60°=3x,∴BH=BC+CH=2+3x,∵∠A=30°,同理,∴AH=3BH=23+3x,∵AH=AD+DH,∴23+3x=20+x,解得:x=10-3,∴BH=2+3(10-3)=103-1≈16.3(m).答:立柱BH的长约为16.3 m.21.解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,在Rt△BFH中,tan∠BFH=,∴BH=30×=10≈10×1.7=17,∴FC=HD=BD﹣BH≈30﹣17=13,∵≈4.3,所以在四层的上面,即第五层,答:此刻楼BD的影子会遮挡到楼AC的第5层.22.解:。
中考数学复习《锐角三角函数》专题训练-附带有答案一、选择题1.已知α是锐角,若sinα= 12,则α的度数是()A.30°B.45°C.60°D.75°2.如图,在Rt△ABC中,BC=3,斜边AC=5,则下列等式正确的是()A.sinC=35B.cosC=43C.tanA=34D.sinA=453.在Rt△ABC中,∠C=90°,sinA= 513,则tanB的值为()A.1213B.512C.1312D.1254.如图所示,河堤横断面迎水坡AB的坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8 B.16 C.4√5D.4√35.如图,在正方形网格中.每个小正方形的边长都是1,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的正切值是()A.√55B.15C.2√55D.126.如图,河堤的横断面迎水坡AB的坡比是1:√2,堤高BC=6m,则坡面AB的长度是()A.10m B.12√2m C.6√3m D.6√2m7.如图,在菱形ABCD中,延长AB于E并且CE⊥AE,AC=2CE,则∠CBE的度数为()A.50°B.40°C.30°D.60°8.如图,在▱ABCD中AB=8,∠ABC=60°,BE平分∠ABC,交边AD于点E,连接CE,若AE=2ED,则CE的长为()A.6 B.4 C.4√3D.2√6二、填空题9.计算:2sin30°−tan45°=.10.如图,在平面直角坐标系内有一点P(5,12),那么OP与x轴正半轴的夹角α的正弦值.11.如图,Rt△ABC中,∠C=90°,BC=15,tanA= 15,则AB= .812.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面20√3米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC之间的水平距离为80米,教学楼BC的高度米.(注:点A、B、C、D都在同一平面上,参考数据:√3≈1.7结果保留整数).13.如图,在△ABC中AB=AC,D是△ABC外一点,连接BD和DC,BD=AB,∠BDC+12∠BAC=180°,DC=1,tan∠ABC=2√33则线段BC的长为.三、解答题14.计算:2sin45°+tan30°·cos30°−√2.15.已知:如图在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,4sin5B=求:(1)线段DC的长;(2)tan∠EDC的值.16.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)17.如图1,在等腰三角形ABC中AB=AC,O为底边BC的中点,AB切⊙O于点D,连接OD,⊙O交BC于点M,N.(1)求证:AC是⊙O的切线;(2)∠B=42°,①若OD=4,求劣弧DM的长;②如图2,连接DM,若DM=4,直接写出OD的长.(参考数据:sin24°取0.4,cos24°取0.9,tan24°取0.45)18.如图,在边长为9的正方形ABCD中,等腰Rt△CEF的直角顶点与正方形ABCD的顶点C重合,斜边EF与正方形ABCD的对角线交于点E,射线FE与AD交于点P,与BC交于点Q且BQCQ =45.(1)求证:△CDE≌△CBF;(2)求CF的长;(3)求tan∠BCF的值.参考答案1.A2.C3.D4.C5.D6.C7.D8.C9.010.121311.1712.1413.2√314.解:原式=2×√22+√33×√32-√2 =√2+12-√2=1215.(1)解:在△ABC 中,∵AD 是边BC 上的高∴AD ⊥BC .∴sin B =45AD AB =. ∵AD =12 ∴5154AB AD ==. 在Rt △ABD 中,∵222215129BD AB AD --∴CD =BC ﹣BD =14﹣9=5.(2)解:在Rt △ADC 中,E 是AC 的中点∴DE =EC∴∠EDC =∠C .∴tan EDC ∠=tan C ∠=125AD CD =.16.(1)由题意可知:154560ACD ∠=︒+︒=︒ 180454590ADC ∠=︒-︒-︒=︒ 在Rt ADC 中 ∴tan 1003tan 6010033300AD DC ACD =⨯∠=︒==(米)答:点D 与点A 的距离为300米.(2)过点D 作DE AB ⊥于点E .∵AB 是东西走向∴45,60ADE BDE ∠=︒∠=︒在Rt ADE △中 ∴2sin 300sin 453001502DE AE AD ADE ==⨯∠=⨯︒==在Rt BDE 中 ∴tan 1502tan 60231506BE DE BDE =⨯∠=︒==∴26AB AE BE =+=答:隧道AB 的长为(15021506)米17.(1)证明:过点 O 作 OE ⊥AC 于点 E ,连接 OA ,如图∵AB =AC , O 为底边 BC 的中点∴AO 为 ∠BAC 的平分线∵OD ⊥AB∴OD =OE∵OD 为 ⊙O 的半径∴OE为⊙O的半径∴直线AC到圆心O的距离等于圆的半径∴AC是⊙O的切线(2)解:①∵AB切⊙O于点D∴∠ODB=90°∵∠B=42°∴∠BOD=48°∵OD=4∴劣弧DM的长为48×π×4180=16π15;②过点O作OF⊥DM于点F,如图∵OF⊥DM∴DF=MF=12DM=2∵OD=OM∴OF为∠DOM的平分线∴∠DOF=12∠BOD=24° .在Rt△ODF中∵sin∠DOF=DFOD∴sin24°=2OD∴OD=2sin24°≈20.4=5 .18.(1)证明:∵四边形ABCD是正方形,△CEF是等腰直角三角形∴∠BCD=∠ECF=90°,CD=CB,CE=CF∴∠DCE=∠BCF在△CDE与△CBF中∵{CD=CB∠DCE=∠BCFCE=CF∴△CDE≌△CBF;(2)解:∵∠CEQ=∠CBE=45°,∠ECQ=∠BCE∴△CEQ∽△CBE∴CECB=CQCE∵BQCQ=45,BC=9∴BQ=4,CQ=5∴CE=3√5∵CF=CE∴CF=3√5;(3)解:过点F作FR⊥BC于R∵△CDE≌△CBF∴∠FBR=∠EDC=45°∴△BRF是等腰直角三角形∴RF=RB在Rt△CRF中∵CF2=CR2+FR2∴(3√5)2=RF2+(9−RF)2∴RF=3∴BR=3∴CR=6∴tan∠BCF=RFCR =12.。
2023年中考数学高频考点突破——锐角三角函数1.已知在△ABC中,∠C=90°,AB=4,AC=.(1)求BC;(2)求sin∠A.2.如图,在△ABC中,AD⊥BC于点D,若AD=6,tan C=,BC=12.(1)求DC边的长;(2)求cos B的值.3.如图,在Rt△EAC中,∠EAC=90°,∠E=45°,点B在边EC上,BD⊥AC,垂足为D,点F在BD延长线上,∠FAC=∠EAB,BF=5,tan∠AFB=.求:(1)AD的长;(2)cot∠DCF的值.4.动感单车是一种新型的运动器械,是经过科学地实验设计,它不仅不劳损腰部,还能使得健身达到最大的效果.图①是一辆动感单车的实物图,图②是它的侧面示意图,△DEB为主车架,AB为调节管,点A,B,E在一条直线上,其中AC∥DE,AC∥PQ,点G在线段PQ上,GQ的延长线与BD交于点H,GF∥AE.(1)求证:△BED∽△FGH.(2)已知BE的长为90cm,∠FGH=70°,当AB的长度调节至30cm时,求点A到DE的距离(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).5.如图是某学校食堂的楼梯部分的示意图,上楼楼梯是由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平天台DE构成,已知楼梯顶部B到地面的垂直高度BC为9.6米,与地面垂直的平台立柱MN的高度为6米,整个楼梯的水平跨度AC为16米.(1)求楼梯AD的长度;(2)水平天台DE的长度约为m.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)6.如图,在△ABC中,∠C=90°,AC=3,点D在边BC上,且tan∠CAD=.(1)求cos∠CAD的值;(2)若BD=2CD,求sin B的值.7.许多露营爱好者利用周末去郊区露营,为遮阳和防雨他们会搭建一种“天幕”.如图,“天幕”的截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD 后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD;(2)下雨时收拢“天幕”,∠α从65°减小到45°,求点E下降的高度.(结果精确到0.1m,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,≈1.41)8.已知:如图,在△ABC中,AB=AC=15,tan A=.;求:(1)S△ABC(2)∠B的余弦值.9.在Rt△ABC中,∠C=90°,AB=4,AC=.