超声相控阵检测教材-第三章-超声相控阵技术
- 格式:doc
- 大小:2.13 MB
- 文档页数:22
超声相控阵检测技术原理
超声相控阵检测技术是一种利用超声波进行非破坏性检测的技术。
其原理是通过将单个超声源和接收器组成一个阵列,并精确控制每个超声源的激发时间和接收时间,从而控制超声波的发射方向和接收方向。
具体工作原理如下:
1. 通过超声发射器发射超声波。
每个超声发射器产生一个超声波束,多个超声发射器工作时形成一个超声波束阵列。
2. 超声波经过被测物体后,被物体吸收、散射或反射。
如果有缺陷存在,超声波将被缺陷反射或散射。
3. 接收器接收并记录超声波的回波信号。
超声发射器和接收器之间的时间差可用于测量超声波经过被测物体的旅行时间,从而计算出缺陷的位置和大小。
4. 使用相控技术调整超声阵列中每个超声发射器和接收器的激发时间和接收时间,使得超声波能够在特定角度范围内聚焦和辐射。
通过改变发射器和接收器的激发时间和接收时间,可以改变超声波的发射和接收角度,从而获得更多方向上的信息,提高检测的准确性和效率。
总的来说,超声相控阵检测技术利用精确控制超声波的发射和接收方向,通过测量超声波的回波信号来检测物体的缺陷位置和大小。
该技术具有高灵敏度、高分辨率和高精度的特点,在非破坏性检测领域有广泛应用。
使用超声相控阵技术的无损检测方法与技巧超声相控阵技术是一种常用于无损检测的技术,它通过使用一组探头向待测物体发射超声波,并接收其反射波,从而获取物体内部的信息。
相比传统的单点检测技术,超声相控阵技术具有更高的分辨率、更广的探测范围和更强的穿透力。
本文将介绍使用超声相控阵技术进行无损检测的方法和技巧。
首先,准备工作是使用超声相控阵技术进行无损检测的关键。
需要选取合适的探头和超声仪器。
探头的选择应根据待测物体的尺寸、形状和材料选择合适的频率、探头尺寸和探头阵列形式。
超声仪器的性能也需要符合要求,包括信号发射和接收的灵敏度、增益、滤波器和数据处理能力等。
其次,进行检测前需要进行合适的准备工作。
首先要对待测物体进行表面清洁,以保证超声波能够有效传播和反射。
其次要选择合适的耦合介质,将探头与待测物体保持良好的接触。
对于粗糙表面的物体,可以使用凝胶或液体耦合剂,而对于平滑表面的物体,可以尝试使用接触探头。
在实际检测过程中,需要注意一些技巧以提高检测的准确性和效率。
首先,要选择合适的扫查模式,可以根据实际需求选择直线扫查、螺旋扫查或网格扫查等。
其次,要根据待测物体的不同部位和表面形态进行特定的检测调节,例如调整传感器的入射角度和倾斜角度,以最大限度地获取有用的信息。
此外,在数据处理方面也有一些技巧可以加以应用。
首先是信号增强技术,可以通过滤波、均衡和增益调节等方式,提高信号质量。
其次是多角度检测技术,通过改变入射角度和探头位置,获取多个角度的数据,从而提高检测精度。
最后是图像重建技术,通过将多个数据进行整合和处理,生成更清晰、更具信息量的图像或曲线。
需要注意的是,在使用超声相控阵技术进行无损检测时,也存在一些潜在的问题和限制。
首先是探头的选择较为复杂,需要根据具体情况进行合理选择。
其次是背景噪声和杂散信号可能干扰检测结果,需要进行相应的滤波和处理。
此外,超声相控阵技术对于复杂结构和多层材料的检测可能存在一定的困难,需要结合其他技术进行辅助。
超声相控阵检测技术超声相控阵检测技术的应用始于20 世纪60 年代,目前已广泛应用于医学超声成像领域。
由于该系统复杂且制作成本高,因而在工业无损检测方面的应用受到限制。
近年来,超声相控阵技术以其灵活的声束偏转及聚焦性能越来越引起人们的重视。
由于压电复合材料、纳秒级脉冲信号控制、数据处理分析、软件技术和计算机模拟等多种高新技术在超声相控阵成像领域中的综合应用,使得超声相控阵检测技术得以快速发展,逐渐应用于工业无损检测,如对气轮机叶片(根部) 和涡轮圆盘的检测、石油天然气管道焊缝检测、火车轮轴检测、核电站检测和航空材料的检测等领域。
