第14讲 三角形的基础知识
- 格式:doc
- 大小:366.48 KB
- 文档页数:6
几何部分第一部分:点、线、角一、线1、直线2、射线3、线段二、角1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
2.角的平分线3、角的度量:度量角的大小,可用“度”作为度量单位。
把一个圆周分成360 等份,每一份叫做一度的角。
1 度=60 分;1 分=60 秒。
4. 角的分类:(1)锐角(2)直角(3)钝角(4)平角(5)周角5. 相关的角:(1)对顶角(2)互为补角(3)互为余角6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质(1)对顶角相等(2)同角或等角的余角相等(3)同角或等角的补角相等。
三、相交线1、斜线2、两条直线互相垂直3、垂线,垂足4、垂线的性质(l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。
四、距离1、两点的距2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
十三、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.第二部分:三角形知识点:一、关于三角形的一些概念1、三角形的角平分线。
1对3辅导讲义学员姓名:学科教师: 年级:辅导科目: 授课日期时间主题三角形、梯形的中位线学习目标1.理解三角形、梯形的中位线概念;2.掌握三角形、梯形中位线的性质定理,并能用其进行计算和论证;3. 能综合运用三角形、梯形、以及其他特殊四边行有关知识进行计算与证明.教学内容1、 上次课后巩固作业复习;2、 互动探索1.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半; 2.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. 练习:1.已知梯形的中位线长为9cm ,上底长5cm ,那么下底的长是 cm ; 2.梯形的中位线长为20cm ,高为4cm ,则其面积为 cm ²;3.若梯形的中位线被它的两条对角线三等分,则梯形的上底a 与下底b (a <b )的比是( ) A 、12 B 、13 C 、23 D 、254.△ABC 中,D 、E 分别为AB 、AC 的中点,若DE =4,AD =3,AE =2,则△ABC 的周长为______. 参考答案:1.13; 2.80; 3. A ; 4.18.EDFBCAEF AD BC【知识梳理1】三角形的中位线平行于第三边,并且等于第三边的一半 【例题精讲】例1:在梯形ABCD 中,EF 分别是对角线BD 和AC 的中点,求证:1()2EF BC AD =-参考答案:联结DF 并延长交BC 与G ,证明△ADF ≌△CGF ,再根据三角形中位线可得试一试:如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底的差是8,两 腰和是12,求△EFG 的周长。
参考答案:联结AE 并延长,交CD 于点H .∵AB ∥CD , ∴∠ABE =∠HDE ,∠EAB =∠EHD , 又∵E 为BD 中点, ∴BE =DE .∴△AEB ≌△HED . ∴DH =AB ,AE =EH . ∵F 为AC 中点; ∴EF =12HC =12 (CD —DH )= 12(CD —AB )=4 ∵点E 、F 、G 分别是BD 、AC 、DC 的中点 ∴EG =12BC , FG =12AD ; ∴EG+ FG =12(BC+AD )=6 ∴△EFG 的周长为10例题2:问题1:我们把依次联结任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,依次联结各边中点得到的中点四边形EFGH .这个中点四边形EFGH 的形状为 ;说明理由.EFA DBC EFA D BCG FEB DCA H GFEB DCA问题2:将问题1中的四边形特殊化后,又能都到什么特殊的中点四边形? 总结一下,完成下表:基础图形 顺次联结其各边中点所得的四边形 (在图中画出并指出四边形类型)平行四边形矩形菱形正方形梯形等腰梯形问题3:根据问题2的探究,请你总结中点四边形的形状由原四边形的什么决定的?参考答案:问题1:平行四边形; 证明:联结AC ,∵E 是AB 的中点,F 是BC 的中点, ∴EF ∥AC ,EF =12AC FGEHA BCDFGEHABCD同理:HG ∥AC ,HG =12AC ∴EF ∥HG ,EF =HG , ∴四边形EFGH 是平行四边形. 问题2:略;问题3:中点四边形的形状是由原四边形对角线的数量和位置关系决定的,当原四边形对角线相等时为菱形,对角线垂直时为矩形,对角线相等且垂直时为正方形.例题3:如图,在△ABC 中,点D 是边BC 的中点,点E 在△ABC 内,AE 平分∠BAC 内,CE ⊥AE ,点F 在边AB 上,EF ∥BC .