(1)求BC的长;(2)求tan A的值.10.计算:(1)﹣4cos30°+20220;(2)已知α为锐角,sin(α+15°)=,计算﹣4cosα+tanα+()﹣1的值.11.(1)在△ABC中,∠C=90°.已知c=8,∠A=60°,求∠B,a,b;(2)如图,在△ABC中,∠C=90°,sin A=,D为AC上一点,∠BDC=45°,CD=6.求AD的长.12.如图,在Rt△ABC中,CD⊥AB于点D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求∠ACB的度数.13.在Rt△ABC中,∠ACB=90°,∠A、∠B、∠C的对边分别是a、b、c,(1)a=5,c=2a,求b、∠A.=9,求△ABC的周长.(2)tan A=2,S△ABC14.如图1,图2分别是某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑竿DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB=50cm,点B、F 在线段AC上,点C在DE上,支杆DF=30cm.(1)若EC=36cm时,B,D相距48cm,试判定BD与DE的位置关系,并说明理由;(2)当∠DCF=45°,CF=AC时,求CD的长.15.如图,在△ABC中,AB=AC=5,BC=4,BD⊥AC于点D.(1)求tan∠ABC的值;(2)求BD的长.16.如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼项B的仰角为45°,其中A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(参考数据:sin64°≈0.9,tan64°≈2)17.如图,某数学研究小组测量山体AC的高度,在点B处测得山体A的仰角为45°,沿BC方向前行20m至点D处,斜坡DE的坡度为1:2,在观景台E处测得山顶A的仰角为58°,且点E到水平地面BC的垂直距离EF为10m.点B,D,C在一条直线上,AB,AE,AC在同一竖直平面内.(1)求斜坡DE的水平宽度DF的长;(2)求山体AC的高度.(结果精确到1m.参考数据sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,)18.如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan∠B=,点E 是边BC的中点.(1)求边AC的长;(2)求∠EAB的正切值.19.如图1,居家网课学习时,小华先将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角150°,侧面示意图如图2;如图3,使用时为了散热,他在底板下垫入散热架ACO'后,电脑转到AO'B'位置,侧面示意图如图4.已知OA=OB,O'C⊥OA于点C,AO':O'C=5:3,AC=40cm.(1)求OA的长;(2)垫入散热架后,显示屏顶部B'比原来升高了多少cm?20.如图,在△ABC中,AB=AC=,BC=2,过点B作BD⊥AC,垂足为点D.(1)求cot∠ACB的值;(2)点E是BD延长线上一点,连接CE,当∠E=∠A时,求线段CE的长.参考答案与试题解析1.【解答】解:(1)∵∠C=90°,AB=4,AC=,∴BC===3,即BC=3;(2)由(1)知:BC=3,∵∠A=90°,AB=4,∴sin A==,即sin A=.2.【解答】解:(1)∵AD⊥BC,∴△ADC是直角三角形.在Rt△ADC中,∵tan C==,AD=6,∴CD=4.(2)∵BC=12,CD=4,∴BD=8.在Rt△ADB中,AB==10.∴cos B===.3.【解答】解:(1)∵∠EAC=90°,∴∠EAB+∠BAC=90°,∵∠FAC=∠EAB,∴∠FAC+∠BAC=90°,∴∠BAF=90°,∵tan∠AFB==,令AB=3x,则AF=4x,∵BF2=AB2+AF2,∴BF2=(3x)2+(4x)2,∴BF=5x=5,∵x=1,∴AB=3x=3,AF=4x=4,,∵BF•AD=AB•AF=2S△ABF∴5AD=3×4=12,∴AD=,(2)在Rt△ABF中,AD⊥BF,∴AB2=BD•BF,∴32=5BD,∴BD=,∴DF=BF﹣BD=,∵∠EAC=90°,∠E=45°,∴∠BCD=45°,∴∠DBC=45°,∴DC=BD=,∴cot∠DCF==.4.【解答】(1)证明:∵AC∥DE,AC∥PQ,∴PQ∥DE,∴∠GHF=∠EDB,又∵GF∥AE,∴∠GFH=∠DBE,∴△BED∽△FGH;(2)解:如图,过点A作AM⊥DE于点M.∵△GFH∽△EBD,∴∠E=∠FGH=70°.在Rt△EAM中,sin E=,即sin70°=,∴AM≈120×0.94=112.8cm,答:点A到DE的距离约为112.8cm.5.【解答】解:(1)如图,过点D作DF⊥AC于F,则DF=MN=6米,在Rt△ADF中,∠A=37°,DF=6米,∵sin A=,∴AD=≈=10(米),答:楼梯AD的长度约为10米;(2)如图,延长DE交BC于G,则CG=6米,∴BG=BC﹣CG=9.6﹣6=3.6在Rt△BEG中,∠BEG=37°,则EG=≈=4.8(米),在Rt△ADF中,∠A=37°,DF=6米,则AF=≈=8(米),∴DE=16﹣8﹣4.8=3.2(米),所以水平天台DE的长度约为3.2米,故答案为:3.2.6.【解答】解:(1)在Rt△ACD中,tan∠CAD=,AC=3,∴CD=AC•tan∠CAD=3×=2,∴AD===,∴cos∠CAD===,∴cos∠CAD的值为;(2)∵BD=2CD,CD=2,∴BC=3CD=6,在Rt△ABC中,根据勾股定理可得:AB===3,∴sin B===,∴sin B的值为.7.【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.8.【解答】解:(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,tan A==,∴设CD=4k,则AD=3k,∴AC===5k,∵AC=15,∴5k=15,∴k=3,∴AD=9,CD=12,=AB•CD∴S△ABC=×15×12=90,=90;∴S△ABC(2)在Rt△BCD中,BD=AB﹣AD=15﹣9=6,CD=12,∴BC===6,∴cos B===,∴∠B的余弦值为.9.【解答】解:(1)在Rt△ABC中,∠C=90°,AB=4,AC=,∴BC=;(2)在Rt△ABC中,∠C=90°,BC=3,AC=,∴tan A=.10.【解答】解:(1)原式=|1﹣|﹣4×+1=﹣1﹣2+1=﹣;(2)∵sin60°=,sin(α+15°)=,∴α+15°=60°,∴α=45°,∴﹣4cosα+tanα+()﹣1=2﹣4×+1+3=4.11.【解答】解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∵tan A=,∴a=b tan A,∴a=4×=12;(2)∵∠C=90,∠BDC=45°,∴△BDC是等腰直角三角形,∴BC=CD=6,∵sin A=,∴AB==10,∵AC2=AB2﹣BC2,∴AC2=102﹣62,∴AC=8,∴AD=AC﹣DC=2.12.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BD=9,BC=15,∴CD===12;(2)在Rt△ACD中,CD=12,AC=20,∴AD===16,∴AB=AD+BD=16+9=25,在△ABC中,∵AC2+BC2=400+225=625,AB2=625,∴AC2+BC2=AB2,∴∠ACB=90°.13.【解答】解:(1)∵a=5,c=2a=10,∴b===5,∵sin A===,∴∠A=30°;(2)∵tan A==2,∴a=2b,=9,∵S△ABC∴=9,∴=9,解得:b=3(负数舍去),即a=6,由勾股定理得:c===3,∴△ABC的周长为a+b+c=6+3+3=9+3.14.【解答】解:(1)BD⊥DE,理由:连接BD,∵EC=36cm,DE=50cm,∴CD=DE﹣EC=14cm,∵BC=50cm,BD=48cm,∴CD2+BD2=142+482=2500,BC2=502=2500,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴∠BDC=90°,∴BD⊥DE;(2)过点F作FH⊥CD,垂足为H,∵BC=AB=50cm,∴AC=AB+BC=100(cm),∵CF=AC,∴CF=×100=20(cm),在Rt△CFH中,∠DCF=45°,∴FH=CF•sin45°=20×=10(cm),CH=CF•cos45°=20×=10(cm),∵DF=30cm,∴DH===10(cm),∴CD=CH+DH=(10+10)cm,∴CD的长为(10+10)cm.15.【解答】解:(1)如图,过点A作AE⊥BC交BC于点E,∵AB=AC,AE⊥BC,∴,∠AEB=90°,∵BC=4,∴,在Rt△AEB中,∵∠AEB=90°,∴AE2=AB2﹣BE2,∵AB=AC=5,BE=2,∴AE2=52﹣22=21,∴.在Rt△AEB中,∵∠AEB=90°,,BE=2,∴.(2)如图,同(1),过点A作AE⊥BC交BC于点E,∵AE⊥BC,∴,又∵BD⊥AC,∴,∴,∵AC=5,BC=4,又∵由(1)求得,∴.16.