超声相控阵检测技术原理
- 格式:docx
- 大小:36.54 KB
- 文档页数:1
中国科技期刊数据库 科研2015年24期 43超声相控阵成像技术陈沈理广东省计量科学研究院,广东 广州 510405摘要:超声相控阵检测技术的应用始于20 世纪60 年代,广泛应用于医学超声成像领域。
超声相控阵是一种通过对超声阵列换能器中各阵元进行相位延时控制,获得灵活可控的合成波束以实现动态聚焦和高速扫查的检测技术。
超声相控阵技术的基本思路来自于雷达电磁波相控阵技术。
相控阵雷达天线是由许多辐射单元排成阵列组成,通过控制阵列天线中各个单元上电流的幅度和相位,得到所需要的方向图和波束指向,或者在一定的空间范围内合成灵活快速的聚焦扫描的雷达波束。
近年来,现代工业诊断与检测技术正向信息化和可视化方向高速发展,数字化超声相控阵检测技术已逐渐成为国内外无损检测研究的热点。
关键词:超声;相控阵;缺陷成像;无损检测 中图分类号:TH878.2 文献标识码:A 文章编号:1671-5780(2015)24-0043-021 引言超声相控阵检测技术的应用始于20世纪60年代,已广泛应用于医学超声成像领域,医学超声成像中用相控阵换能器快速移动声束对被检器官成像,利用其可控聚焦特性局部升温热疗治癌,使目标组织升温并减少非目标组织的功率吸收。
由于该系统复杂且制作成本高,在工业无损检测方面的应用受到限制。
近年来,超声相控阵技术以其灵活的声束偏转及聚焦性能越来越引起人们的重视。
由于压电复合材料、纳秒级脉冲信号控制、数据处理分析、软件技术和计算机模拟等多种高新技术在超声相控阵成像领域中的综合应用,使得超声相控阵检测技术得以快速发展,逐渐应用于工业无损检测,如对气轮机叶片和涡轮圆盘的检测、石油天然气管道焊缝检测、核电站检测和航空材料的检测等领域。
目前,国内在超声相控阵技术的研究应用尚处于起步阶段,主要集中于医疗领域。
在工业检测方面还非常落后,主要的设备都依赖于进口,研究远远落后于应用。
2 相控阵探头超声相控阵技术需使用不同形状的多阵元换能器来满足构件检测的需求。
钢管超声相控阵探伤技术1 超声相控阵检测原理我们知道,常规超声探头是通过楔块的角度来控制超声波束的辐射角度的。
超声探头晶片上各点发射的超声波传播到楔块界面的时间不同(如图1(a )中A 、B 、C 各点),这些新的点源依次延迟向四周辐射超声波,按照惠更斯原理,它们的波前即形成以一定角度传播的超声波波束,如图1(a )所示。
改变楔块角度即可改变楔块界面上各新点源的延迟时间,进而改变波束的辐射角度。
常规超声探头形成聚焦的原理如图1(b )所示,探头弧形晶片上各点发射的超声波以相同的时间传播到晶片圆心,在圆心汇聚而形成波束聚焦。
改变弧形晶片的曲率即可改变晶片上各点声波传播到圆心的时间,进而改变探头的焦距。
超声相控阵检测是在传统的超声波检测的基础上发展起来的技术,它是将一些超声晶片单元排列起来组成阵列,工作时,按照事先设定的先后顺序,依次将发射脉冲馈电给各晶片单元。
这些晶片发射的超声波束遵循惠更斯原理,其波前形成一定角度向前传播,如图2(a )所示,或汇聚在一点或一条线上,如图2(b )所示。
由此可见,通过控制各发射脉冲的延迟时间,可变换超声波的传播方向和形成聚焦,它们替代了传统超声中楔块的作用和弧形晶片的作用。
这就是相控阵超声波的基本原理。
(a) 声束角度 (b) 聚焦图2 相控阵超声探头的发射(a) 声束角度 (b) 聚焦图1 常规超声探头的发射通过控制晶片阵列的激发时间不仅可以改变超声波的传播方向和使超声波产生聚焦,它还可以使超声波束聚焦在不同的深度上(如图3所示)和改变聚焦波束的偏转角度(如图4所示)。
实际上,在超声相控阵检测中主要就是利用它的两大特点:① 声束角度可控,② 可动态聚焦。