(1)求证:四边形BDEF 是平行四边形;(2)线段BF 、AB 、AC 的数量之间具有怎样的关系?证明你所得到的结论.参考答案:(1)证明:延长CE 交AB 于点G ,∵AE ⊥CE ,∴∠AEG =∠AEC =90º,又∵∠GAE =∠CAE ,AE =AE ,∴△AGE ≌△ACE . ∴GE =EC .∵BD =CD ,∴DE //AB .∵EF //BC ,∴四边形BDEF 是平行四边形.(2)解:∵四边形BDEF 是平行四边形,∴BF =DE .∵D 、E 分别是BC 、GC 的中点,∴BG =2BF =2DE . ∵△AGE ≌△ACE ,∴AG =AC ,∴2BF =AB –AG =AB –AC .例题4:如图,在梯形ABCD 中,AB //CD ,AD =BC ,对角线AC 、BD 的交点O ,∠AOB =60°,又S 、P 、Q 分别是DO 、AO 、BC 的中点. 求证:△SPQ 是等边三角形.FEDBCAGFEDBCA参考答案:证明:联结CS ,BP . ∵四边形ABCD 是等腰梯形,且AC 与BD 相交于O , ∴可得出:△CAB ≌△DBA , ∴∠CAB =∠DBA , 同理可得出:∠ACD =∠BDC ,∴AO =BO ,CO =DO . ∵∠AOB =60°, ∴△OCD 与△OAB 均为等边三角形. ∵S 是OD 的中点, ∴CS ⊥DO .在Rt △BSC 中,Q 为BC 中点,SQ 是斜边BC 的中线,∴SQ =12BC . 同理BP ⊥AC . 在Rt △BPC 中,PQ =12BC . 又∵SP 是△OAD 的中位线,∴SP =12AD =12BC . ∴SP =PQ =SQ .故△SPQ 为等边三角形※例题5:如图在△ABC 中,D 、E 分别为AB 、AC 上的点,且BD =CE ,M 、N 分别是BE 、CD 的中点.过 MN 的直线交AB 于P ,交AC 于Q ,线段AP 、AQ 相等吗?为什么? 答案:AP =AQ ,理由:取BC 的中点H ,联结MH ,NH . ∵M ,H 为BE ,BC 的中点,∴MH ∥EC ,且MH =12EC .同理:NH ∥BD ,且NH =12BD .∵BD =CE ,∴MH =NH .∴∠HMN =∠HNM ; ∵MH ∥EC ,∴∠HMN =∠PQA , 同理∠HNM =∠QP A . ∴∠APQ =∠AQP , ∴AP =AQ补充类试题:已知:如图,在四边形ABCD 中,AD =BC ,E 、F 分别是DC 、AB 边的中点,FE 的延长线分别与AD 、BCQPS OC DA BQPS OCDA BQPNMABCD E HQ PN MABCD E的延长线交于H 、G 点. 求证:∠AHF =∠BGF .参考答案:联结AC ,取AC 的中点M ,再分别联结ME 、MF , ∵E 、F 分别是DC 、AB 边的中点,∴ME ∥AD , EM =12AD , MF ∥BC ,MF =12BC . ∵AD =BC , ∴EM =MF , ∴∠MEF =∠MFE . ∵EM ∥AH ,∴∠MEF =∠AHF ∵FM ∥BG ,∴∠MFE =∠BGF ∴∠AHF =∠BGF1.若顺次联结四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是 的四边形; 2.如图,在梯形ABCD 中,已知AD //CB ,对角线AC ⊥BD ,且AC =5cm ,BD =12cm ,则梯形的中位线长 为 cm ;3.已知:如图,△ABC 中,D 是BC 边的中点,AE 平分∠BAC ,BE ⊥AE 于E 点,若AB =5,AC =7,求ED .GH FEDABC MGH FE DABCDBCA4.如图,AD 平分∠BAC ,交BC 于点D ,过C 作AD 的垂线,交AD 的延长线于点E ,F 为BC 中点,联结EF ; 求证:EF //AB .参考答案:1.对角线垂直; 2.132; 3. ED =1,提示:延长BE ,交AC 于F 点; 4.提示:延长AB 和CE 交于G 点即可.【巩固练习】1.如图,梯形ABCD 中,E 、F 分别为腰AB 、CD 的中点,若 ∠ABC 和∠DCB 的平分线相交与线段EF 上的一点P ,当EF =3时,则梯形ABCD 的周长为 ;EDBCAD FEBCA2.等腰梯形的对角线互相垂直,若连接该等腰梯形各边中点,则所得图形是( ) A 、平行四边形B 、矩形C 、菱形D 、正方形3.如图,在梯形ABCD 中,AD //BC ,E 、F 、M 分别为AB 、DC 、BC 的中点,且ME = MF . 求证:梯形ABCD 是等腰梯形.4.如图,已知BE 、CD 分别是△ABC 的角平分线,并且AE ⊥BE 于E 点,AD ⊥DC 于D 点. 求证:(1)DE ∥BC ;(2)DE =12(AB +AC −BC ).参考答案:1.12; 2.D ;3.