【解答】解:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为5:12,∴=,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得,x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)∵tan64°=,tan45°=,DE=5米,CE=12米,∴2=,5=,解得,AB=34米,AC=17米,即大楼AB的高度是34米.17.【解答】解:(1)∵斜坡DE的坡度,EF=10m,∴,∴DF=20.即斜坡DE的水平宽度DF长为20米.(2)过点E作EH⊥AC于点H,则四边形EFCH为矩形,∴HC=EF=10m,CF=EH,设EH=CF=xm,在Rt△AEH中,AH=EH•tan∠AEH=EH•tan58°≈1.60x(m),∴AC=AH+HC=(1.60x+10)m,BC=BD+DF+CF=(40+x)m,在Rt△ABC中,∠ABC=45°,∴AC=BC,即1.60x+10=40+x,解得x=50,∴AH=1.60x=1.60×50=80(m),∴AC=AH+HC=80+10=90(m).即山体AC的高度为90米.18.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠CDB=90°,∴tan B==,∵BD=6,∴CD=4,∴AC===2;(2)过点E作EH⊥AB于点H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∵EC=EB,∴DH=BH=3,∴EH=CD=2,∴AH=AD+DH=2+3=5,∴tan∠EAB==.19.【解答】解:(1)∵AO':O'C=5:3,∴设AO′=5xcm,O′C=3xcm,∵O'C⊥OA,∴∠ACO′=90°,∵AO′==4x,∴4x=40,解得x=10,∴AO′=50cm,O′C=30cm,∴AO=AO′=50cm;答:OA的长为50cm;(2)过B点作BH⊥AO于H点,如图,∴∠AOB=150°,∴∠BOH=30°,∵BH=OB=25cm,∵CB′=O′B′+CO′=50+30=80(cm)∴B′C′﹣BH=80﹣25=55(cm),∴显示屏的顶部B′比原来升高了55cm.20.【解答】解:(1)过点A作AF⊥BC,垂足为F,如图,∵AB=AC=.∴BF=FC=BC=1,在Rt△ACF中,∵AF==2,∴cot∠ACB==;(2)∵BD⊥AC,∴∠BDC=90°,在Rt△ACF中,sin∠ACD===,在Rt△BDC中,∵sin∠BCD==,∴BD=BC=,∴CD===,又∵∠BAD=∠E,∠ADB=∠EDC=90°,∴△ABD∽△ECD,∴=,即=,∴EC=.即EC的长为.。
2023年数学中考复习重难点突破——锐角三角函数一、单选题1.如图,已知在 Rt C ∆AB 中, C 90∠= , 5AB = , C 3B = ,则 cos B 的值是( )A .35B .45C .34D .432.在Rt△ABC 中,△C=90°,AB=4,AC=1,则cosB 的值为( )A .154B .14C .1515D .17173.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sinα的值是( )A .35B .34C .45D .434.如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则△O 的半径为( )A .3B .3C .4D .35.计算:(12)﹣1+tan30°•sin60°=( )A .﹣32B .2C .52D .726.如图,A ,B 是反比例函数 (0,0)ky k x x=>> 图象上的两点,过点A ,B 分别作x 轴的平行线交y 轴于点C ,D ,直线AB 交y 轴正半轴于点E.若点B 的横坐标为5,3CD AC = , 3cos 5BED ∠=,则k 的值为( )A .5B .4C .3D .1547.在一次夏令营活动中,小霞同学从营地A 地出发,要到距离A 点10千米的C 地去,先沿北偏东70°方向走了8千米到达B 地,然后再从B 地走了6千米到达目的地C ,此时小霞在B 地的( ) A .北偏东20°方向上 B .北偏西20°方向上 C .北偏西30°方向上D .北偏西40°方向上8.如图,A 过点 ()00O ,, )3C , , ()01D , ,点 B 是 x 轴下方A上的一点,连接 BO , BD ,则 OBD ∠ 的度数是( )A .15B .30C .45D .609.如图,点 P 是以 AB 为直径的半圆上的动点, CA AB PD AC ⊥⊥, 于点D ,连接 AP ,设 AP x PAPD y =,﹣= ,则下列函数图象能反映 y 与 x 之间关系的是( )A .B .C .D .10. 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,225y t =;③直线NH 的解析式为5272y t =-+;④若△ABE 与△QBP 相似,则t=294秒。
(9)锐角三角函数——2023年中考数学真题专项汇编1.【2023年湖北武汉】如图,在四边形ABCD中,,,以D为圆心,AD为半径的弧恰好与BC相切,切点为E.若,则的值是( )A. B. C. D.2.【2023年浙江杭州】第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(,,,)和中间一个小正方形EFGH拼成的大正方形ABCD中,,连接BE.设,.若正方形EFGH与正方形ABCD的面积之比为,,则( )A.5B.4C.3D.23.【2023年广西】如图,焊接一个钢架,包括底角为的等腰三角形外框和3 m高的支柱,则共需钢材约______m(结果取整数).(参考数据:,,)4.【2023年湖北武汉】如图,将的按图摆放在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2 cm,若按相同的方式将的放置在该尺上,则OC与尺上沿的交点C在尺上的读数约为____cm(结果精确到0.1 cm,参考数据:,,).5.【2023年天津】综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB前有一座高为DE的观景台,已知,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为,在观景台D处测得塔顶部B的仰角为.(1)求DE的长;(2)设塔AB的高度为h(单位:m).①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(取0.5,取1.7,结果取整数).6.【2023年重庆A】为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图;①;②.经勘测,点B在点A的正东方,点C在点B的正北方千米处,点D在点C的正西方14千米处,点D在点A的北偏东方向,点E在点A的正南方,点E在点B的南偏西方向.(参考数据:,)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?7.【2023年河南】综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8 m,到树EG的距离,.求树EG的高度(结果精确到0.1 m).8.【2023年安徽】如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A 点时,测得A到R点的距离为40 m,R点的俯角为,无人机继续竖直上升到点,测得R点的俯角为.求无人机从A点到点的上升高度AB(精确到0.1 m).参考数据:,,,,,.9.【2023年陕西A】一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF ,测得;当小明站在爸爸影子的顶端F处时,测得点A 的仰角为.已知爸爸的身高,小明眼睛到地面的距离,点F 、D、B 在同一条直线上,,,.求该景观灯的高AB .(参考数据:,,10.【2023年山西】2023年3月,水利部印发《母亲河复苏行动河湖名单(2022—2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑洛种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算BC和AB的长度(结果精确到0.1m.参考数据:,).墙,,,,的示意图,已知点B,A,D,E均在同一直线上,,测得,,.(结果保小数点后一位)(1)连接CD,求证:;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:,,)12.【2023年广东】2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂,两臂夹角时,求A,B两点间的距离.(结果精确到0.1 m,参考数据,,)13.【2023年福建】阅读下列材料,回答问题.任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大度AB远大于南北走向的最大宽度,如图1.工具:一把皮尺(测量长度略小于AB)和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O处,对其视线可及的P,Q两点,可测得的大小,如图3.小明利用皮尺测量,求出了小水池的最大宽度AB,其测量及求解过程如下:测量过程:(ⅰ)在小水池外选点C,如图4,测得,;(ⅱ)分别在AC,BC上测得,;测得.求解过程:由测量知,,,,,又①_________,,.又,②_________(.故小水池的最大宽度为_________m.