双向可控硅
- 格式:pdf
- 大小:229.08 KB
- 文档页数:3
双向可控硅的工作原理及原理图双向可控硅(Bilateral Triode Thyristor,简称BTT)是一种特殊的可控硅器件,其工作原理和应用领域在电力电子领域具有重要意义。
本文将详细介绍双向可控硅的工作原理,并提供相应的原理图。
一、双向可控硅的工作原理双向可控硅是一种四层PNPN结构的半导体器件。
它由两个PN结组成,每一个PN结都有一个控制极和一个主极。
其工作原理如下:1. 静态工作原理:当双向可控硅两个主极之间的电压为正向时,即正向工作状态,两个PN结之间的结电容会妨碍电流的流动,双向可控硅处于关断状态。
当双向可控硅两个主极之间的电压为反向时,即反向工作状态,两个PN结之间的结电容充电,当电压达到一定的阈值时,双向可控硅会进入导通状态。
2. 动态工作原理:当双向可控硅处于导通状态时,惟独当两个主极之间的电流方向与PN结的导通方向一致时,双向可控硅才干正常导通。
当双向可控硅导通后,惟独当两个主极之间的电流方向与PN结的导通方向相反时,双向可控硅才干正常关断。
二、双向可控硅的原理图下面是一种常见的双向可控硅的原理图,用于说明其电路连接方式和控制方式。
```+----|>|----|>|----+| || || |+----|<|----|<|----+```在上述原理图中,两个箭头表示双向可控硅的两个主极,箭头方向表示电流的流动方向。
两个箭头之间的线段表示PN结。
三、双向可控硅的应用领域双向可控硅由于其双向导通的特性,在电力电子领域有广泛的应用。
以下是一些常见的应用领域:1. 交流电控制:双向可控硅可以用于交流电的控制,例如交流电的调光、机电的调速等。
2. 电力系统:双向可控硅可以用于电力系统中的电压和电流控制,例如电力调度、电力传输等。
3. 电力电子变换器:双向可控硅可以用于电力电子变换器中的电流控制,例如直流-交流变换器、交流-直流变换器等。
4. 光伏发电系统:双向可控硅可以用于光伏发电系统中的电流控制,例如光伏逆变器、光伏充电控制器等。
双向可控硅参数表
双向可控硅的参数主要包括以下几项:
1.断态重复峰值电压(VDRM):这是指双向可控硅在断态(或阻断状态)下能够承
受的最大反向电压。
2.反向重复峰值电压(VRRM):这是指双向可控硅在反向工作状态下能够承受的最
大电压。
3.通态平均电流(IT):这是指在通态工作状态下,双向可控硅能够承受的平均电流
值。
4.通态不承复浪涌电流(IrsM):这是指在通态工作状态下,双向可控硅能够承受的
浪涌电流峰值。
5.额定结温(Tjm):这是指双向可控硅的额定工作温度,一般在110°C左右。
6.贮存温度(Tstg):这是指双向可控硅的贮存温度范围,一般在-55°C到150°C之
间。
7.门极触发电流(IGT)和门极触发电压(VGT):这是指触发双向可控硅所需要的
最小电流和电压值。
8.断态重复峰值电压(VDRM)和反向重复峰值电压(VRRM):这是指双向可控硅
在断态和反向工作状态下能够承受的最大电压峰值。
此外,还有通态峰值电压、维持电流等参数也是衡量双向可控硅性能的重要指标。
不同的型号和应用场合会有不同的参数要求,具体可查阅相关产品规格书或咨询专业人士。
双向可控硅的触发电压和电流问题
有两个双向可控硅,就是不懂,一个是BTA06-600C另一个是BTA16-600B,他们的触发电压和触发电流分别是多少呢?如果超出了这个电压或电流会怎样?
答:
1、这两个双向可控硅的耐压都是600V,最大电流分别是6、16A。
2、触发电压一般在2V以下,触发电流一般在5-30mA比较多。
3、不是型号相同触发电流就一样的。
4、触发电压和触发电流大了不要紧的,开关速度会加快。
一般触发电流达到工作电流的5-10%,速度会加快许多。
双向晶闸管导通门极需要触发电流,这个触发需要一直维持吗?还是导通后,门极就失去作用不需要触发电流!