超声无损检测超声无损检测技术又称超声无损探伤技术,它是利用物质中因由缺陷或组织结构上差异的存在而会使超声某些物理性质的物理量发生变化的现象,通过一定的检测手段米检测或测量这些缺陷。
利用超声波在物体中的多种传播特性,例如反射与折射、衍射与散射、衰减以及在不同材料中的声速不同的特点,可以测量各种材料上件的尺寸、密度、内部缺陷、组织变化等。
超声波检测是应月j最为广泛的一种重要的无损检测技术。
超声检测的基本过程如图1图1 超声检测基本过程目前我们最常用的超声无损检测方法是超声脉冲回波法,基本原理是超声波传播到两种不同的介质(如空气和金属试件)界面时,由于两种介质的声学特性存在差异,会产生反射和透射现象。
其声压反射率和透射率与两种介质的声阻抗有关。
与刚体介质声阻抗相比,空气的声阻抗很小。
因此超声通过固体和空气界面几乎是全反射。
脉冲回波法(即A型扫描)就是通过测量超声信号往返于缺陷的反射回波的传播时间,来确定缺损和表面的距离,同时也可根据超声同波的幅度,来分析缺陷的大小。
图2 脉冲回波法(A扫)如图2所示,当试件没有缺陷时,超声波可以顺利传播到底面,同波图中只有发生脉冲和底面回波两个信号。
若试件中存在缺陷时,回波图中在底面回波前还有缺陷同波。
如果缺陷很人,可能会有就只有缺陷回波的情况。
相控阵超声检验技术一、导读任何无损检验方法(NDT)的可信度很大程度上取决于人员因素。
进行相控阵超声检验的人员应经过培训并取得相应的资格。
通过检验人员的技能、教育经历、培训经历,NDT检验人员来证明自己能够根据工艺和设备(相控阵超声设备,扫描仪,探头,软件,分析分布图和报告)的特殊要求进行操作。
检验人员应熟悉应用于特殊零件的相控阵技术的基本特性。
应客户要求,关于R/D技术原理的第一本书出版了:相控阵技术应用简介:R/D技术指南。
该指南用大幅篇章介绍了基本的超声测试,数据评定和扫查方式,相控阵探头以及应用,适合广大读者使用,该指南包含大量实用信息堪称为实用手册。
该指南可通过登陆我们的网站使用e-mail订购。
相控阵技术指南手册可视为NDT从业人员使用基本相控阵超声技术的备忘录。
它面向日常的操作,针对技术秘诀,介绍操作方法(工艺规范,标定,特征描述,重新启动,解决检验的问题)。
关于其大小,该手册设计为口袋书籍。
为使该手册能适应现场条件,我们采用防水抗扯的合成纸印刷该书,且封面和装订都十分牢固。
相控阵技术指南手册包括:·第一章“相控阵超声技术——基本特性“详述了PAUT(相控阵超神探伤的缩写)原理,介绍了主要硬件设备和相控阵声束组成类型和运动形式(线性,方位角型,深度型,平面型和3-D型)。
·第二章“相控阵探头——基本特性“详述了用于日常检验的PA(相控阵的缩写)探头及其主要特性。
范例介绍时使用的是大多数场合最常用的探头类型,即1-D平面线性阵探头。
·第三章“聚焦法则“——常用范例介绍了线性阵探头如Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头定义聚焦法则的基本步骤。
·第四章“扫查方式,观察,和分布图”介绍了Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头评定(A-扫查法,S-扫查法,B-扫查法,C-扫查法和D-扫查法)的主要数据,基本分布以及扫查方式。
相控阵超声检测技术嘿,朋友们!今天咱来聊聊相控阵超声检测技术,这可真是个了不起的玩意儿啊!你想想看,我们平常检查东西,就像是在黑夜里摸瞎,不知道里面到底啥情况。
但有了相控阵超声检测技术,那就好比给我们安上了一双超级眼睛,可以清楚地看到物体内部的状况。
这难道不神奇吗?相控阵超声检测就像是一个神奇的侦探,能把那些隐藏在材料深处的小秘密都给挖出来。