2 钢管超声相控阵检测方法目前,在执行API 标准的石油管的超声波探伤中,要求进行纵伤、横伤,测厚和分层的全覆盖检测。
而在一些技术要求更高情况下还要同时进行斜向伤的检测。
由于超声相控阵检测可以灵活、便捷地控制超声声束的入射角度和聚焦深度,所以无缝钢管中各种取向的缺陷很容易利用超声相控阵方法检测出来。
超声波相控阵原理超声波相控阵是一种利用超声波进行成像和测距的技术,其原理是通过控制多个超声波发射器的相位和幅度,实现对超声波束的控制和聚焦。
相控阵技术具有快速成像、高分辨率和远距离探测等优点,广泛应用于医学影像、无损检测、测距测速等领域。
一、超声波相控阵的基本原理超声波相控阵的基本原理是利用多个发射器和接收器组成的阵列,通过控制每个发射器的相位和幅度,实现超声波的聚焦和定向发射。
具体步骤如下:1. 发射:首先,发射器将电信号转换为超声波信号,并通过控制每个发射器的相位和幅度,实现超声波的聚焦和定向发射。
通过调整相位和幅度,可以改变超声波束的方向和形状,实现对待测物体的定向探测和成像。
2. 传播:超声波经过发射后,会在介质中传播,并与物体相互作用。
在传播过程中,超声波会受到介质的衰减、散射和反射等影响,这些影响会导致超声波在传播过程中的衰减和改变。
3. 接收:超声波到达接收器后,接收器将超声波信号转换为电信号,并通过控制每个接收器的相位和幅度,实现对超声波信号的聚焦和定向接收。
通过对接收信号的处理和分析,可以得到待测物体的信息,如形状、结构和材料等。
二、超声波相控阵的工作原理超声波相控阵的工作原理可以简单分为发射和接收两个过程。
在发射过程中,多个发射器按照预设的相位和幅度依次发射超声波信号,形成一个聚焦的超声波束。
在接收过程中,多个接收器按照预设的相位和幅度接收超声波信号,并通过信号处理和分析得到待测物体的信息。
超声波相控阵的工作原理可以用以下几个步骤来描述:1. 阵列布置:多个发射器和接收器按照一定的规律布置成阵列,形成一个二维或三维的发射接收阵列。
2. 相位控制:通过控制每个发射器和接收器的相位,使得发射的超声波信号和接收的超声波信号在特定的方向上相干叠加。
相位控制可以通过电子开关、延迟线和相位调制等方式实现。
3. 幅度控制:通过控制每个发射器和接收器的幅度,使得发射的超声波信号和接收的超声波信号在发射和接收过程中具有一定的增益和衰减。
相控阵超声波检测原理
相控阵超声波检测是利用超声波的特性,在工业和医疗领域进行缺陷检测和成像使用的一种新型技术。
它可以对物体进行快速、无损的缺陷检测和成像。
接下来我们将详细介绍相控阵超声波检测的原理。
相控阵超声波检测原理
相控阵超声波检测的原理基于声波的传播和反射特性。
在超声波检测中,通过超声探头向被检测物体发送脉冲信号,声波进入物体后,会产生反射。
探头会接收这些反射信号并进行处理,最终形成被检测物体的图像。
相控阵超声波检测是利用多个探头同时向被检测物体发送超声波,然后对接收到的数据进行计算和处理,从而形成物体的三维图像。
相比传统的超声波检测技术,相控阵超声波检测具有以下优势:
1.快速成像:相控阵超声波检测可以同时采集多个探头发送的信号,并通过计算和处理快速构建被检测物体的三维图像。
2.高精度检测:相控阵超声波检测可以将声束控制在较小范围内,从而减小误差和漏检率,提高检测精度。
3.非破坏性检测:相控阵超声波检测不会破坏被检测物体的结构,因此适用于对含有细小缺陷的物体的检测,例如钢管和铸件等。
4.广泛应用:相控阵超声波检测已广泛应用于航空航天、汽车制造、建筑、医疗等领域。
总之,相控阵超声波检测是一种非常重要的超声检测技术。
它可以快速、精确地检测物体的缺陷,并生成可视化的三维图像,为工业和医疗领域提供了重要的帮助。