联结AC ,BD , ∵E 、F 、M 分别为AB 、DC 、BC 的中点, ∴EM =12AC ,MF =12BD , ∵ME = MF , ∴AC =BD , ∴梯形ABCD 是等腰梯形4.证明:(1)延长AD 、AE ,交BC 于F 、G ; ∵BE ⊥AG , ∴∠AEB =∠BEG =90°;∵BE 平分∠ABG ,∴∠ABE =∠GBE ;∴∠BAE =∠BGE ; ∴△ABG 是等腰三角形;∴AB =BG ,即E 是AG 中点; 同理可得:D 是AF 中点; ∴DE 是△AFG 的中位线; ∴DE ∥BC . (2)由(1)知DE 是△AFG 的中位线,∴DE =12FG ; PFE DBCA FEDMA BC FEDMABCED B CAGF ED BCA∵FG=BG+CF-BC,且AB=BG,AC=CF;∴FG=AB+AC-BC,即DE=12(AB+AC-BC)【预习思考】1.菱形的两条对角线之比是2:3,面积是27,则两条对角线的长分别是和.2.如图,已知梯形ABCD的中位线为EF,且△AEF的面积为6cm2,则梯形ABCD的面积为()A、12 cm2B、18 cm2C、24 cm2D、30 cm23.已知四边形ABCD是平行四边形,下列结论中不正确的是()A、当AB=BC时,它是菱形;B、当AC⊥BD时,它是菱形;C、当AC=BD时,它是正方形;D、当∠ABC=900时,它是矩形. 4.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形。
2、三角形的高、中线、角平分线(1)三角形的高、中线、角平分线都是线段 .(2)交点情况:① 三条高所在的直线交于一点:三角形是锐角三角形时交点位于三角形的内部;三角形是直角三角形时,交点位于直角三角形的直角顶点;三角形是钝角三角形时,交点位于三角形的外部 .三角形的高② 三角形的三条中线交于一点,交点位于三角形的内部,每条中线都把三角形分成面积相等的两个三角形 .三角形的中线③ 三角形的三条角平分线交于一点,交点位于三角形的内部 .3、三角形的内角和三角形内角和定理: 任何三角形的内角和都等于 180° .三角形的三个内角用数学符号表示为:在△ABC 中,∠1 + ∠2 + ∠3 = 180° .4、三角形的外角与内角的关系(1)等量关系:(2)不等量关系:三角形的一个外角大于任何与它不相邻的内角 .5、多边形多边形的定义:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的图形叫做多边形 .对角线: 连接多边形不相邻的两个顶点的线段 .六边形多边形对角线条数探索:归纳总结:(1)n 边形的内角和是(n - 2)180°,外角和是 360° ;正 n 边形的每个内角是:(2) 从 n 边形的一个顶点出发,可做 ( n - 3 ) 条对角线,把 n 边形分成 ( n - 2 ) 三角形,所以 n 边形的内角和是 ( n - 2 )180° ;一个 n 边形一共有 n ( n - 3 ) / 2 条对角线 ( n ≥ 3 ) .(3)如果一个角的两边分别平行于另一角的两边,则这两个角 相等或互补 ;如果一个角的两边分别垂直于另一角的两边,则这两个角 相等或互补 .二、习题练习【 三边关系 】1. 下列长度的三条线段,能组成三角形的是( B )A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm,14cm2. 下列各组数中,能作为一个三角形三边边长的是( C )A.1,1,2B.1,2,4C.2,3,4D.2,3,53. 已知三角形两边的长分别是 3 和 7,则此三角形第三边的长可能是( C ) A.1 B.2 C.8 D.114. 下列长度的三条线段,能组成三角形的是( B )A.3,4,81、 如图,将直尺与含 30° 角的三角尺摆放在一起,若 ∠1 = 20°,则 ∠2的度数是( A )A.50° B.60° C.70° D.80°2、 如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则5、 如图,在 △ABC 中,CD 平分 ∠ACB 交 AB 于点 D,过点 D 作 DE∥BC 交 AC 于点 E.若 ∠A=54°,∠B=48°,则 ∠CDE 的大小为( C )A.44° B.40° C.39° D.38°6. 如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在 △ABC 外的 A'处,折痕为 DE.如果 ∠A = α,∠CEA′ = β,∠BDA' = γ,那么下列式子中正确的是(A )A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β7. 如图,∠ACD 是 △ABC 的外角,CE 平分 ∠ACD,若 ∠A=60°,∠B=40°,则∠ECD 等于( C )A.40° B.45° C.50° D.55°9、 如图,点 D 在 △ABC 边 AB 的延长线上,DE∥BC.