答:对于直流电来说,不需要维持;对于交流电来说,需要维持。
•追答:也就是说:如果你的晶闸管控制的是直流电流,控制极G 触发后可以不再维持;如果你的晶闸管控制的是交流电流,控制极G 触发后还需要再维持。
•追答:
•1.双向晶闸管触发极必须是正向电压,导通的两极没必要都是。
•2.关断的条件是两级的电流小于维持电流——正确。
3.控制极失去电流或降低电流,两极仍导通,这是针对直流电——正确。
MAC97A6双向可控硅【用途】双向可控硅【性能参数】双向可控硅 600V 0.8A双向晶闸管。
属于NPNPN五层器件,三个电极分别是T1、T2、G。
因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。
表示,不再划分成阳极或阴极。
其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。
反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。
检测方法1.判定T2极G极与T1极靠近,距T2极较远。
因此,G—T1之间的正、反向电阻都很小。
在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。
这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。
,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通,据此亦可确定T2极。
2.区分G极和T1极(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。
(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。
接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右证明管子已经导通,导通方向为T1一T2。
再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。
由此证明上述假定正确。
否则是假定与实际不符,需再作出假定,重复以上测量。
显见,在识别G、T1,的过程中,也就检查了双向晶闸管的触发能力。
如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管于巳损坏。
对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。
【互换兼容】。
双向可控硅的工作原理及原理图双向可控硅(Bilateral Switch)是一种常用的半导体器件,它具有双向导通的特性,可以在两个方向上控制电流的流动。
在电子电路中,双向可控硅常用于交流电的控制和开关电路中。
一、双向可控硅的工作原理双向可控硅由两个PN结组成,其中一个PN结正向偏置,另一个PN结反向偏置。
当双向可控硅的正向电压超过其额定触发电压时,正向PN结会发生击穿,形成一个电流通路,此时双向可控硅处于导通状态。
当正向电压降低到一定程度时,正向PN结会恢复正常,双向可控硅进入封锁状态,不导电。
双向可控硅的工作原理可以通过以下几个步骤来解释:1. 初始状态:双向可控硅处于封锁状态,两个PN结都没有击穿,不导电。
2. 正向触发:当正向电压超过双向可控硅的额定触发电压时,正向PN结会发生击穿,形成一个电流通路。
此时,双向可控硅进入导通状态,电流可以从正向PN结流向负向PN结。
3. 反向触发:当反向电压超过双向可控硅的额定触发电压时,反向PN结会发生击穿,形成一个电流通路。
此时,双向可控硅同样处于导通状态,电流可以从负向PN结流向正向PN结。
4. 关断状态:当正向电压降低到一定程度时,正向PN结恢复正常,双向可控硅进入封锁状态,不导电。
同样地,当反向电压降低到一定程度时,反向PN结恢复正常,双向可控硅同样进入封锁状态,不导电。
二、双向可控硅的原理图双向可控硅的原理图如下所示:```+---|>|---|<|---+| |+---|<|---|>|---+```在原理图中,上方的箭头表示正向电流的流动方向,下方的箭头表示反向电流的流动方向。
双向可控硅由两个PN结组成,其中一个PN结正向偏置,另一个PN 结反向偏置。
通过控制正向电压和反向电压的大小,可以实现对双向可控硅的导通和封锁状态的控制。
三、双向可控硅的应用双向可控硅在电子电路中有广泛的应用。
以下是几个常见的应用场景:1. 交流电控制:双向可控硅可以用于交流电的控制,例如调光灯、电动窗帘等。
单片机双向可控硅
双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。
双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。
为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。
过零触发是指在电压为零或零附近的瞬间接通。
由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。