相控阵超声波检测方法相控阵超声波检测方法是一种非破坏性检测技术,广泛应用于工业领域和医学诊断。
下面列举50条关于相控阵超声波检测方法,并展开详细描述:1. 相控阵超声波检测方法是利用电子器件控制多个发射和接收超声波的晶片,通过改变发射和接收的角度来形成各种探测波束,从而实现全方位的检测。
2. 该方法可以实现对材料内部缺陷和结构的立体扫描,提高了检测的灵敏度和准确性。
3. 相控阵超声波检测方法可以应用于金属、塑料、复合材料等各类材料的缺陷检测。
4. 此方法也可用于医学领域的超声诊断,例如检测心脏、血管和肿瘤等。
5. 相控阵超声波检测方法可以实现实时成像功能,对于复杂结构的检测非常有优势。
6. 该方法可以通过不同的超声波频率和传播模式来实现对不同类型缺陷的检测,例如声表面波、剪切波等。
7. 相控阵超声波检测方法具有高分辨率和高灵敏度的特点,可以检测到微小缺陷并进行精确定位。
8. 由于其无损检测的特性,该方法可以在材料生产和使用过程中进行周期性检测,有利于提前发现和修复缺陷。
9. 相控阵超声波检测方法可以通过计算机辅助分析和处理数据,实现对检测结果的快速解释和报告生成。
10. 该方法的设备通常小巧轻便,可以适应不同场合和环境的检测需求。
11. 相控阵超声波检测方法在航空航天领域得到广泛应用,用于飞机结构和发动机部件的缺陷检测。
12. 在汽车制造和维修领域,该方法可用于检测车身板材、焊缝和零部件的质量。
13. 该方法还可应用于管道和容器等设备的安全评估和完整性检查。
14. 相控阵超声波检测方法还可以用于检测焊接接头的质量,包括焊接缺陷和焊接残余应力等。
15. 在工程结构的监测中,该方法可以实现对构件的裂纹和变形进行实时跟踪。
16. 该方法可用于检测混凝土结构中的裂缝、空洞和腐蚀等缺陷。
17. 相控阵超声波检测方法还可用于检测塑料制品的厚度、密度和异物等。
18. 在医学诊断中,该方法可用于检测胎儿的发育情况、心脏疾病和乳腺肿块等。
相控阵超声检测技术在核电厂推广初步研究相控阵超声技术是一种先进的无损检测技术,其在核电厂中的应用具有重要意义。
本文将对相控阵超声检测技术在核电厂推广的初步研究进行介绍,并分析其在核电厂中的应用前景。
一、相控阵超声检测技术概述相控阵超声检测技术是一种利用多元素超声换能器阵列进行探测的技术。
其工作原理是通过对换能器阵列中的每个元素进行精确的时间控制,可以实现不同角度和深度的声束发射和接收。
通过对接收信号的合成和处理,可以得到被检测物体内部的结构信息,达到高分辨率的无损检测效果。
相控阵超声技术具有灵活性高、信息量大、分辨率高等优点,已经广泛应用于航空航天、医学、工程结构等领域。
在核电领域,相控阵超声技术的应用也具有重要的意义。
相控阵超声技术在核电厂中的应用主要体现在以下几个方面:1. 材料表面和界面的无损检测相控阵超声技术可以实现对材料表面和界面的高分辨率无损检测,可以发现微小的裂纹、疲劳损伤等缺陷,为核电设备的安全运行提供重要的支持。
2. 核电设备的结构健康监测相控阵超声技术可以对核电设备的结构健康进行实时监测,及时发现设备的变形、裂纹等问题,确保设备的安全运行。
3. 核电设备的在线检测相控阵超声技术可以实现对核电设备的在线检测,不需要停机就可以进行全面的无损检测,提高了设备的利用率和安全性。
三、相控阵超声技术在核电厂中的推广初步研究尽管相控阵超声技术在核电领域的应用前景十分广阔,但是其推广过程中还面临一些问题和挑战。
1. 技术标准的统一相控阵超声技术的应用需要制定相应的技术标准和规范,确保其在核电厂中的准确性和可靠性。
目前,相关标准和规范还需要进一步完善和统一。
3. 设备和技术的普及相控阵超声技术的推广需要大量的设备投入和技术支持。