若 ∠A = 35°,∠C = 24°, 则 ∠D 的度数是( B )A.24° B.59° C.60° D.69°10. 如图,∠B = ∠C = 90°,M 是 BC 的中点,DM 平分 ∠ADC,且 ∠ADC = 110°, 则 ∠MAB =( B )A.30° B.35° C.45° D.60°11. 如图,墙上钉着三根木条 a,b,c,量得 ∠1=70°,∠2=100°,那么木条 a,b 所在直线所夹的锐角是( B )A.5° B.10° C.30° D.70°12. 已知直线 m∥n,将一块含 45° 角的直角三角板 ABC 按如图方式放置,其中斜边BC 与直线 n 交于点 D.若 ∠1 = 25°,则 ∠2 的度数为( C )A.60° B.65° C.70° D.75°13、 已知:如图,△ABC 是任意一个三角形,求证:∠A+∠B+∠C=180°.14. 如图,在 △ABC 中,AB=AC,D 是 BC 边上的中点,连结 AD,BE 平分 ∠ABC 交 AC 于点 E,过点 E 作 EF∥BC 交 AB 于点 F.(1)若 ∠C = 36°,求 ∠BAD 的度数.( 答案:54° )(2)若点 E 在边 AB 上,EF∥AC 交 AD 的延长线于点 F.求证:FB = FE.【 三角形的重要线段 】1. 如图,在 △ABC 中有四条线段 DE,BE,EF,FG,其中有一条线段是 △ABC 的中线,则该线段是( B )A.线段 DE B.线段 BE C.线段 EF D.线段 FG2. 如图,△ABC 中,AD 是 BC 边上的高,AE、BF 分别是 ∠BAC、∠ABC的平分线,∠BAC = 50°,∠ABC = 60°,则 ∠EAD + ∠ACD =( A )【 三角形的稳定性 】1. 下列图形具有稳定性的是( A )【多边形】1. 如图,在五边形 ABCDE 中,∠A + ∠B + ∠E = 300°,DP、CP 分别平分∠EDC、∠BCD,则 ∠P=( C )2. 图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则 ∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 360 度.3、 通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有 2 条,那么该多边形的内角和是540 度.4. 一个 n 边形的每一个内角等于108°,那么 n = 5 .5、 若一个多边形的内角和是其外角和的 3 倍,则这个多边形的边数是 8 .6、 五边形的内角和是 540。
三角形知识点整理三角形的基础知识点三角形是几何学中的基本图形,由三条边和三个顶点组成。
以下是关于三角形的基础知识点的整理:1.根据边长分类:-等边三角形:三条边的长度相等。
-等腰三角形:两条边的长度相等。
-不等边三角形:三条边的长度都不相等。
2.根据角度分类:-直角三角形:一个角度为90度的三角形。
-钝角三角形:一个角度大于90度的三角形。
-锐角三角形:三个角度都小于90度的三角形。
3.根据角度关系分类:-等角三角形:三个角度相等。
-直角等腰三角形:一个角度为90度,另外两个角度相等。
-直角不等腰三角形:一个角度为90度,其余两个角度不相等。
-等腰直角三角形:两条边的长度相等,一个角度为90度。
-不等腰直角三角形:两条边的长度不相等,一个角度为90度。
4.根据边与角关系分类:-锐角等腰三角形:一个角度为锐角,两边的长度相等。
-锐角不等腰三角形:一个角度为锐角,三条边的长度都不相等。
-钝角等腰三角形:一个角度为钝角,两边的长度相等。
-钝角不等腰三角形:一个角度为钝角,三条边的长度都不相等。
5.根据边与边关系分类:-等边等角三角形:三条边的长度相等,三个角度也相等。
-等边等腰三角形:三条边的长度相等,两个角度也相等。
-等腰等角三角形:两条边的长度相等,两个角度也相等。
6.根据边与角的关系分类:-直角三角形:一个角度为90度。
-钝角三角形:一个角度大于90度。
-锐角三角形:三个角度都小于90度。
7.三角形的性质:-三角形的内角和等于180度。
-三角形的任意两边之和大于第三边。
-等腰三角形的底角相等,顶角相等。
-等边三角形的三个角度都为60度。
-直角三角形的两个锐角互补,即相加等于90度。
-直角三角形的斜边最长,斜边是其他两条边的平方和的平方根。
以上是关于三角形的基础知识点的整理。
了解和掌握这些知识点有助于理解和解决与三角形相关的问题。
三角形的三边关系基础知识在数学中,三角形是研究几何形状和关系的重要概念。
而三角形的三边关系则是三角形基础知识中的重要内容之一。
本文将介绍三边关系的相关概念和性质,以帮助读者更好地理解三角形的特性和性质。
1. 三边关系的定义三角形由三条边所组成,而这三条边之间存在着特殊的关系。
在三角形ABC中,设三条边分别为a,b,c,则三边关系可以用下述定义来描述:a +b > cb +c > ac + a > b这三个不等式被称为三边关系的定义。