双向可控硅的工作原理及原理图双向可控硅(Bidirectional Thyristor)是一种电子器件,也被称为双向晶闸管(Bidirectional SCR),它具有双向导通的特性,可以在正向和反向两个方向上控制电流的流动。
在本文中,我们将详细介绍双向可控硅的工作原理及原理图。
一、双向可控硅的工作原理双向可控硅由四个PN结组成,其中两个是正向偏置的PN结,另外两个是反向偏置的PN结。
它的工作原理可以通过以下步骤来解释:1. 初始状态:当双向可控硅没有施加任何控制信号时,正向偏置的PN结处于导通状态,而反向偏置的PN结处于截止状态。
2. 正向触发:当施加正向触发信号时,正向偏置的PN结开始导通,电流开始流动。
这时,双向可控硅处于正向导通状态。
3. 反向触发:当施加反向触发信号时,反向偏置的PN结开始导通,电流开始流动。
这时,双向可控硅处于反向导通状态。
4. 关断:当控制信号消失时,双向可控硅将自动关断,电流停止流动。
双向可控硅的主要特点是:在正向和反向两个方向上都能够控制电流的导通和关断。
它可以用于交流电路中的电流控制、电压控制、逆变器、斩波器等应用。
二、双向可控硅的原理图下面是一个简单的双向可控硅的原理图示例:```+-----+| || |A --| |--| || |G --| |--| || |K --| |--| || |C --| |--| || |+-----+```在上面的原理图中,A和K分别代表双向可控硅的两个主电极(正向和反向),G代表控制极,C代表共阳或共阴极。
三、双向可控硅的应用双向可控硅广泛应用于各种电力控制和电子控制系统中。
以下是一些常见的应用领域:1. 交流电压控制:双向可控硅可以用来控制交流电压的大小,实现对电路的调节和控制。
2. 交流电流控制:双向可控硅可以用来控制交流电流的大小,实现对电路的调节和控制。
3. 逆变器:双向可控硅可以用来将直流电转换为交流电,广泛应用于变频器、UPS等设备中。
双向可控硅的工作原理及原理图双向可控硅(SCR)是一种半导体器件,常用于交流电路中的功率控制和开关。
它具有双向导通性,可以控制交流电路中的电流,从而实现电路的开关和调节。
本文将介绍双向可控硅的工作原理及原理图。
一、双向可控硅的基本结构1.1 门极:双向可控硅的门极用于控制器件的导通和关断。
1.2 主极:主极是双向可控硅的两个极性端,用于连接电路中的电源和负载。
1.3 控制电路:控制电路通过对门极施加控制信号,控制双向可控硅的导通和关断。
二、双向可控硅的工作原理2.1 导通状态:当双向可控硅的门极接收到正向触发脉冲时,器件将进入导通状态,电流可以从主极1流向主极2。
2.2 关断状态:当双向可控硅的门极接收到负向触发脉冲时,器件将进入关断状态,电流无法通过器件。
2.3 双向导通性:双向可控硅具有双向导通性,可以控制交流电路中的电流方向。
三、双向可控硅的应用3.1 交流电源控制:双向可控硅常用于交流电源控制中,可以实现对电路的精确调节和开关控制。
3.2 电动机控制:双向可控硅可以控制电动机的启动、停止和速度调节,广泛应用于工业控制领域。
3.3 灯光调节:双向可控硅可以用于调节灯光的亮度,实现灯光的调光功能。
四、双向可控硅的原理图4.1 主极1:连接电源的正极。
4.2 主极2:连接电路中的负载。
4.3 门极:用于接收控制信号。
五、双向可控硅的优点5.1 高效率:双向可控硅具有低导通压降和高导通能力,能够实现高效的电路控制。
5.2 可靠性:双向可控硅的结构简单,工作稳定可靠,长寿命。
5.3 灵活性:双向可控硅可以实现对电路的精确控制,适用于各种功率控制和开关应用。
总结:双向可控硅是一种重要的半导体器件,具有双向导通性和精确控制能力,广泛应用于交流电路中的功率控制和开关。
掌握双向可控硅的工作原理及原理图,对于电路设计和控制具有重要意义。
双向可控硅的工作原理及原理图双向可控硅(Bidirectional Controlled Silicon, BCR)是一种常用的电子器件,广泛应用于电力电子领域。
它具有双向导通的特性,可以控制交流电的正、反向导通和截止,从而实现对电流的控制。
本文将详细介绍双向可控硅的工作原理和原理图。
一、双向可控硅的工作原理双向可控硅由两个PNPN结构的晶体管组成,分别为正向PNPN结构和反向PNPN结构。
当双向可控硅的两个极端施加正向电压时,正向PNPN结构的PN结会导通,电流会从正向PNPN结的P区注入到N区,然后再通过反向PNPN结的N区注入到P区,最终形成P区的电流输出。
反之,当施加反向电压时,反向PNPN结的PN结会导通,电流则从反向PNPN结的P区注入到N区,再通过正向PNPN结的N区注入到P区,实现P区的电流输出。
因此,双向可控硅可以实现正、反向电流的导通和截止。
双向可控硅的导通需要通过控制电流注入或截止来实现。
通常使用一个触发脉冲来控制双向可控硅的导通。
当触发脉冲的幅值高于双向可控硅的触发电压时,双向可控硅会导通。
在导通状态下,双向可控硅的电压降低,形成一个低电阻通路,电流可以通过。
当触发脉冲的幅值低于双向可控硅的触发电压时,双向可控硅会截止,形成一个高电阻状态,电流无法通过。
二、双向可控硅的原理图双向可控硅的原理图如下所示:```+--------|>|--------+| BCR |+--------|<|--------+```在原理图中,BCR代表双向可控硅。