核电厂需要加大对相控阵超声技术设备和技术的投入,提高其在核电厂中的普及率。
1. 提高核电设备的安全性相控阵超声技术可以发现微小的裂纹和缺陷,提高了核电设备的安全性和可靠性,为核电厂的安全运行提供了有力的支持。
相控阵超声检测原理相控阵超声检测是一种基于超声波的无损检测技术,广泛应用于工业、医学等领域。
它通过利用多个发射和接收元件的阵列,实现对被测物体内部结构的成像和缺陷检测。
本文将介绍相控阵超声检测的原理和应用。
一、原理概述相控阵超声检测利用超声波在被测物体中的传播和反射特性,通过控制发射和接收元件的激励信号和接收信号的时序和幅度,实现对被测物体内部结构的成像和缺陷检测。
相控阵超声检测的原理可以简单概括为以下几个步骤:1. 发射:通过控制发射元件的激励信号,产生超声波信号并向被测物体发送。
2. 接收:接收元件接收被测物体中反射回来的超声波信号。
3. 时序控制:通过控制接收元件的接收时序,实现对不同深度的信号进行接收。
4. 幅度控制:通过控制接收元件的接收信号幅度,实现对不同深度的信号进行增益调节。
5. 数据处理:对接收到的信号进行处理,包括滤波、增益调节、图像重建等,最终得到被测物体的图像或缺陷信息。
二、应用领域相控阵超声检测在工业和医学领域有着广泛的应用。
1. 工业领域:相控阵超声检测可以用于材料的缺陷检测和结构的成像。
例如,在航空航天领域,可以利用相控阵超声检测技术对飞机结构进行无损检测,及时发现隐蔽缺陷,确保飞行安全。
在制造业中,可以利用相控阵超声检测技术对焊接接头、铸件等进行质量检测,提高产品的可靠性和安全性。
2. 医学领域:相控阵超声检测在医学影像领域有着广泛的应用。
例如,在超声诊断中,可以利用相控阵超声检测技术对人体内部器官进行成像,帮助医生进行疾病诊断和治疗。
相比于传统的B超技术,相控阵超声检测可以提供更高的分辨率和更丰富的图像信息,有助于提高诊断准确性。
三、优势和挑战相控阵超声检测相比于传统的超声检测技术具有以下优势:1. 高分辨率:相控阵超声检测可以通过控制发射和接收元件的位置和时序,实现对被测物体的高分辨率成像。
2. 实时性:相控阵超声检测可以实时获取被测物体的图像或缺陷信息,对于一些需要快速检测的应用场景非常适用。
火力发电厂无损检测新技术之相控阵超声检测技术简介相控阵超声检测技术,是通过控制换能器阵中各阵元的激励脉冲时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,达到聚焦和声束偏转的效果,实现缺陷检测的技术。
相控阵工作原理:多个换能器阵元按一定形状、尺寸排列,构成超声阵列换能器,分别调整每个阵元发射信号的波形、幅度和相位延迟,使各阵元发射的超声子波束在空间叠加合成,从而形成发射聚焦和声束偏转等效果。
换能器发射的超声波遇到目标后产生回波信号,其到达各阵元的时间存在差异。
按照回波到达各阵元的时间差对各阵元接收信号进行延时补偿,然后相加合成,就能将特定方向回波信号叠加增强,其他方向的回波信号减弱甚至抵消。
同时,通过各阵元的相位、幅度控制以及声束形成等方法,形成聚焦、变孔径、变迹等多种相控效果。
图1 相控阵工作原理相控阵换能器最显著的特点是可以灵活、便捷而有效地控制声束形状和声压分布,其声束角度、焦柱位置、焦点尺寸及位置在一定范围内连续、动态可调;而且探头内可快速平移声束。
与常规超声检测技术相比,相控阵超声检测技术的优势在于:(1)不移动探头或尽量少移动探头可扫查厚大工件和形状复杂工件的各个区域,成为解决可达性差和空间限制问题的有效手段。
(2)用单轴扇形扫查替代栅格形扫查可提高检测速度。
(3)通常不需要复杂的扫查装置,不需更换探头就可实现整个体积或所关心区域的多角度多方向扫查。