简而言之,任意两边之和大于第三边,而任意两边之差小于第三边。
2. 三边关系的性质三边关系的定义为我们提供了关于三角形边长的限制条件。
根据这些条件,我们可以推导出一些重要的性质。
(1)等边三角形当三条边的长度都相等时,即a = b = c,这样的三角形称为等边三角形。
在等边三角形中,每条边都相等,同时三个内角也相等,每个内角为60度。
当两条边的长度相等时,即a = b 或 b = c 或 c = a,这样的三角形称为等腰三角形。
在等腰三角形中,两个等边对应的两个内角相等。
(3)直角三角形当一个角恰好为90度时,这样的三角形称为直角三角形。
在直角三角形中,较长的一条边称为斜边,而与直角相对的两个较短的边分别称为直角边。
根据勾股定理,斜边的平方等于直角边平方的和。
(4)斜三角形当三条边均不相等时,这样的三角形称为斜三角形。
斜三角形是三角形中最常见的一种类型,其内角的大小也是各不相同的。
3. 三边关系的应用三边关系在几何学和应用数学中具有广泛的应用。
(1)判断三角形的存在性根据三边关系的定义,我们可以判断给定三边长度是否可以构成一个三角形。
当三条边满足任意两边之和大于第三边的条件时,三角形才存在。
(2)解决实际问题三边关系可以帮助我们解决各种实际问题,例如测量无法直接测量的距离、定位远离物体的位置等。
通过测量三角形的边长和角度,我们可以利用三边关系来推算出其他未知量。
两边及其夹角分别相等的两个三角形一、教材分析(一)本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。
它是两三角形间最简单、最常见的关系。
本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。
因此,本节课的知识具有承上启下的作用。
同时,沪科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二)教学目标(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三)教材重难点由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。
同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。
画有相关图片的作业纸。
二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
三、教学流程(一)创设情景,激发求知欲望首先,我出示一个实际问题:问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。
质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。
全等三角形知识框架:知识精讲:全等图形:能够完全重合的两个图形。
形状完全相同,大小相等。
全等三角形的性质:全等三角形的对应边相等、全等三角形的对应角相等。
全等三角形的周长相等,全等三角形的面积也相等。
注意事项:一、全等三角形的性质是证明线段和角相等的理论依据,应用时关键是寻找对应角和对应边。
二、正确区分对应边与对边,对应角与对角的概念。
一般地:对应边、对应角针对全等三角形,对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角。
例如:如图,△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C 和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角。
三、表示两个角全等时,表示对应顶点的字母要写在对应的位置上;也就是题中出现两个三角形全等我们就可以利用对应的字母寻找对应角以及对应边。
“有三个角对应相等”或“有两边及其中一边的对应角对应相等”的两个三角形不一定全等;四、时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”。
全等交换:全等变换是指只改变图形的位置,而不改变图形的形状和大小的变换.如图①,把△ABC沿直线BC移动线段BC的距离,可以变到△ECD的位置;如图②,以直线BC 为轴把△ABC翻折,可以变到△DBC的位置;如图③,以点A以点为中心把△ABC旋转180°,可以变到△AED的位置.像这样,只改变图形的位置,而不改变其形状、大小的图形变换叫做全等变换.在全等变换中可以清楚地识别全等三角形的对应元素.以上三种全等变换分别叫做平移变换、翻折变换和旋转变化.例题:如图,△ABC和△DEF全等,问经过怎样的图形变换,可使这两个三角形重合?分析:解法一:先将△DEF沿着CB方向平移,使点E与点B重合(此时点F与点C重合),再将移动后的△DEF沿着直线BC翻折,此时△DEF与△ABC重合解法二:先把△DEF沿直线以EF翻折,再把翻折后的△DEF沿着CB方向平移,使点E与点B重合,则△DEF与△ABC重合.