大学工程光学第五章
- 格式:ppt
- 大小:388.50 KB
- 文档页数:45
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
第五章习题及答案
1、一个100W的钨丝灯,发出总光通量为,求发光效率为多少?
解:
2、有一聚光镜,(数值孔径),求进入系统的能量占全部能量的百分比。
解:
而一点周围全部空间的立体角为
3、一个的钨丝灯,已知:,该灯与一聚光镜联用,灯丝中
心对聚光镜所张的孔径角,若设灯丝是各向均匀发光,求1)灯泡总的光通量及进入聚光镜的能量;2)求平均发光强度
解:
4、一个的钨丝灯发出的总的光通量为,设各向发光强度相等,求以灯为中心,半径分别为:时的球面的光照度是多少?
解:
5、一房间,长、宽、高分别为:,一个发光强度为的灯挂在天花板中心,离地面,1)求灯正下方地板上的光照度;2)在房间角落处地板上的光照度。
解:。
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学知识点整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (2)第三节几何光学基本定律 (5)第四节光学系统的物象概念 (10)第二章共轴球面光学系统 (11)第一节符号规则 (11)第二节物体经过单个折射球面的成像 (13)第三节近轴区域的物像放大率 (16)第四节共轴球面系统成像 (18)第二章理想光学系统 (21)第一节理想光学系统的共线理论 (21)第二节无限远轴上物点与其对应像点F’---像方焦点 (23)第三节理想光学系统的物像关系 1,作图法求像 (27)第四节理想光学系统的多光组成像 (33)第五节实际光学系统的基点和基面 (38)第六节习题 (41)第四章平面系统 (42)第一节平面镜 (42)第二节反射棱镜 (43)第三节平行平面板 (46)第四节习题 (48)第五章光学系统的光束限制 (49)第一节概述 (49)第二节孔径光栅 (51)第三节视场光栅 (54)第四节景深 (55)第五节习题 (56)第八章典型光学系统 (57)第一节眼睛的光学成像特性 (57)第二节放大镜 (62)第三节显微镜系统 (64)第四节望远镜系统 (70)第五节目镜 (74)第六节摄影系统 (76)第七节投影系统 (78)第八节光学系统外形尺寸计算 (80)第九节光学测微原理 (85)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系,光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics),可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年,欧几里得论述了光的直线传播和反射定律。
2,公元前130年,托勒密列出了几种介质的入射角和反射角。
3,1100年,阿拉伯人发明了玻璃透镜。
第五章光学系统的光束限制第一节概述1,问题提出●光学系统应满足前述的物像共轭位置和成像放大率要求●应满足一定的成像范围●应满足像平面上有一定的光能量和分辨本领●这就是如何合理限制光束的问题●每个光学零件都有一定的大小,能够进入系统成像的光束总是有一定限度的。
决定每个光学零件尺寸的是系统中成像光束的位置和大小,因此在设计光学系统时,都必须考虑如何选择成像光束的位置和大小的问题。
这就是本章所要讨论的内容。
●例如:人的眼睛中的虹膜能随着外界光线的强弱改变瞳孔的直径。
进入眼睛的光能量将随着瞳孔直径的改变而改变。
当外界景物过亮时,瞳孔就缩小,以减少进入眼睛的光能量,避免过度刺激视神经细胞;当外界景物较暗时,虹膜自动收缩,瞳孔直径加大,使进入眼睛的光能量增加,所以瞳孔其实就是一种孔径光阑。
●通常,光学系统中用一些中心开孔的薄金属片来合理的限制成像光束的宽度、位置和成像范围。
这些限制成像光束和成像范围的薄金属片称为光阑。
光阑主要分两类:孔径光阑和视场光阑。
此外还有消杂光阑、渐晕光阑。
下面先一一做简单介绍,再重点讲解孔径光阑和视场光阑。
2.孔径光栅●孔径光阑限制轴上点光束的孔径角(对于无限远物体,限制入射高度)●对有限远处的物体用孔径角U来表示孔径大小,对于无限远物体则用入射高度(孔径高度)h来表示照相机上的“光圈”就是可变的孔径光阑●人眼的瞳孔也是可变的孔径光阑,对于目视光学系统如显微镜、望远镜等必须把瞳孔作为一个光阑来考虑●视场光阑限制成像范围●对有限远处的物体用物高y(或像高y')来表示视场(线视场),对无限远处的物体用视场角ω来表示●●照相机中的底片框就是视场光阑●照相机的标准镜头的视场角(2ω)为40~45°,而广角镜头的视场角(2ω)在65°以上3.渐晕光栅●渐晕:轴外点光束被部分拦截●光束被部分拦截使得相应像点的照度下降●渐晕光阑可拦截成像质量较差的轴外点光束4.消杂光光栅●杂散光:通过光学系统投射到像平面上不参与成像的有害的光●杂散光产生的原因:主要是由于非成像光线通过光学系统在镜筒的内壁表面反射,或是在光学零件的各表面之间多次反射和折射,最终投射到像面上●通常在光组中加入消杂光光阑以阻拦杂散光,并把光学零件的非工作面、镜筒的内壁、光学零件的支承件涂黑来吸收杂散光第二节孔径光栅●限制轴上物点孔径角u的大小,或者说限制轴上物点成像光束宽度,并有选择轴外物点成像光束位置作用的光阑叫做孔径光阑。