箭头表示PNPN结的正向或反向导通方向。
双向可控硅的两个极端分别连接到电路的输入和输出。
通过控制输入电路中的触发脉冲,可以实现对双向可控硅的导通和截止控制。
三、双向可控硅的应用双向可控硅广泛应用于电力电子领域,特别是交流电调制控制和电力控制系统中。
以下是一些常见的应用场景:1. 交流电调制控制:双向可控硅可以用于交流电的调制控制,通过控制双向可控硅的导通和截止,可以实现对交流电的调制,改变电流的波形和幅值。
双向可控硅工作原理图解一、引言双向可控硅(Bilateral Switch Diode,简称BSD)是一种特殊的半导体器件,具有双向导通的特性。
它可以在正向和反向电压下都能够可控导通,具有可靠的开关性能和较大的耐压能力。
本文旨在通过深入解析双向可控硅的工作原理,向读者展示其内部结构及关键组成部分,并详细说明其在电路中的应用。
二、双向可控硅的结构与特性2.1 结构双向可控硅由四个半导体元件组成:两个PNP型晶体管和两个NPN型晶体管。
这四个晶体管被连接在一起,形成了双向可控硅的结构。
双向可控硅的结构概览如下图所示:-> NPN|-> PNP|-> NPN|-> PNP2.2 特性双向可控硅具有以下几个主要特性:1.双向导通:双向可控硅能够在正向和反向电压下都能够可控导通,可以用于交流电路中的开关控制。
2.双向触发:双向可控硅在正向和反向触发电压下都可以工作,触发脉冲的极性可以根据不同应用需求选取。
3.可靠性高:双向可控硅具有较高的耐压能力和可靠的开关性能,能够承受较大的电流和电压。
4.响应速度快:双向可控硅具有快速的响应速度,可以迅速实现导通或截止状态的切换。
三、双向可控硅的工作原理3.1 正向电压下的工作原理当正向电压施加在双向可控硅的主电极之间时,两个PNP型晶体管之间的base-emitter结区会被偏置,使得P区中的少数载流子开始注入到N区,形成PN结。
此时,双向可控硅处于导通状态。
3.2 反向电压下的工作原理当反向电压施加在双向可控硅的主电极之间时,两个NPN型晶体管之间的base-emitter结区会被偏置,使得N区中的少数载流子开始注入到P区,形成PN结。
此时,双向可控硅也处于导通状态。
3.3 触发与导通控制双向可控硅的导通状态由触发电压控制。
通过施加一个触发电压脉冲来激活双向可控硅,使其从截止状态切换到导通状态。
触发脉冲的极性可以根据需要选择。
四、双向可控硅的应用4.1 交流电路的开关控制双向可控硅广泛应用于交流电路的开关控制领域。
双向可控硅的工作原理双向可控硅结构原理及应用
2010年12月09日 11:30:09
双向可控硅的工作原理双向可控硅结构原理及应用
双向可控硅的工作原理
双向可控硅的工作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN 管所组成当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。
在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。
TRIAC的特性
什么是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。
TRIAC为三端元件,其三端分别为T1 (第二端子或第二阳极),T 2(第一端子或第一阳极)和G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。
因为它是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。
(a)符号 (b)构造
图1 TRIAC
二.TRIAC的触发特性:
由于TRIAC为控制极控制的双向可控硅,控制极电压VG极性与阳极间之电压VT1T2四种组合分别如下:
(1). VT1T2为正, VG为正。
(2). VT1T2为正, VG为负。
(3). VT1T2为负, VG为正。
(4). VT1T2为负, VG为负。
一般最好使用在对称情况下(1与4或2与3),以使正负半周能得到对称的结果,最方便的控制方法则为1与4之控制状态,因为控制极信号与VT1T2同极性。
图2 TRIAC之V-I特性曲线
如图2所示为TRIAC之V-I特性曲线,将此图与SCR之VI特性曲线比较,可看出TRIAC的特性曲线与SCR类似,只是TRIAC正负电压均能导通,所以第三象限之曲线与第一象限之曲线类似,故 TRIAC可视为两个SCR反相并联TRIAC之T1-T2的崩溃电压亦不同,亦可看出正负半周的电压皆可以使TRIAC导通,一般使 TRIAC截止的方法与SCR相同,即设法降低两阳极间之电流到保持电流以下TRIAC即截止。
三.TRIAC之触发:
TRIAC的相位控制与SCR很类似,可用直流信号,交流相位信号与脉波信号来触发,所不同者是V T1-T2负电压时,仍可触发 TRIAC。
四. TRIAC的相位控制:
TRIAC的相位控制与SCR很类似,但因TRIAC能双向导通之故,在正负半周均能触发、可作为全波功率控制之用,因此TRIAC除具有SCR 的优点,更方便于交流功率控制,图3(a)为TRIAC相位控制电路,只适当的调整RC时间常数即可改变它的激发角,图3(b),(c)分别是激发角为30度时的 VT1-T2及负载的电压波形,一般TRIAC所能控制的负载远比SCR小,大体上而言约在600V,40A以下。