(1)补全小明求解过程中①②所缺的内容;(2)小明求得AB用到的几何知识是_________;(3)小明仅利用皮尺,通过5次测量,求得AB.请你同时利用皮尺和测角仪,通过测量长度、角度等几何量,并利用解直角三角形的知识求小水池的最大宽度AB,写出你的测量及求解过程.要求:测量得到的长度用字母a,b,c,表示,角度用,,表示;测量次数不超过4次(测量的几何量能求出AB,且测量的次数最少,才能得满分).14.【2023年吉林】某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告时间:2023年4月20日【步骤一】设计测量方案小组成员讨论后,画出如图(1)的测量草图,确定需测的几何量.【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图(2)所示.准备皮尺.【步骤三】实地测量并记录数据如图(4),利用测角仪,测量后计算得出仰角.__________.测出眼睛到地面的距离AB.测出所站地方到古树底部的距离BD..【步骤四】计算古树高度CD.(结果精确到)(参考数据:,,1)、图(4)和相关数据写出的度数并完成【步骤四】15.【2023贵州】贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图(1)景区内修建观光索道.设计示意图如图(2)所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC,BC长为.索道AB与AF的夹角为,CD与水平线夹角为,A,B两处的水平距离AE为,,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到);(2)求水平距离AF的长(结果精确到).(参考数据:,,,)16.【2023年新疆】烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图(1)).某数学兴趣小组利用无人机测量该烽燧的高度,如图(2),无人机飞至距地面高度米的A处,测得烽燧BC的顶部C处的俯角为,测得烽燧BC的底部B处的俯角为,试根据提供的数据计算烽燧BC的高度.(参数据:,,,,,)答案以及解析1.答案:B解析:如图,连接DB,DE,易证BA与圆相切于点A,又与圆相切于点E,,.又,,.,,.,可设,,,,.2.答案:C解析:设,,则,.,,,,.故选C.3.答案:21解析:,,,,,.,故共需钢材约21 m.4.答案:2.7解析:如图,分别过点B,C作OA的垂线,垂足分别为点D,E,则四边形BDEC为矩形,.易得,在中,,,.在中,,,OC与尺上沿的交点C在尺上的读数是2.7 cm.5.答案:(1)3 m(2)①;②11 m解析:(1)在中,,,.答:DE的长为3 m.(2)①在中,,.在中,由,,,得,.答:EA的长为.②如图,过点D作,垂足为F.根据题意,,四边形DEAF是矩形,,,.在中,,,,即,.6.答案:(1)14千米(2)小明应该选择路线①解析:(1)如图,过点D作于点H,则四边形DHBC为矩形,.在中,,.答:AD的长度约为14千米.(2)如图,在中,,.四边形DHBC为矩形,,.在中,,,.路线①的长度为;路线②的长度为.,小明应选择路线①.7.答案:9.1 m解析:四边形ABCD为正方形,点D,A,E在一条直线上,.由题意知,,,.在中,.在中,,,.由题意知,,.8.答案:10.9米解析:由题意,得,.在中,,,.在中,,,.答:无人机从A点到B点的上升高度AB约为10.9 m.9.答案:4.8 m解析:如图,,,,,.过点E作,垂足为H,得矩形EFBH,,.在中,,,,该景观灯的高AB约为4.8 m.10.答案:BC的长约为1.4 m,AB的长约为4.2 m.解析:如图,过点E作于点F,则.在中,,,,,,.延长AB,DC交于点H,由题意得,,四边形AEFH是矩形,,.,.在中,,,,,,,.答:BC的长约为1.4 m,AB的长约为4.2 m.11.答案:(1)证明见解析(2)雕塑的高约为解析:(1)证法一:证明:,,,,.证法二:证明:,点B,C,D在以点A为圆心,BD为直径的圆上,,即.(2)如图,过点E作于点F.在中,,,,.在中,,.答:雕塑的高约为.12.答案:15.3 m解析:如图,连接AB,过点C作于点D.,,.在中,..答:A,B两点间的距离约为15.3 m.13.答案:(1)①;②(2)相似角形的判定与性质(3)(ⅰ)(ⅱ)解析:(1)略(2)略(3)测量过程:(ⅰ)在小水池外选点C,如图,用测角仪在点B处测得,在点A处测得;(ⅱ)用皮尺测得.求解过程:由测量知,在中,,,.如图,过点C作,垂足为D.在中,,即,所以.同理,.在中,,即,所以,所以.故小水池的最大宽度为.14.答案:;古树高度CD约为.解析:由题意,得四边形ABDE是矩形,,.在中,,.答:古树高度CD约为.15.答案:(1)索道AB的长约为600米(2)水平距离AF的长约为1049米解析:(1)在中,.答:索道AB的长约为600米.(2)如图,延长BC交DF于点G,则,易得四边形BEFG是矩形,.由题意可知.在中,,,,.答:水平距离AF的长约为1049米.16.答案:烽燧BC的高度为解析:如图,过点A作BC的垂线,交BC的延长线于点E.由题意易知,四边形ADBE是矩形,.在中,,,.在中,,,,.答:烽燧BC的高度为.。
2023中考数学高频考点专项突破——锐角三角函数一、解答题1.在Rt△ABC中,△C=90°,AB=8,△A=60°,解这个直角三角形. 2.如图,在Rt ABC中,△C=90°,BC=1,3AC=tanA与tanB的值.3.先化简,再求代数式的值:(21a-﹣221aa+-)÷1aa-,其中sin230°<a<tan260°,请你取一个合适的整数作为a的值代入求值.4.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知5(即求AC的长)5.小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A,B两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m,△MAB=22°,△MBA=67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).参考数据:sin22°≈38,cos22°≈1516,tan22°≈25,sin67°≈1213,cos67°≈513,tan67°≈125.6.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)7.如图,AB是△O的直径,弦CD△AB于点E,△CDB=30°,△O的半径3cm,则弦CD的长为多少?8.已知电视发射塔BC,为稳固塔身,周围拉有钢丝地锚线(如图线段AB),若AB=60m,并且AB与地面成45°角,欲升高发射塔的高度到CB′,同时原地锚线仍使用,若塔升高后使地锚线与地面成60°角,求电视发射塔升高了多少米?(即BB′的高度)9.去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B 两地师生的交往,学校准备在相距2km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)10.东北师大附中为检测师生体温,在校门安装了某型号测温门,如图为该测温门截面示意图,已知测温门顶部A 距地面高 2.2AD m = ,为了解自己的有效测温区间,身高 1.6m 的小明做了如下实验:当他在地面N 处时, 测温门开始显示额头温度, 此时测得A 的仰角 18 ;在地面M 处时, 测温门停止显示额头温度, 此时测得A 的仰角 60ACE ∠= 求小明在地面的有效测温区间 MN 的长度.(额头到地面的距离以身高计算,结果精确到 0.1 米)(参考数据: sin180.31≈ ,cos180.95≈ , tan180.32≈ , 3 1.73≈ , 2 1.41≈ )11.钓鱼岛自古就是中国的领土,我国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.M 、N 为钓鱼岛上东西海岸线上的两点,MN 之间的距离约为3km ,某日,我国一艘海监船从A 点沿正北方向巡航,在A 点测得岛屿的西端点N 在点A 的北偏东35°方向;海监船继续航行4km 后到达B 点,测得岛屿的东端点M 在点B 的北偏东59°方向,求N 点距离海监船航线的最短距离(结果用含非特殊角的三角函数表示即可).12.如图,已知ABC 中,12AB =,30B ∠=︒,24tan 7C =,边AB 的垂直平分线分别交AB 、BC 于点D 、E .求线段CE 的长.13.如图,某校数学兴趣小组为测得大厦AB 的高度,在大厦前的平地上选择一点C ,测得大厦顶端A 的仰角为30°,再向大厦方向前进80米,到达点D 处(C 、D 、B 三点在同一直线上),又测得大厦顶端A 的仰角为45°,请你计算该大厦的高度.(精确到0.12≈1.4143≈1.732)14.如图1,已知 O 为正方形 ABCD 的中心,分别延长 OA 到点 F , OD到点 E ,使 2OF OA = , 2OE OD = ,连结 EF ,将△ FOE 绕点 O 逆时针旋转 α 角得到△ ''F OE (如图2).连结 'AE 、 'BF .(△)探究 'AE 与 'BF 的数量关系,并给予证明; (△)当 30α=︒ , 2AB = 时,求: ①'AE O ∠ 的度数; ②'BF 的长度.15.如图,某旅游景区为方便游客,修建了一条东西走向的栈道AB ,栈道AB 与景区道路CD 平行.