它可以检测各种材料,从金属到塑料,从大机器到小零件,就没有它搞不定的。
这多厉害呀!它的工作原理呢,其实也不难理解。
就好像一群小士兵,排好队听指挥,一起发出声波,然后根据声波的反馈来了解情况。
这些小士兵可机灵了,能快速地调整自己的位置和角度,确保把每个角落都检查得仔仔细细。
而且啊,相控阵超声检测技术还有一个特别牛的地方,就是它特别精准。
不像有些检测方法,马马虎虎的,结果让人心里没底。
它就像是一个精确的狙击手,指哪打哪,一瞄一个准。
这对于那些要求特别高的行业来说,简直就是大救星啊!比如说在航空航天领域,那可都是高精尖的东西,一点点小问题都可能引发大灾难。
相控阵超声检测技术就能帮他们早早地发现问题,及时解决,避免出现大麻烦。
这就好比是给飞机装上了一道保险,让我们坐飞机的时候也能更安心。
在医疗领域,它也能大显身手呢!可以帮助医生更清楚地了解病人身体内部的情况,更好地进行诊断和治疗。
你说,这是不是很厉害?咱再想想,如果没有相控阵超声检测技术,那得有多少问题发现不了啊!那些隐藏的裂缝、缺陷,说不定啥时候就爆发出来,造成严重的后果。
但有了它,我们就可以提前发现,提前解决,把危险扼杀在摇篮里。
总之,相控阵超声检测技术就是我们的好帮手,让我们能更清楚地看到这个世界,让我们的生活变得更安全、更可靠。
它就像是一盏明灯,照亮了我们探索未知的道路。
难道你不想多了解了解它吗?相信我,一旦你深入了解了它,你一定会对它赞不绝口的!相控阵超声检测技术,真的太棒啦!。
超声波相控阵技术
超声波相控阵技术是一种利用超声波进行成像的技术。
相比传统的超声波成像技术,
超声波相控阵技术具有更高的分辨率、更精准的定位和更多的功能选择。
超声波相控阵技术的原理是利用多个超声发射器同时进行超声波发射,通过计算不同
超声波相位之间的差值,确定超声波的入射角度和聚焦点。
随着超声波的传播,它会在物
体内部反射、散射和折射,这些信号会被探头接收并返回到电脑处理系统,生成图像。
相比传统的超声波成像技术,在超声波相控阵技术中,不同发射器之间的信号可以实
现相位的同步,并能够选择波束旋转方向实现定量测量。
这使得超声波相控阵技术在医学、工业、航空等领域得到广泛应用。
在医学领域中,超声波相控阵技术可以用于诊断和治疗各种疾病。
例如,超声波相控
阵技术可以生成高清晰度的胎儿图像,用于妇产科检查;可以检测结肠、胃肠道等器官疾病,用于消化内镜等检验;还可以用于乳腺癌、软组织肿块、血管等疾病诊断。
在工业领域中,超声波相控阵技术可以用于材料缺陷检测、物体腐蚀检测、构件尺寸
测量等,其高分辨率和精准定位能力能够提高材料检测和质量控制的效率和准确性。
在航空领域中,超声波相控阵技术可以用于航空结构和发动机部件的检测。
相比传统
的无损检测方法,超声波相控阵技术可以提高检测效率和检测质量,并且降低了检测成本
和时间。
尽管超声波相控阵技术在各个领域有广泛应用,但它也有一些局限性。
例如,它不能
够穿透骨骼和气体,不适用于对于这些物质的检测。
因此,在实际应用中需要根据不同的
情况选择合适的检测方法。
ISONIC相控阵设备操作指南焊缝高级检测软件功能一、进入检测界面1、根据所使用的仪器进入相控阵检测模式,在相控阵界面下点击,见图1所示。
图12、点击进入选项模式,见图2所示。
图23、点击进入焊缝检测模式。
见图3所示。
图34、相控阵探头选择根据检测选用的相控阵探头选择相应的探头型号,如图4所示,图4右上角所显示的即为探头楔块及探头的参数。
如果在“选择探头”的下拉选项中无检测所用的探头型号,则点击手动输入探头及楔块的参数进行保存。
然后点击。
图45、点击进入相控阵扇形扫描参数设置界面,如图5所示。
图5二、检测参数设置:1、基础参数设置:●增益:根据检测对象所需的检测灵敏度进行设置。
●声程:根据检测对象设置声程范围。
●声速:设置为横波声速(例如:钢中横波声速为3230m/s)。