(A)
(B)AC两端电压波形(C)两端电压波形
五 .触发装置:
TRIAC之触发电路与SCR类似,可以用RC电路配合UJT、PUT、DIAC等元件组成的触发电路来触发,这些元件的触发延迟角。
都可由改变电路所使用的电阻值来调整,其变化范围在0°~180°之间,正负半周均能导通,而在工业电力控制上,常以电压回授来调整触发延迟角,用以代表负载实际情况的电压回授,启动系统做良好的闭回路控制。
这种由回授来控制触发延迟角,常由UJT或TCA785来完成。
实验:
应用电路说明
如图所示,利用TCA785所组成之TRIAC相位控制电路,其动作原理与SCR之TCA785相位控制电路相似,由于TRIAC在电源正负半周均能导通,所以第14脚(控制正半周之激发角)与第15脚(控制负半周之激发角),均必须使用。
由VR1之改变以改变第11脚之控制电压值,则可调整激发角以控制灯泡之亮度。
利用TCA785做TRIAC之相位控制
双向可控硅结构原理及应用
双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。
其英文名称TRIAC即三端双向交流开关之意。
构造原理
尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。
小功率双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所示。
典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。
大功率双向晶闸管大多采用RD91型封装。
双向晶闸管的主要参数见附表。
双向晶闸管的结构与符号见图2。
它属于NPNPN五层器件,三个电极分别是T1、T2、G。
因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。
表示,不再划分成阳极或阴极。
其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。
反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。
双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。
检测方法
下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。
1.判定T2极
由图2可见,G极与T1极靠近,距T2极较远。
因此,G—T1之间的正、反向电阻都很小。
在用 RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。
这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。
,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通,据此亦可确定T2极。
2.区分G极和T1极
(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。
(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。
接着用红表笔尖把T2与G短路,给 G极加上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。
再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。
(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。
由此证明上述假定正确。
否则是假定与实际不符,需再作出假定,重复以上测量。
显见,在识别G、T1,的过程中,也就检查了双向晶闸管的触发能力。
如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管于巳损坏。
对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。
典型应用
双向晶闸管可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器 (SSR)和固态接触器电路中。
图5是由双向晶闸管构成的接近开关电路。
R为门极限流电阻,JAG为干式舌簧管。
平时JAG断开,双向晶闸管TRIAC也关断。
仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。
由于通过
干簧管的电流很小,时间仅几微秒,所以开关的寿命很长.
图 6是过零触发型交流固态继电器(AC-SSR)的内部电路。
主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。
当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。
固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电
磁继电器。