经典题型:判定两个三角形全等的条件:三边分别相等的两个三角形全等(简写成“边边边”或“SSS”)在△ABC和△A′B′C′中AB=A′B′AC=A′C′BC=B′C′∴△ABC≌△A′B′C′(SSS)例题:1、已知:如图,点B、E、C、F在同一直线上,AC=DF,AB=DF,BE=CF.求证:AC∥DF.分析:∵BE=CF∴BC=EF在△ABC和△DEF中AB=DEBC=EFAC=DF∴△ABC≌△DEF(SSS)∴∠ACB=∠F∴AC∥DF.2、已知,如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.分析:∵AF=DC∴AF-CF=DC-CF,即AC=DF在△ABC和△DEF中AC=DFAB=DEBC=EF∴△ABC≌△DEF(SSS)3、如图,AB=CD,AE=DF,CE=FB,求证:∠BAE=∠CDF.分析:∵CE=BF,∴CE+EF=BF+EF,即CF=BE.在△ABE和△DCF中AB=DCAE=DFBE=CF∴△ABE≌△DCF(SSS).∴∠BAE=∠CDF(全等三角形的对应角相等).判定两个三角形全等的条件:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”)运用“SAS”证明三角形全等时,一定要找准对应相等的边、角,要注意隐含的等角,如等角、公共角、对顶角、角平分线等;在书写“SAS”的格式时,要按照“SAS”的顺序书写,以表明三个元素的位置关系;“SSA”不能证明两个三角形全等.在△ABC和△A′B′C′中AB=A′B′∠A=∠A′AC=A′C′∴△ABC≌△A′B′C′(SAS)例题:1、如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD分析:在△ADB和△BAC中AD=BC∠DAB=∠CBAAB=BA∴△ADB≌△BCA(SAS)∴BD=AC2、如图,点A、B、C、D在同一直线上,CE∥DF,AC=DF,CE=BD,求证:∠A=∠F.分析:∵CE∥DF∴∠ACE=∠D在△ACE和△FDB中AC=FD∠ACE=∠DCE=DB∴△ACE≌△FDB(SAS)∴∠A=∠F.3、如图,AB=AD,AC平分∠BAD,求证:△ABC≌△ADC.分析:∵AC平分∠BAD,∴∠BAC=∠DAC.在△ABC和△ADC中AB=AD∠BAC=∠DACAC=AC∴△ABC≌△ADC(SAS).判定两个三角形全等的条件:两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”)在△ABC和△A′B′C′中∠B=∠B′BC=B′C′∠C=∠C′∴△ABC≌△A′B′C′(ASA)例题:1、已知,∠C=∠CAF=90°,点E在AC上,且AE=BC,EF⊥AB于点D.求证AB=FE分析:∵EF⊥AB于点D,∴∠ADE=90°∴∠1+∠2=90°又∵∠C=90°∴∠1+∠B=90°∴∠B=∠2在△ABC和△FEA和∠B=∠2BC=AE∠C=∠FAE∴△ABC≌△FEA(ASA)∴AB=FE2、如图,已知EC =AC,∠BCE=∠DCA,∠A=∠E,求证:BC=DC.分析:由已知条件求得∠BCA=∠DCE,再利用“ASA”判定△BCA≌△DCE,即可得证.证明∵∠BCE=∠DCA,∴∠BCE+∠ACE= ∠DCA+∠ACE,即∠BCA=∠DCE.又∵AC=EC,∠A=∠E,∴△BCA≌△DCE(ASA).∴BC =DC.判定两个三角形全等的条件:两角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”)“AAS”是由“ASA”推导得出的,将两者结合起来可知:两个三角形如果其备两个角和一条边对应相等,就可判定其全等.在△ABC和△A′B′C′中∠B=∠B′∠C=∠C′AB=A′B′∴△ABC≌△A′B′C′(AAS)例题:1、如图,已知∠1=∠2,∠C=∠D,求证:OC=OD.分析:在△ABC于△BAD中∠1=∠2∠C=∠DAB=BA∴△ABC≌△BAD(AAS)∴AD=BC∵∠1=∠2∴AO=BO∴AD-AO=BC-BO即OC=OD.2、已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.分析:∵BF∥AC∴∠F=∠FCA∵Rt△ACD中,CE⊥AD∴∠BCF+∠F=90°,∠BCF+∠ADC=90°∴∠F=∠ADC在△ACD和△CBF中∠ACD=∠CBF=90°∠F=∠ADCAC=BC∴△ACD ≌△CBF (AAS )∴CD =BF∵D 为BC 中点∴CD =BD∴BF =CD =BD =12BC =12AC则AC =2BF判定两个直角三角形全等的方法:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边与直角边”或“HL ”)在Rt △ABC 和Rt △A ′B ′C ′中AB =A ′B ′BC =B ′C ′∴Rt △ABC ≌Rt △A ′B ′C ′(HL )例题:1、如图,已知AB ⊥BD ,AB ∥ED ,AB =ED ,要说明△ABC ≌△EDC ,若以“SAS ”为依据,还要添加的条件为?若添加条件AC =EC .则可以用-----公理(或定理)判定全等。