●显示延迟:就是常说的“零偏”设置。
点击(如图6所示),通过点击左键或右键,将“表面补偿”设置为激活状态(如图7、图8所示),点击,仪器将自动校准“零偏”。
自动校准后的显示延迟将会自动修正为探头延迟,如图6所示。
注:此处“表面补偿”为调节检测参数时所选用的入射角度(“激发设置”中所选取的调节检测参数的入射角度)在探头楔块中传播的延时,及探头延时,仪器自动校准“表面补偿”,即零偏后,显示延迟与“测量参数”中的探头延迟相同。
“测量参数”中的探头延迟,当选定入射角度后,仪器自动计算生成,所以是不可修改的,调节的左键右键为灰色图标。
如图9、图10所示。
本次示例选择的入射角度为55°,探头延时为13.45us。
图6图7图8图9图10●抑制:设置为0%2、激发参数设置:●增益:根据检测对象所需的检测灵敏度进行设置。
●激发模式:设置为单晶。
●脉冲宽度:主要用于优化脉冲回波信号。
初始设置为探头频率周期的一半,将探头置于放置在被检工件或标准试块上,根据脉冲回波的信号质量,点击左键或右键进行微调。
如图11所示。
注:调节依据准则为:脉冲回波信号脉宽最窄且相对回波高度最高。
第三章超声相控阵技术3.1 相控阵的概念3.1.1相控阵超声成像超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。
相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。
图3-1 相控阵超声聚焦和偏转3.2 相控阵工作原理相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。
这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。
3.2.1相位延时相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。
可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。
相位延时的精度和分辨率对波束特性的影响很大。
就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。
其均方根(RMS)延时量化误差与旁瓣幅值之比为(式3-1)式中,;N-----阵元数目;μ----中心频率所对应一个周期与最小量化延时之比。
图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。
早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。
这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。
(a)μ=8时,旁瓣随N变化曲线(b)μ=16时,旁瓣随μ变化曲线图3-2旁瓣与N、μ关系图近来采用数字延时来代替原来的模拟延时。
数字延时精度高、控制方便、稳定性好,可以大大提高相控阵超声成像质量。
数字延时的实现可以分成粗延时和细延时,粗延时一般基于采样时钟计数,延时值为采样周期的整数倍,而采样周期通常为几十纳秒以上。
细延时量为采样周期的小数倍,一般能达到10ns以内的延时分辨率。
实现数字粗延时比较简单,但是实现细延时比较困难。
目前有几种方法实现细延时:一种是流水线式采样延迟聚焦,其延时分辨率一般大于10ns。
另一种方法是采用数据做时域内插,获得N倍密集的输出序列从而减小量化延时,这需要很高的运算量和存储器支持。
即便如此,延时量化误差仍然不够小。
有人采用坐标变换的CORDIC算法实现采样序列的相位旋转。
也有人提出基于多种速率数字信号处理技术的多相滤波方法,可以实现5ns级精细延时,并且可以把动态变迹技术等一起考虑。