(4)优化控制焦柱长度、焦点尺寸和声束方向,在分辨力、信噪比、缺陷检出率等方面具有一定的优越性。
(5)原生数据丰富,有多种显示方式,便于数据分析和长期保存。
在电力行业设备及装置中,厚壁工件、粗晶材料和复杂形状工件较多,应用相控阵技术可提高检效率,扩大超声检测应用范围,取得良好的经济效益和社会效益。
主要的应用对象有:(1)汽轮机转子叶根、轮槽和键槽;(2)汽轮机焊接隔板;(3)小径管焊缝;(4)电厂管道及角焊缝等。
相控阵超声波检测的工作原理相控阵超声波检测是一种应用广泛的无损检测技术,它通过利用超声波的传播特性和波束控制技术来实现对被测物体进行检测和成像。
在工业、医学和其他领域,相控阵超声波检测已经发挥了重要的作用。
一、工作原理1. 超声波传播原理相控阵超声波检测利用超声波在材料中传播的特点。
当超声波穿过材料时,会与材料中的界面、缺陷或其他特征相互作用。
超声波在不同介质中的传播速度会发生变化,这种变化会导致超声波发生反射、散射、衍射和透射。
通过测量超声波的传播时间和幅度变化,可以获得材料内部的信息。
2. 波束控制原理相控阵超声波检测采用了波束控制技术。
波束是指超声波在空间中的传播路径和形状。
传统的单元超声波探头只能发射固定方向的超声波,而相控阵超声波探头通过控制每个单元的发射时间和振幅,可以改变波束的方向和形状。
通过调整发射时间和振幅的组合,可以形成斜向、聚焦和二维扫描等多种波束。
3. 接收和图像成像当超声波的探头发射超声波后,当波束与材料中的缺陷或界面相互作用时,部分能量会被反射回来。
接收到的超声波信号经过放大、滤波和数字化处理后,通过算法和计算机的处理,可以生成图像。
二、优势与应用相控阵超声波检测具有以下优势:1. 高分辨率:相控阵超声波检测的波束控制技术可以实现对检测目标的高分辨率成像。
通过调整波束的形状和方向,可以获得更详细的缺陷信息。
2. 实时性:相控阵超声波检测可以实时捕捉到超声波信号,并通过快速的信号处理和图像重建算法,实现实时成像和检测。
3. 非接触性:相控阵超声波检测可以通过空气传播超声波,无需与被测对象直接接触,适用于各种不同形状、温度和表面条件的被测物体。
相控阵超声波检测在各个领域有广泛应用:1. 工业领域:常用于对金属、塑料、陶瓷等材料进行缺陷检测,如焊接接头、铸件和复合材料中的裂纹、气孔等缺陷。
2. 医学领域:用于医学成像和疾病诊断,如超声心动图、乳腺超声检查等。
3. 航空航天领域:用于对飞机发动机叶片、航空航天结构件等的缺陷检测。
超声相控阵检测技术原理
超声相控阵检测技术是一种利用超声波进行非破坏性检测的技术。
其原理是通过将单个超声源和接收器组成一个阵列,并精确控制每个超声源的激发时间和接收时间,从而控制超声波的发射方向和接收方向。
具体工作原理如下:
1. 通过超声发射器发射超声波。
每个超声发射器产生一个超声波束,多个超声发射器工作时形成一个超声波束阵列。
2. 超声波经过被测物体后,被物体吸收、散射或反射。
如果有缺陷存在,超声波将被缺陷反射或散射。
3. 接收器接收并记录超声波的回波信号。
超声发射器和接收器之间的时间差可用于测量超声波经过被测物体的旅行时间,从而计算出缺陷的位置和大小。
4. 使用相控技术调整超声阵列中每个超声发射器和接收器的激发时间和接收时间,使得超声波能够在特定角度范围内聚焦和辐射。
通过改变发射器和接收器的激发时间和接收时间,可以改变超声波的发射和接收角度,从而获得更多方向上的信息,提高检测的准确性和效率。
总的来说,超声相控阵检测技术利用精确控制超声波的发射和接收方向,通过测量超声波的回波信号来检测物体的缺陷位置和大小。
该技术具有高灵敏度、高分辨率和高精度的特点,在非破坏性检测领域有广泛应用。