第14讲 锐角三角函数知识纵横古希腊数学家和古代中国数学家为了测量的需要,他们发现并经常利用下列几何结论:在两个大小不同的直角三角形中,只要有一个锐角相等,那么这两个三角形的对应边的比值一定相等。
正是古人对天文观察和测量的需要才引起人们对三角函数的研究,1748年经过瑞士的著名数学家欧拉的应用,才逐渐形成现在的cot tan cos sin 、、、的通用形式。
三角函数揭示了直角三角形中边与锐角之间的关系,是数学结合的桥梁之一,有一下丰富的性质: 1.单调性2.互余三角函数间的关系3.同角三角函数之间的关系。
平方关系1cos sin 22=+a a商数关系aaa a a sin cos cot ,cos sin tan == 倒数关系1cot tan =a a例题求解【例1】(1)如图,在正方形ABCD 中,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则ABM ∠tan 的值为 .(全国初中数学联赛题)(2)已知在ABC ∆中,B A ∠∠、是锐角,且135sin =A ,则ABC S ∆= . (黄冈市竞赛题)思路点拨 对于(1),由MBC NMB ∠=∠,分别延长MN BC 、交于T ,可构造等腰三角形,作AB TE ⊥于D ,通过相似三角形建立线段关系;对于(2),过C 作AB CD ⊥于D ,这样由三角函数定义得到线段的比,135sin ==AC CD A ,2tan ==BDCDB ,设n BD n CD cm AC cm CD ====,2,13,5,解题的关键是求出n m 、的值。
【例2】如图,在ABC ∆中,︒=∠90ACB ,︒=∠15ABC ,1=BC 则AC = A.32+ B.32- C.3.0 D.23-(全国初中数学联赛试题)【例3】如图,在直角坐标系中,已知ABC Rt ∆中,︒=∠90ACB ,点C A 、的坐标分别为43tan ),01()0,3(=∠-BAC C A ,、 (1)求过点B A 、直线的函数表达式.(2)在x 轴上找一点D ,连接DB ,使得ADB ∆与ABC ∆相似(不包括全等),并求点D 的坐标.(3)在(2)的条件下,如果Q P 、分别是AB 和AD 的动点,连接PQ ,设m DQ AP ==,问是否存在这样的m 使得APQ ∆与ADB ∆相似,如存在,求出m 的值,如不存在,请说 明理由。
第14讲三角形的基础知识
知识点1三角形的高、中线、角平分线
1.三角形的下列线段中能将三角形的面积分成相等的两部分的是(A)
A.中线B.角平分线
C.高D.中位线
2.下列四个图形中,线段BE是△ABC的高的是(D)
知识点2三角形的中位线的性质
3.如图,已知△ABC中,D,E分别是AB,AC的中点,∠B=60°,则∠ADE的度数为(C)
A.90°
B.70°
C.60°
D.30°
4.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O处,再分别取OA,OB的中点M,N,量得MN=20 m,则池塘的宽度AB为40m.
第4题图第5题图
5.如图,EF为△ABC的中位线,△AEF的周长为6 cm,则△ABC的周长为12cm.
知识点3三角形的三边关系
6.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是(D)
A.3 cm,4 cm,8 cm B.8 cm,7 cm,15 cm
C.5 cm,5 cm,11 cm D.13 cm,12 cm,20 cm
7.若一个三角形的两边长分别为3和7,则第三边长可能是(A)
A.6 B.3 C.2 D.11
8.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.
知识点4三角形的内角和定理及其推论
9.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为(C)
A.35°B.40°C.45°D.50°
10.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=(C) A.35°B.95°C.85°D.75°
第10题图第11题图
11.如图,CD,CE分别是△ABC的高和角平分线,∠A=50°,∠B=70°,EF∥BC交AC于点F,则∠FEC=30°,∠DCE=10°.
12.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如下两幅图都是由同一副三角板拼凑得到的:
(1)图1中的∠ABC的度数为75°;
(2)图2中,已知AE∥BC,则∠AFD的度数为75°.