还有人提出基于FIR滤波的延时方法,延时精度可达到5ns。
3.2.2 动态聚焦(1)相控聚焦原理相控发射聚焦原理如图3-3(a)。
设阵元中心距为d,阵列换能器孔径为D,聚焦点为P,焦距为f,媒质声速为c。
根据几何声程差,可以计算出为使各阵元发射波在P点聚焦,激励信号延迟时间应为(式3-2)式中,n----阵元序号;----为一个足够大的时间常数,目的是为了避免出现负的延迟时间。
接收聚焦如图3-3(b)所示,它是一个和发射聚焦互逆的过程,同样遵守几何聚焦延迟规律。
各阵元接收回波信号,按设计的聚焦延迟量进行延迟,然后相加。
(a)发射聚焦(b)接收聚焦图3-3相控聚焦原理示意图(2)动态聚焦声束特性在声场中,聚焦点区域的声束宽度最小,即在焦点附近的有限区域内,聚焦声束宽度小于各阵元同时激励(即不聚焦)时的声束宽度;但在此区域之外,聚焦声束宽度反而扩散开来,大于不聚焦声束宽度,如图3-4所示。
图3-4聚焦深度和焦点直径对于强聚焦方式,在聚焦深度内聚焦声束变细,可获得优良的侧向分辨率;但聚焦深度很短,焦区以外的声束比未聚焦时发散得更快。
为了使相控声束扫描的整个声场范围内都能得到均匀清晰的成像,就要对声场中每一点进行聚焦发射和接收,以便在各点都有连续一致的侧向分辨率。
这就要求相控声束能沿扫描线跟踪目标,以形成一个滑动的焦点,并同步改变阵列孔径。
在早期的分段动态聚焦系统中,使发射和接收声束分别在近距离、中距离和远距离聚焦,进行几次成像。
在几幅成像中,都只是在各自的焦点附近能得到清晰成像,而在其他区域,由于偏离了焦点使图像模糊。
将几幅图像拼合起来,就能得到从近距离到远距离比较均匀、分辨特性较好的成像。
这种分段聚焦方式合成一幅清晰图像需要转换几次焦点,因而实时性较差。
在改进的实时分段动态聚焦方式中,在一次声束发射/接收过程中,同步地改变焦点深度。
焦点分段更加细密、平滑,常采用8、16段等动态聚焦方式。
由于发射波形一般是短脉冲,发射出去就不能控制,因此不能在一次发射过程中改变焦点;而接收信号则具有一定持续时间,可以由浅渐深的改变焦距,即动态地改变聚焦延迟,使来自各深度的接收声束多处于聚焦状态,如图3-5所示。
图3-5实时分段动态聚焦示意图(3)动态孔径(dynamic aperture)当需要在不同深度下侧向分辨力一致时,就要求随扫查深度(焦距F)增加,阵列换能器的孔径D也同步增加。
在聚焦点处,声束宽度可表示为(式3-3)由式(3-2)可见,最大延迟时间随焦距减小而增大,与孔径D=nd大致呈正比。
所以当焦点较近时,如果不见效孔径D,过大的将使相控电子聚焦难以实现。
同时在离换能器很近的区域内,由于超声波束的衍射效应使波束变得很宽,甚至与换能器孔径相当,这会使侧向分辨率变得很差。
减小孔径可改善近场侧向分辨率。
而在中、远场,聚焦声束宽度有随着焦距增加而增大的趋势,因此要求增大孔径,力图保持恒定的声束宽度。
动态孔径的实现原理如图3-6所示。
动态孔径和动态聚焦配合使用,克服了只能在某一区域聚焦的现象,使得在整个视场中获得均匀的分辨率,保证了图像中的每一点总是在最佳聚焦状态,从而大大改善图像质量。
图3-6可变孔径原理示意图(4)动态变迹动态变迹(dynamic apodization),技术是一种改变主瓣和旁瓣的相对大小及各波瓣夹角的技术,它的作用主要是为了抑制旁瓣,提高分辨率。
当换能器各阵元采用幅度相同的电脉冲激励时,其波瓣图中除了主瓣之外还有旁瓣。
相位延迟的量化误差也会造成旁瓣。
对于32阵元相控阵系统,相位延迟量化误差对于旁瓣的影响如图3-7所示。
(a)无相位量化误差(b)存在相位量化误差图3-7相位量化误差对波瓣的影响用变迹技术可以有效降低旁瓣电平,使波瓣图中的旁瓣明显减小。
变迹处理可分为孔径尺寸变迹,幅度加权变迹和幅度加权动态变迹等几种,其中最常用的是幅度加权变迹。
幅度加权变迹的做法是:对换能器阵中心阵元赋予较大的加权系数,向两端加权系数逐渐减小。