在C 处测得栈道一端A 位于北偏西45°方向,在D 处测得栈道另一端B 位于北偏东32°方向.已知AC =60 m ,CD =46 m ,求栈道AB 的长(结果保留整数).参考数据:sin32° ≈ 0.53,cos32° ≈ 0.85,tan32° ≈ 0.62,2 ≈ 1.414.答案解析部分1.【答案】解:如图,∵在Rt△ABC 中,△C =90°,△A =60°, ∴△B =90°﹣△A =30°, ∵AB =8, ∴AC =12AB =4, 由勾股定理得:BC =22AB AC -= 2284-=4 3 .2.【答案】解:∵在Rt ABC 中,△C=90°,BC=1,3AC =∴333BC tanA AC ===, 331AC tanB BC ===. 3.【答案】解:原式=()()()()21211a a a a +-++- • 1a a - = ()()11aa a +- •1a a- =1aa - , ∵sin30°=12,tan60°= 3 ,∴14<a <3, ∵a≠1, ∴整数a 为2, 当a=2时,原式=121+ = 134.【答案】解:设AC的长为x,那么BC的长就为2x.x2+(2x)2=AB2,x2+(2x)2=(52,x=4.答:河床面的宽减少了4米.5.【答案】解:过点M作MN△AB,根据题意可得:2225MNtan MAN tanAN∠=︒=≈,∴AN≈52MN12675MNtan MBN tanBN∠=︒=≈,∴BN≈512MN∵AN+BN=AB=50,∴5550 212MN MN+=,解得:MN=121.77≈m,∴河流的宽度约为1.7米.6.【答案】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵△ACB=90°,∴BC=AB•sin△BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.7.【答案】解:由圆周角定理知:△COE=2△CDB=60°.已知半径的长,即可在Rt△COE中,通过解直角三角形求得CE的长,进而可根据垂径定理得到CD的值。
2023年中考数学解答题专项复习:锐角三角函数1.(2021•兰州)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼BC顶部避雷针CD的长度(B,C,D三点共线),在水平地面A点测得∠CAB=53°,∠DAB=58°,A点与大楼底部B点的距离AB=20m,求避雷针CD的长度.(结果精确到0.1m.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)2.(2021•攀枝花)钓鱼岛及其附属岛屿是中国的固有领土,神圣不可侵犯!自2021年2月1日起,旨在维护国家主权、更好履行海警机构职责的《中华人民共和国海警法》正式实施.中国海警在钓鱼岛海域开展巡航执法活动,是中方依法维护主权的正当举措.如图是钓鱼岛其中一个岛礁,若某测量船在海面上的点D处测得与斜坡AC坡脚点C的距离为140米,测得岛礁顶端A的仰角为30.96°,以及该斜坡AC的坡度i =,求该岛礁的高(即点A到海平面的铅垂高度).(结果保留整数)(参考数据:sin30.96°≈0.51,cos30.96°≈0.85,tan30.96°≈0.60)3.(2021•巴中)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,第1 页共19 页。
2023年中考数学高频考点训练——锐角三角函数一、综合题1.如图, AB 是O 的直径,点C 、G 为圆上的两点,当点C 是弧 BG 的中点时, CD 垂直直线AG ,垂足为D ,直线 DC 与 AB 的延长线相交于点P ,弦 CE 平分 ACB ∠ ,交 AB 于点F ,连接BE .(1)求证: DC 与 O 相切;(2)求证: PC PF = ; (3)若 1tan 3E =, 5BE =,求线段 PF 的长. 2.如图,AB 是⊙O 的直径,AC 交⊙O 于点D ,点E 时弧AD 的中点,BE 交AC 于点F ,BC =FC.(1)求证:BC 是⊙O 的切线; (2)若BF =3EF ,求tan⊙ACE 的值.3.如图,ABC 内接于,O D 是O 的直径 AB 的延长线上一点, DCB OAC ∠=∠ .过圆心 O作 BC 的平行线交 DC 的延长线于点 E .(1)求证: CD 是 O 的切线;(2)若 4,6CD CE == ,求O 的半径及 tan OCB ∠ 的值;4.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点D 是AC 的中点,连接OD ,交AC 于点E ,作BFCD ,交DO 的延长线于点F.(1)求证:四边形BCDF 是平行四边形. (2)若AC=8,连接BD ,tan⊙DBF=34,求直径AB 的长及四边形ABCD 的周长. 5.如图,已知 AB 是O 的直径,弦 CD AB ⊥ 于点 E , 42AC =, 2BC = .(1)求 sin ABC ∠ ; (2)求CD 的长.6.如图,点 O 在 ABC ∆ 的 BC 边上,O 经过点 A 、 C ,且与 BC 相交于点 D .点 E 是下半圆弧的中点,连接 AE 交 BC 于点 F ,已知 AB BF = .(1)求证: AB 是O 的切线;(2)若 3OC = , 1OF = ,求 cos B 的值.7.如图,在Rt ΔABC 中,9068C AC BC ∠=︒==,,,AD平分ABC 的外角BAM ∠,AD BD ⊥于点D ,过D 点作DE 平行BC 交AM 于点E.点P 在线段AB 上,点Q 在直线AC 上,且22CQ BP t ==,连接PQ ,作P 点关于直线DE 的对称点P ',连接PP P Q '',.(1)当P 在AB 中点时,t = ;连接DP ,则此时DP 与EC 位置关系为 (2)①求线段AD 的长:②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上,求点A 到对应点A '的距离;(3)如图,当PP Q '的一边与ABD 的AD 或BD 边平行时,求所有满足条件的t 的值.8.如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3过点A(﹣3,0),B(1,0),与y 轴交于点C ,顶点为点D ,连接AC ,BC.(1)求抛物线的解析式;(2)在直线CD 上是否存在点P ,使⊙PBC =⊙BCO ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点M 为抛物线对称轴l 上一点,点N 为抛物线上一点,当直线AC 垂直平分线段MN 时,请直接写出点M 和点N 的坐标.9.如图,点F 是正方形ABCD 边AB 上一点,过F 作FG⊙BC ,交CD 于G ,连接FC ,H 是FC 的中点,过H 作EH⊙FC 交BD 于点E .(1)连接EF ,EA ,求证:EF =AE .(2)若BFk BA= , ①若CD =2, 13k = ,求HE 的长;②连接CE ,求tan⊙DCE 的值.(用含k 的代数式表示)10.如图,在 Rt ABC 中, 90,6,8ACB BC AC ∠=︒== ,D 是边AB 的中点,动点P 在线段BA 上且不与点A ,B ,D 重合,以PD 为边构造 Rt PDQ ,使 PDQ A ∠=∠ , 90DPQ ∠=︒ ,且点Q 与点C 在直线AB 同侧,设 BP x = ,PDQ 与 ABC 重叠部分图形的面积为S .(1)当点Q 在边BC 上时,求BP 的长; (2)当 7x ≤ 时,求S 关于x 的函数关系式.11.如图,在⊙ABC中,⊙ABC =90°,过点B 作BD⊙AC 于点D .(1)尺规作图,作边BC 的垂直平分线,交边AC 于点E . (2)若AD :BD =3:4,求sinC 的值.(3)已知BC =10,BD =6.若点P 为平面内任意一动点,且保持⊙BPC =90°,求线段AP 的最大值.12.【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.(1)【理解运用】如图1,对余四边形中,AB = 5,BC = 6,CD = 4,连接AC ,若AC = AB ,则cos⊙ABC= , sin⊙CAD= .(2)如图2,凸四边形中,AD = BD ,AD⊙BD ,当2CD 2 + CB 2 = CA 2时,判断四边形ABCD 是否为对余四边形,证明你的结论.(3)【拓展提升】在平面直角坐标中,A (-1,0),B (3,0),C (1,2),四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于⊙ABC 内部,⊙AEC = 90° + ⊙ABC.设AEBE= u ,点D 的纵坐标为t ,请在下方横线上直接写出u 与t 的函数表达,并注明t 的取值范围 .13.如图,在梯形ABCD 中,AD⊙BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF=5.AE 的延长线交边BC 于点G ,AF 交BD 于点N 、其延长线交BC 的延长线于点H .(1)求证:BG =CH ;(2)设AD =x ,⊙ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结FG ,当⊙HFG 与⊙ADN 相似时,求AD 的长.14.