重难点1三角形中有关角度的计算
如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是85°.
【思路点拨】利用角平分线的性质求出∠ABD的度数,再根据三角形外角的性质求出∠BDC的度数.【变式训练1】(2017·株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=(B)
A.145°B.150°C.155°D.160°
变式训练1图变式训练2图
【变式训练2】(2017·泰州)将一副三角板如图叠放,则图中∠α的度数为15°.,
方法指导求解三角形中有关的角度时,若已知角和待求角可以转化为一个三角形的内角之间或内、外角之间的关系问题,则可以直接利用三角形内角和或外角性质求解.
重难点2三角形的中位线
(2017·宿迁)如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是2.
【思路点拨】首先利用直角三角形斜边上的中线等于斜边的一半求得AB的长,然后根据三角形的中位线定理求解.
【变式训练3】(2017·宜昌)如图,要测定被池塘隔开的A,B两点的距离,可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30 m,BC=40 m,DE=24 m,则AB=(B) A.50 m B.48 m C.45 m D.35 m
变式训练3图变式训练4图
【变式训练4】(2016·张家界)如图,在△ABC中,点D,E,F分别是边AB,BC,CA上的中点,且AB=6
cm,AC=8 cm,则四边形ADEF的周长等于14cm.,
方法指导在三角形中,若已知一条边的中点,则考虑利用三角形中线的性质求解;若已知两条边的中点,则考虑利用三角形的中位线定理求解.
1.(2017·金华)下列各组数中,不可能成为一个三角形三边长的是(C)
A.2,3,4 B.5,7,7
C.5,6,12 D.6,8,10
2.(2017·达州)已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于(B)
A.50°
B.55°
C.60°
D.65°
3.(2017·泰州)三角形的重心是(A)
A.三角形三条边上中线的交点
B.三角形三条边上高线的交点
C.三角形三条边垂直平分线的交点
D.三角形三条内角平分线的交点
4.(2017·扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是(C)
A.6 B.7
C.11 D.12
5.(2017·长沙)一个三角形的三个内角的度数之比为1∶2∶3,则这个三角形一定是(B)
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰直角三角形
6.如图,在△ABC中,∠B,∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=(C) A.118°B.119°
C.120°D.121°
第6题图第7题图
7.(2017·荆州)一把直尺和一块三角板ABC(含30°,60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=40°,那么∠BAF的大小为(D) A.40°B.45°
C.50°D.10°
8.如图,一副分别含有30°和45°角的两个直角三角板,摆成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是(B)
A.10°B.15°
C.25°D.30°
第8题图第9题图
9.(2017·株洲)如图,在△ABC中,∠B=25°.
10.(2017·徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC=14.
11.(2017·盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.
第11题图第12题图
12.如图,在△ABC中,点M为BC的中点,AD平分∠BAC,且BD⊥AD于点D,延长BD交AC于点N.若AB =12,AC=18,则MD的长为3.
13.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,求∠B的度数.
解:∵AE平分∠BAC,
∴∠1=∠CAE.
又∵∠1=30°,∠2=20°,
∴∠EAD=10°.
∵AD⊥BC,∴∠BDA=90°.
∵∠B+∠1+∠EAD+∠BDA=180°,
∴∠B=180°-30°-10°-90°=50°.
14.(2017·白银)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为(D)
A.2a+2b-2c B.2a+2b
C.2c D.0
15.(2017·郴州)小明把一副含45°,30°角的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于(B)
A.180°B.210°
C.360°D.270°
第15题图第16题图
16.如图,D,E,F分别是△ABC三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3=180°.
17.如图,在四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别是线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别是DM,MN的中点,则EF长度的最大值为3.
第17题图第18题图
18.如图,点D在△ABC的边AB上,且AD∶BD=2∶1,E是BC的中点,设S1为△ADF的面积,S2为△CEF
的面积,若S△ABC=24,则S1-S2=4.
19.如图,在△ABC中,D为边AC的中点,且DB⊥BC,BC=4,CD=5.
(1)求DB的长;
(2)在△ABC中,求边BC上的高.
解:(1)∵DB⊥BC,
∴∠DBC=90°.
在Rt△DBC中,BC=4,CD=5,
∴DB=CD2-BC2=52-42=3.
(2)过A作AE⊥BC交线段CB延长线于E,
∵DB⊥BC,
∴AE∥DB.
∵D为AC的中点,
∴DB为△ACE的中位线.
∴AE=2DB=6.
∴边BC上的高为6.。