发射或接收状态都可以实现幅度变迹,在发射状态就是中心阵元激励弱、两端阵元激励增强,在接收状态就是叠加时中心阵元权重、两端阵元权轻。
对于图3-7(b)所示相位量化误差产生的旁瓣,当采用图3-8(a)所示线性下降幅度变迹处理后,波瓣图如图3-8(b)所示。
可见,由相位延迟量化误差产生了较大的旁瓣消失。
除了幅度变迹之外,还可以采用孔径变迹等技术来抑制旁瓣。
动态变迹技术与动态聚焦技术、动态孔径技术相结合,可以获得最窄的主波束宽度和最小的旁瓣幅度。
(a)线性下降变迹函数(b)变迹处理后波瓣图3-8线性幅度变迹处理(5)编码发射在超声检测中,窄脉冲激励的频带宽度(范围)宽,因而检测分辨率高;宽脉冲激励带宽窄,分辨率低。
如果对宽脉冲进行频率调制,采用编码发射的形式,则可显著增加频带宽度,从而提高检测分辨率。
同时由于宽脉冲激励的发射强度大,所以检测灵敏度高,可以增加检测距离。
为此目的,实现激励脉冲频率调制的一种方案,如图3-9所示。
图3-9线性调频激励信号波形图3-9中,激励信号是5个周期的线性调频信号,频率逐渐增大。
发射多个脉冲使激励信号的强度增大,检测灵敏度增加。
但是发射多个激励脉冲也使回波信号长度增加,从而降低纵向分辨率。
如果能采取措施将回波信号在时域上进行压缩,就能得到幅度增强、宽度相当于单脉冲激励的接收信号,这就是脉冲压缩的思路。
比如,让调频信号经过接收延时网络,对于不同频率的接收信号,延时时间不同。
频率为f1的信号延时量最大,频率为f2的信号延时量次之……频率为f5的信号延时量最小。
通过这样的延时网络处理,各频率分量的信号在调频发射时具有的时差得到补偿,在延时网络的输出端同时抵达,叠加成为幅度增强的窄脉冲。
实际上超声成像中可采用的编码激励方案不止是线性调频信号,还可以用非线性调频、相位编码等。
超声编码激励的设想来源于雷达信号脉冲压缩理论。
与常规的脉冲激励方式相比,超声编码激励可使信噪比(SNR)得到改善,其改善因子等于相关接收时的时间—带宽积。
当时间—带宽积为30时,SNR可改善15dB。
但是编码激励方式会带来距离旁瓣的副作用,需要采取措施加以避免或抑制。
在相控阵超声中,所采用的编码序列的时间—带宽积通常较小,一般在30到50以内。
用线性调频发射超声波进行发射,在接收中使用匹配滤波等技术,可使距离旁瓣电平降到-50dB左右。
还有文献研究证明了随机调相连续信号具有最优的模糊函数特性,可以克服速度模糊和距离模糊,提高图像质量和分辨率。
(6)数字声束形成在相控阵超声系统中,采用电子聚焦、变迹及方向控制等技术来形成指向性良好的声束特性,这就是数字声束形成技术。
早期声束形成技术采用模拟方式,其信号流程为:各阵元接收信号—延迟相加—幅度检波—A/D转换。
其中延迟环节使用较多的模拟延迟线构成,这影响了声束形成性能的提高。
数字声束形成技术采用数字延时环节,大大改善了声束形成质量,其信号流程是:各阵元接收信号—A/D转换—延迟相加—正交分解。
图3-10是相控接收的数字声束形成示意图。
图3-10数字声束形成原理框图与模拟声束形成过程相比,数字声束形成中的A/D转换环节移到了延迟相加环节之前,直接对各接收通道放大后的信号进行A/D采样,然后在计算机或逻辑器件(FPGA)的控制下对A/D转换的结果用数字方法进行延迟,能够大大提高延迟的精度、分辨率、稳定性,再加上其他一些技术的应用,数字声束形成方式的性能指标明显提高。
多声束形成技术是指发射一次超声脉冲后,从接收信号中形成多条接收声束的技术。
这时发射采用弱聚焦,发射的超声束宽度比较均匀、焦深大,在声束“照射”区域内声场分布均匀。
对各阵元接收的回波信号采用几组不同的延时序列处理,即可得到声场中几个不同方向上的接收声束。
多声束形成需要并行处理技术,对同一个阵元接收的信号要经过N套不同的延时、变迹等参数处理,以形成N条接收声束。