(1)【问题提出】如图1,在四边形ABCD 中,60A ∠=︒,90ABC ADC ∠=∠=︒,点E 为AB 延长线上一点,连接EC 并延长,交AD 的延长线于点F ,则BCE DCF ∠+∠的度数为 °;(2)【问题探究】如图2,在Rt⊙ABC 中,90ABC ∠=︒,点D 、E 在直线BC 上,连接AD 、AE ,若60DAE ∠=︒,6AB =,求⊙ADE 面积的最小值;(3)【问题解决】近日,教育部印发了《义务教育课程方案和课程标准(2022年版)》,此次修订中增加的跨学科主题学习活动,突破学科边界,鼓励教师开展跨学科教研,设计出主题鲜明、问题真实的跨学科学习活动.为此,某校欲将校园内一片三角形空地ABC (如图3所示)进行扩建后作为跨学科主题学习活动中心,在AB 的延长线上取一点D ,连接DC 并延长到点E ,连接AE ,已知AE BC ,40AB BC ==米,90ABC ∠=︒,为节约修建成本,需使修建后⊙ADE 的面积尽可能小,问⊙ADE 的面积是否存在最小值?若存在,求出其最小面积;若不存在,请说明理由.15.抛物线y =﹣x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且B (﹣1,0),C (0,3).(1)求抛物线的解析式;(2) 如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,且DD'=2CD ,点M 是平移后所得抛物线上位于D'左侧的一点,连结CN.当5D'N+CN 的值最小时16.在 Rt ABC 中, 90ACB ∠=︒ , 3AC = , 4BC = .将 Rt ABC 绕点B 顺时针旋转()060αα︒<<︒ 得到 Rt DEB ,直线DE , AC 交于点P.(1)如图1,当 BD BC ⊥ 时,连接BP. ①求BDP 的面积;②求 tan CBP ∠ 的值;(2)如图2,连接AD ,若F 为AD 中点,求证;C ,E ,F 三点共线.17.如图,抛物线与x 轴交于A (5,0),B ( 1- ,0),与y 轴的正半轴交于点C ,连接BC ,AC ,已知2sin 2BAC ∠=.(1)求抛物线的解析式;(2)直线 y kx = ( 0k > )交线段AC 于点M ,当以A 、O 、M 为顶点的三角形与⊙ABC 相似时,求k 的值,并求出此时点M 的坐标;(3)P 为第一象限内抛物线上一点,连接BP 交AC 于点Q ,请判断: PQQB是否有最大值,如有请求出这个最大值,如没有请说明理由.18.如图1,已知 Rt ABC ∆ 中, 90ACB ∠= , 2AC = , 23BC = ,它在平面直角坐标系中位置如图所示,点 ,A C 在 x 轴的负半轴上(点 C 在点 A 的右侧),顶点 B 在第二象限,将 ABC ∆ 沿AB 所在的直线翻折,点 C 落在点 D 位置(1)若点 C 坐标为 ()1,0- 时,求点 D 的坐标;(2)若点 B 和点 D 在同一个反比例函数的图象上,求点 C 坐标;(3)如图2,将四边形 BCAD 向左平移,平移后的四边形记作四边形 1111B C A D ,过点 1D 的反比例函数 (0)ky k x=≠ 的图象与 CB 的延长线交于点 E ,则在平移过程中,是否存在这样的 k ,使得以点 1,,E B D 为顶点的三角形是直角三角形且点 11,,D BE 在同一条直线上?若存在,求出 k 的值;若不存在,请说明理由答案解析部分1.【答案】(1)证明:CD AD ⊥,90D ∴∠=︒ ,∴⊙DAC+⊙DCA=90°, 点c 是弧 BG 的中点, ∴CG BC =DAC BAC ∴∠=∠ , OA OC = , OCA BAC ∴∠=∠ , OCA DAC ∴∠=∠ , //AD OC ∴ ,∴⊙D=⊙OCP=90°,OC 是圆O 的半径, DC ∴ 与O 相切,(2)证明:AB 是O 的直径,90ACB ∴∠=︒ ,90PCB ACD ∴∠+∠=︒ ,由(1)得: 90DAC DCA ∠+∠=︒ ,PCB DAC ∴∠=∠ , DAC BAC ∠=∠ , PCB BAC ∴∠=∠ , CE 平分 ACB ∠ , ACF BCF ∴∠=∠ ,∵⊙PFC=⊙BAC+⊙ACF ,⊙PCF=⊙PCB+⊙BCF ,PFC PCF ∴∠=∠ , PC PF ∴= ;(3)解:连接 AE ,CE 平分 ACB ∠ ,∴ AE BE = ,AE BE ∴= , AB 是O 的直径,90AEB ∴∠=︒ ,AEB ∴∆ 为等腰直角三角形,∵AB=210BE = ,∴OB=OC= 10∵1tan 3E =∴1tan 3BC CAB AC ∠== , ∵⊙PCB=⊙BAC ,⊙P=⊙P , ∴⊙PCB⊙⊙PAC , ∴13BC PB AC PC == , ∴ 设 PB x = , 3PC x = ,在 Rt OCP ∆ 中, 222OC PC OP += , ∴2221010(3))22x x +=+ , ∴10x =或x=0(舍去), ∴PC=310,∴PF=310.2.【答案】(1)证明:连接AE ,如图,∵AB 是⊙O 的直径, ∴⊙AEB =90°.∴⊙EAF+⊙AFE =⊙EAB+⊙ABE =90°. ∵点E 是弧AD 的中点, ∴AE DE = . ∴⊙EAD =⊙ABE. ∴⊙AFE+⊙ABE =90°. ∵⊙AFE =⊙BFC ,∴⊙ABE+⊙CFB =90°. ∵BC =FC , ∴⊙CFB =⊙CBF. ∴⊙CBF+⊙ABE =90°. ∴⊙ABC =90°, ∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线. (2)解:连接OE ,BD ,∵点E 是弧AD 的中点,∴OH⊙AD ,AH =HD = 12AD . ∵AB 是⊙O 的直径, ∴BD⊙AD.∴BD⊙OE. ∴EH EFBD BF = . ∵BF =3EF ,∴13EH BD = . 设EH =2a ,则BD =6a. ∵OE⊙BD ,OA =OB , ∴OF =12BD =3a. ∴OA =OE =OH+HE =5a. ∴AB =2OA =10a. ∴AD =228AB BD a -= .∴HD =12AD =4a. ∵⊙ABC =90°,BD⊙AC , ∴⊙ABD⊙⊙BCD. ∴AD BDBD CD= . ∴CD = 292BD a AD = .∴CH =HD+CD =172a . 在Rt⊙EHC 中,tan⊙ACE = 2417172EH a CH a ==.3.【答案】(1)证明:如图,,OA OC =OAC OCA ∴∠=∠ ,DCB OAC ∠=∠ , OCA DCB ∴∠=∠ ,AB 是O 的直径,90ACB ∴∠=︒ ,90OCA OCB ∴∠+∠=︒ ,90DCB OCB ∴∠+∠=︒ ,即 90OCD ∠=︒ , OC DC ∴⊥ ,又OC 是 O 的半径,CD ∴ 是O 的切线.(2)解:,BC OEBD CD OB CE ∴= ,即 4263BD OB == , ∴设 2BD x = ,则 3,5OB OC x OD OB BD x ===+= ,,OC DC ⊥222OC CD OD ∴+=222(3)4(5)x x ∴+= ,解得, 1x = ,33OC x ∴== .即O 的半径为3,,BC OEOCB EOC ∴∠=∠ ,在 Rt OCE 中, 6tan 23EC EOC OC ∠=== , tan tan 2OCB EOC ∴∠=∠=4.【答案】(1)证明:∵AB 是⊙O 的直径,∴⊙C=90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD=DC , ∴CA⊙DF ,AE=EC , ∴⊙AEO=90°,∴BC DF , ∵BF CD ,∴四边形BCDE 是平行四边形; (2)∵BC DF , ∴⊙DBF=⊙CDB ,又∵根据圆周角定理有⊙CDB=⊙BAC , ∴⊙DBF=⊙BAC , 即tan⊙BAC=34, ∵AC=8, ∴CB=6,则在Rt⊙ACB 中,利用勾股定理可得AB=10,即AO=5=OD , ∵AE=EC=12AC , ∴AE=EC=4,在Rt⊙AEO 中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt⊙AED 中,利用勾股定理,得55 ∴四边形ABCD 的周长5555.【答案】(1)解:∵AB 是O 的直径, 42AC =, 2BC = ,∴90ACB ∠=︒ , 22236AB AC BC =+= , ∴6AB = , 2sin 3ABC ∠=(2)解:∵CD AB ⊥ ,∴CE DE = , 由三角形的面积公式得:1122AC BC AB CE ⨯⨯=⨯⨯ , ∴423CE =, ∴822CD CE ==. 6.【答案】(1)证明:连接 OA 、 OE ,∵点 E 是下半圆弧的中点, OE 过 O , ∴OE DC ⊥ , ∴90FOE ∠=︒ , ∴90E OFE ∠+∠=︒ , ∵OA OE = , AB BF = ,∴BAF BFA ∠=∠ , E OAE ∠=∠ , ∵AFB OFE ∠=∠ , ∴90OAE BAF ∠+∠=︒ , 即 OA AB ⊥ , ∵OA 为半径, ∴AB 是O 的切线(2)解:设 AB x = ,则 BF x = , 1OB x =+ , ∵3OA OC == ,由勾股定理得: 222OB AB OA =+ , ∴()22213x x +=+ , 解得: 4x = ,∴4cos 5AB B OB == 7.【答案】(1)5;平行(2)解:①P 在AB 中点时,连接DP 并延长交BC 于点F ,由(1):DP CE ,∴1BF BPFC AP==, ∴142BF FC BC ===,∴132PF AC ==,11822DF DP PF AB AC =+=+=,∵90DEA BCE PDE ∠=∠=∠=︒, ∴四边形DECF 是矩形, ∴84CE DF DE CF ====,, ∴2AE CE AC =-=, ∴22222425AD AE DE =+=+=②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上, ∴AA '与DD '垂直平分,两条线段的交点O 即为旋转中心,如图所示:则:OD AB ⊥,∵902510ADB AD AB ∠=︒==,,, ∴()2222102545BD AB AD =-=-=∵1122ABD S AD BD AB DO ∆=⋅=⋅, ∴254510DO =, ∴4OD =, ∴222AO AD OD =-=,∴24AA OA '==;(3)解:当P Q AD '时;如图:延长P P '交BC 于点G ,过点P P ',分别作PH AC P T CQ '⊥⊥,,垂足为:H T ,,则:四边形CGP T '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PG BP sin ABC t BG BP cos ABC t =⋅∠==⋅∠=,,∴34855CH PG t P T CG BC BG t ====-=-',,∴385HE CE CH t =-=-,∵P ,P '关于直线DE 对称 ∴385ET EH t ==-,∴3138821655t QT CT CQ CE ET CQ t t =-=+-=+--=-,∵P Q AD ', ∴P QT DAE ∠=∠',∴2DEtan P QT tan DAE AE∠='∠==, ∴2P T TQ '=,即:413821655t t ⎛⎫-=- ⎪⎝⎭, 解得:6011t =; 当PQ BD 时,延长BD 交CQ 于点K ,∵PQ BD ,∴APQ ABD AQP AKB ∠=∠∠=∠,,∵90ADB ADK DAB KAD ∠=∠=︒∠=∠,(角平分线), ∴ABD AKB ∠=∠, ∴APQ AQP ∠=∠, ∴AP AQ =,∵1026AP AB BP t AQ CQ AC t =-=-=-=-,, ∴1026t t -=-, 解得:163t =; 当P Q BD '时,如图:延长P P '交BC 于点G ,过点P P ',分别作PO AC P R CQ '⊥⊥,,垂足为:OR,,延长BD ,交CM 于点S ,则:四边形CNP R '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PN BP sin ABC t BN BP cos ABC t =⋅∠==⋅∠=,,∴34855CO PN t P R CN BC BN t ====-=-',,∴385OE CE CO t =-=-,∵P ,P '关于直线DE 对称 ∴385ER OE t ==-,∴3132881655t QR CQ CR CQ CE ER t t =-=-+=--+=-; ∵AD BD ⊥,90AED ∠=︒,∴90ADE EDS ADE DAE ∠+∠=∠+∠=︒ ∴EDS DAE ∠=∠, ∵P Q BD ',∴QP R EDS DAE ∠=∠=∠', ∴2DEtan QP R tan DAE AE∠='∠==, ∴2QR P R =', 即:413281655t t ⎛⎫-=- ⎪⎝⎭,解得:8011t =; 综上:当PP Q '的一边与ABD 的AD 或BD 边平行时,6011t =或163t =或8011t =. 8.【答案】(1)解:根据二次函数交点式为 ()()()120y a x x x x a =--≠ ,抛物线过A(﹣3,0),B(1,0)两点,∴设 ()()2331y ax bx a x x =+-=+- ,∵x=0时,y =ax 2+bx ﹣3=-3,∴将 ()0,3- 代入 ()()31y a x x =+- ∴﹣3a =﹣3, ∴a =1,故抛物线的表达式为:y =x 2+2x ﹣3.(2)解:由抛物线的表达式知,点C 、D 的坐标分别为(0,﹣3)、(﹣1,﹣4), 由点C 、D 的坐标知,直线CD 的表达式为:y =x ﹣3①,1tan 3BCO ∠= ,则 cos 10BCO ∠= ,当点P (P′)在点C 的右侧时,如图所示:∵⊙P'BC =⊙BCO ,故P′B⊙y 轴,则点P′(1,﹣2), 当点P 在点C 的左侧时,设直线PB 交y 轴于点H ,过点H 作HN⊙BC 于点N , ∵⊙P'BC =⊙BCO , ∴⊙BCH 为等腰三角形,则 222cos 23110BC CH BCO CH =⋅∠=⨯=+, 解得: 53CH =,则 433OH CH =-= ,故点 4(0,)3H = , 由点B 、H 的坐标得,直线BH的表达式为: 4433y x =-②,联立①②并解得:58xy=-⎧⎨=-⎩,故点P的坐标为(﹣5,﹣8),综上所述,满足条件的点P坐标为(1,﹣2)或(﹣5,﹣8).(3)M(﹣1,2﹣2),N(﹣1﹣2,﹣2)或M'(﹣1,﹣2﹣2),N'(﹣1+ 2,﹣2) 9.【答案】(1)证明:如图,连接EF,EA,EC,∵ EH⊙FC,H是FC的中点,∴EF=EC,∵AD=CD,⊙ADE=⊙CDE=45°,DE=DE,∴⊙ADE⊙⊙CDE,∴AE=EC,∴EF=AE;(2)解:如图,①∵CD=2,13 BFBA=,∴BF=23,AF=43,∴FC=22210 3BC BF+=,过点E作EM⊙AB于点M,∵EF=AE,∴EM垂直平分FA,∴FM=AM=23,∴BM=ME=43,∴2253FM ME+=,∵H是FC的中点,∴10,∴2210EF FH-=②设AB=2a,∵BFkBA=,∴BF=2ak,∴FM=MA=a-ka,BM=a+ak=ME,∵⊙ADE⊙⊙CDE,∴⊙DCE=⊙DAE=⊙FEM,∴tan⊙DCE=tan⊙FEM=11FM kME k-=+. 10.【答案】(1)解:在Rt ABC中,90,6,8 ACB BC AC∠=︒==,22226810 AB AC BC∴+=+=.4tan3ACBBC==,3tan4BCAAC==, ∵D是边AB的中点,∴5BD=如图,当点Q落在BC上时,BP x = ,4tan 3PQ BP B x ==, ∵PDQ A ∠=∠ , 90DPQ ∠=︒ ,16tan 9QP PD x A == , 5BD PD BP =+= ,1659xx += , 解得, 95x = ,95BP ∴= ;(2)解:如图,当 905x < 时,设PQ 、DQ 与BC 交于点M 、N ,∵D 是边AB 的中点,∴5BD = , 4ND = , 3BN = ,4tan 3PM BP B x == , 211423462233BNDPBMS SSx x x =-=⨯⨯-⨯=- ; 当955x << 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 当 57x <≤ 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 故 PDQ 与 ABC 重叠部分图形的面积关系式为: 2222960353157595848531575(57)848x x S x x x x x x ⎧⎛⎫-< ⎪⎪⎝⎭⎪⎪⎛⎫=-+<<⎨ ⎪⎝⎭⎪⎪-+<⎪⎩ . 11.【答案】(1)解:作图如下:(2)解:∵⊙ABC=⊙BDC=90°, ∴⊙ABD +⊙CBD=90°,⊙CBD +⊙C=90°,∴⊙ABD=⊙C ,在Rt⊙ABD 中,AD :BD =3:4, ∴AB⊙AD=3⊙5,∴sinC=sin⊙ABD=35AD AB =. (3)解:如图,点P 在BC 为直径的圆上,O 为圆心,当A 、P 、O 三点共线时,AP 最大,∵BC =10,BD =6,∴CD=8,∵⊙ABD⊙⊙BCD ,∴2BD AD CD =⋅,26=8AD ,解得9=2AD , 在Rt⊙ABD 中,AB=152,∵BC=10, ∴BO=OP=5, 在Rt⊙ABO 中,22513AO AB OB =+=, ∴AP=AO +513, 故答案为:5132.. 12.【答案】(1)35;1225(2)解:如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM⊙DC ,使得DM =DC ,连接CM. ∵四边形ABCD 中,AD =BD ,AD⊙BD ,∴⊙DAB =⊙DBA =45°, ∵⊙DCM =⊙DMC =45°, ∴⊙CDM =⊙ADB =90°, ∴⊙ADC =⊙BDM , ∵AD =DB ,CD =DM , ∴⊙ADC⊙⊙BDM (SAS ), ∴AC =BM ,∵2CD 2+CB 2=CA 2,CM 2=DM 2+CD 2=2CD 2,∴CM 2+CB 2=BM 2, ∴⊙BCM =90°,∴⊙DCB =45°, ∴⊙DAB+⊙DCB =90°, ∴四边形ABCD 是对余四边形. (3)4)2tu t =<< 13.【答案】(1)解:∵AD⊙BC ,∴AD DE BG EB = , AD DFCH FC= . ∵DB =DC =15,DE =DF =5,∴12DE DF EB FC == , ∴AD ADBG CH= . ∴BG =CH .(2)解:过点D 作DP⊙BC ,过点N 作NQ⊙AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP =CP =9,DP =12.∵12AD DE BG EB == , ∴BG =CH =2x , ∴BH =18+2x . ∵AD⊙BC ,∴AD DNBH NB = , ∴182x DNx NB=+ , ∴18215xDN DNx x NB DN ==+++ ,∴56xDNx=+.∵AD⊙BC,∴⊙ADN=⊙DBC,∴sin⊙ADN=sin⊙DBC,∴NQ PD DN BD=,∴46xNQx=+.∴211422266x xy AD NQ xx x=⋅=⋅=++(0<x≤9).(3)解:∵AD⊙BC,∴⊙DAN=⊙FHG.(i)当⊙ADN=⊙FGH时,∵⊙ADN=⊙DBC,∴⊙DBC=⊙FGH,∴BD⊙FG,∴BG DF BC DC=,∴5 1815 BG=,∴BG=6,∴AD=3.(ii)当⊙ADN=⊙GFH时,∵⊙ADN=⊙DBC=⊙DCB,又∵⊙AND=⊙FGH,∴⊙ADN⊙⊙FCG.∴AD FC DN CG=,∴5(182)106xx xx⋅-=⨯+,整理得x2﹣3x﹣29=0,解得3552x+=,或3552x-=(舍去).综上所述,当⊙HFG与⊙ADN相似时,AD的长为3或3552x+=.14.【答案】(1)60(2)解:S⊙ADE=12DE·AB=3DE,∴当DE取最小值时,⊙ADE面积取最小值.作⊙ADE的外接圆,圆心为O,连接OD、OE、OA,过O作OH⊙DE于H,则⊙DOE=2⊙DAE=120°,由OD=OE知,⊙ODH=30°,∴OD=2OH,∵OA+OH≥AB,∴OA+12OA≥6,即OA≥4,OH≥2,由垂径定理得:3OH≥3此时,A、O、H共线,AD=AE,∴⊙ADE面积的最小值为:3×433(3)解:过C作CH⊙AE于H,如图所示,设BD=x,EF=y,∵⊙ABC=90°,AE⊙BC,∴四边形ABCF 为矩形, ∵AB=BC=40∴四边形ABCF 为正方形, 由tan⊙E=tan⊙BCD 知,CF BDEF BC=, 即4040x y =, ∴y=1600x, 即xy=1600, ∵22220x x y y x y-+=≥,∴2x y xy +≥,当x=y 时取等号,即x+y 的最小值为80,又⊙ADE 的面积=正方形ABCF 面积+三角形BCD 面积+三角形CEF 面积, 即⊙ADE 的面积=1600+20(x+y )≥1600+20×80=3200, 综上所述,⊙ADE 的面积的最小值为3200 m 2.15.【答案】(1)解:∵y =﹣x 2+bx+c 经过B (﹣1,6),3),∴340c b c =⎧⎨-++=⎩ , 解得 25b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+7(2)解:如图1中,过点B 作BT⊙y 轴交AC 于T.设P(m ,﹣m 2+2m+3),对于抛物线y =﹣x 2+5x+3,令y =0,∴A(2,0), ∵C(0,8),∴直线AC 的解析式为y =﹣x+3, ∵B(﹣1,2), ∴T(﹣1,4), ∴BT =3, ∵PQ⊙OC , ∴Q(m ,﹣m+3),∴PQ =﹣m 2+2m+3﹣(﹣m+3)=﹣m 3+3m , ∵PQ⊙BT , ∴PQ BT = PE BC = 15, ∴﹣m 2+3m =4,解得m =1或2,∴P(4,4)或2.(3)解:如图8中,连接AD ,过点C 作CT⊙AD 于T.∵抛物线y=﹣x2+2x+6=﹣(x﹣1)2+3,∴顶点D(1,4),∵C(8,3),∴直线CD的解析式为y=x+3,CD=7,∵DD′=2CD,∵DD′=2 4,CD′=3 2,∴D′(4,6),∵A(3,2),∴AD′⊙x轴,∴OD′=22OA D A+'=2256+=3 5,∴sin⊙OD′A=OAOD'=45,∵CT⊙AD′,∴CT=3,∵NJ⊙AD′,∴NJ=ND′•sin⊙OD′A=7D′N,5D'N+CN=CN+NJ,∵CN+NJ≥CT,∴55D'N+CN≥7,5D'N+CN的最小值为8.16.【答案】(1)解:①过点P作PH BD⊥于H.BD BC⊥,PH BD⊥,90CBH PHB C∴∠=∠=∠=︒,∴四边形BCPH 是矩形,4PH BC∴==,在Rt ACB中,2222345AB AC BC++=,由旋转的旋转可知,5BD BA==,11541022PBDS BD PH∆∴=⋅⋅=⨯⨯=.②由旋转的性质可知,4BE BC==,12PBDS PD BE∆=⋅⋅,2054PD∴==,90PHD∠=︒,2222543DH PD PH∴=-=-=,2PC BH∴==,90C∠=︒,21tan42PCPBCBC∴∠===.(2)证明:如图2中,连接BF,取BD的中点T,连接FT,ET.BC BE = , BA BD = ,BCE BEC ∴∠=∠ , BAD BDA ∠=∠ ,BDE ∆ 是由 BAC ∆ 旋转得到, BCE ABD ∴∠=∠ , BEC ADB ∴∠=∠ ,BA BD = , AF DF = , BF AD ∴⊥ , 90AFD ∴∠=︒ ,90BED AFD ∠=∠=︒ , DT TB = ,12ET BD ∴=, 12FT BD = , ET FT DT TB ∴=== , E ∴ ,F ,D ,B 四点共圆, 1DBF ∴∠=∠ ,90DBF BDF ∠+∠=︒ , 190BEC ∴∠+∠=︒ ,1180BEC BED ∴∠+∠+∠=︒ , C ∴ 、E 、F 三点共线.17.【答案】(1)解:由 ()50A ,可知 5OA = , 在Rt⊙AOC 中, 2sin 2BAC ∠= , ∴45BAC ∠=︒ ,∴5OA OC == ,即点C (0,5),由题意可设 ()()51y a x x =-+ ,把点C 代入得: 55a -= , 解得: 1a =- ,∴抛物线解析式为 ()()25145y x x x x =--+=-++ ;(2)解:由(1)可得:C (0,5), ()50A ,,设直线AC 的解析式为 1y k x b =+ ,把点A 、C 坐标代入得:{b =55k 1+b =0 ,解得: {b =5k 1=−1, ∴直线AC 的解析式为 5y x =-+ ,∵直线 y kx = ( 0k > )交线段AC 于点M ,则设 ()5M m m -+,, ∴5m k m-+=, 由(1)可知 5OA OC == , 1OB = , ∴()()22055052AC =-+-=, 6AB = ,由题意可分:①当 AOM ABC ∽ 时,∴56AO AM AB AC == , ∴525266AM AC ==, ∴由两点距离公式可得: ()()226255518m m -+-= , 解得: 1255566m m ==, , ∵05m ≤≤ , ∴56m =, ∴55525655666M k -+⎛⎫== ⎪⎝⎭,, ; ②当 AOM ACB ∽ 时,∴2252AO AM AC AB ===,∴232AM AB ==,∴由两点距离公式可得: ()()225518m m -+-= , 解得: 1228m m ==, (不符合题意,舍去),∴()2532322M k -+==,, ; (3)解:过点B 作BF⊙x 轴,交AC 的延长线于点F ,过点P 作PD⊙x 轴于点D ,交AC 于点H ,如图所示:∴BF⊙PH ,∴BQF PQH ∽ ,∴PQ PHBQ BF= , 由(2)知,直线AC 的解析式为 5y x =-+ ,点 ()10B -, , ∴点 ()16F -, ,即 6BF = , 设点 ()245P a a a -++,,则有 ()5H a a -+, , ∴()224555PH a a a a a =-++--+=-+ ,∴225152566224PQ a a a BQ -+⎛⎫==--+⎪⎝⎭ , ∵106-< , ∴当 52a =时, PQ BQ 的值最大,最大值为 2524.18.【答案】(1)解:如图,过点 D 作 DM x ⊥ 轴于点 M∵90ACB ∠=︒ , ∴3tan 32BC CAB AC ∠===∴60CAB ∠=由题意可知 2DA AC == , 60DAB CAB ∠=∠=︒ . ∴180180606060DAM DAB CAB ∠=︒-∠-∠=︒-︒-︒=︒ . ∴906030ADM ∠=︒-︒=︒ 在 Rt ADM ∆ 中, 2DA = , ∴1AM = , 3DM =.∵点 C 坐标为 (10)-,, ∴1214OM OC AC AM =++=++= . ∴点 D 的坐标是 (3)-(2)解:设点 C 坐标为 (,0)a ( 0a < ),则点 B 的坐标是 (,3)a , 由(1)可知:点 D 的坐标是 (3)a - ∵点 B 和点 D 在同一个反比例函数的图象上, ∴33(3)a a =- .解得 3a =- . ∴点 C 坐标为 (3,0)-(3)解:存在这样的 k ,使得以点 E, 1B , D 为顶点的三角形是直角三角形①当 190EDB ∠= 时.如图所示,连接 ED , 1B B , 1B D , 1B B 与 ED 相交于点 N .则 190EBN NDB ∠=∠=︒ , 1BNE DNB ∠=∠ , 130DBN NB E ∠=∠= .∴BNE ∆ ⊙ 1DNB ∆∴1BN ENDN B N= ∴1BN DNEN B N= 又∵1BND ENB ∠=∠ , ∴BND ∆ ⊙ 1ENB ∆ .∴130NEB NBD ∠=∠= , 130NDB NB E ∠=∠= , ∴30BED BDE ∠=∠=︒ . ∴23BE BD == , 16tan 30BEBB ==设 (43)E m , ( 0m < ),则 1(3)D m - , ∵E , 1D 在同一反比例函数图象上, ∴433(9)m m =- .解得: 3m =- . ∴(343)E -,∴343123k =-⨯=-②当 190EB D ∠= 时.如图所示,连接 ED , 1B B , 1B D ,∵1//BD ED ,∴1118090BDB EB D ∠=︒-∠=︒ .在 1Rt BDB ∆ 中,∵130DBB ∠=︒ , 3BD =, ∴14cos30BDBB == .在 1Rt EBB ∆ 中, ∵130BB E ∠=︒ ,∴143tan 30EB BB =︒=. ∴1033EC BC EB =+=设 3(,)3E m ( 0m < ),则 1(13)D m - ∵E , 1D 在同一反比例函数图象上,1033(7)m=-.解得:3m=-,∴103 (3,3 E-∴3333k=-⨯=-21/ 21。