hadoop开发实战培训37 - MapReduce高阶实现(11)
- 格式:ppt
- 大小:1.57 MB
- 文档页数:12
Hadoop大数据开发基础教案Hadoop介绍教案第一章:Hadoop概述1.1 课程目标了解Hadoop的定义、发展历程及应用场景掌握Hadoop的核心组件及其作用理解Hadoop在大数据领域的优势1.2 教学内容Hadoop的定义与发展历程Hadoop的核心组件:HDFS、MapReduce、YARN Hadoop的应用场景与优势1.3 教学方法讲解与案例分析相结合互动提问,巩固知识点1.4 课后作业简述Hadoop的发展历程及其在大数据领域的优势。
第二章:HDFS(分布式文件系统)2.1 课程目标掌握HDFS的架构与工作原理了解HDFS的优势与局限性掌握HDFS的常用操作命令2.2 教学内容HDFS的架构与工作原理HDFS的优势与局限性HDFS的常用操作命令:hdfs dfs, hdfs dfsadmin2.3 教学方法讲解与实践操作相结合案例分析,理解HDFS的工作原理2.4 课后作业利用HDFS命令练习文件的与。
第三章:MapReduce编程模型3.1 课程目标掌握MapReduce的基本概念与编程模型理解MapReduce的运行原理与执行过程学会使用MapReduce解决大数据问题3.2 教学内容MapReduce的基本概念:Mapper、Reducer、Shuffle与Sort MapReduce的编程模型:Map阶段、Shuffle阶段、Reduce阶段MapReduce的运行原理与执行过程3.3 教学方法讲解与编程实践相结合剖析经典MapReduce案例,理解编程模型3.4 课后作业编写一个简单的MapReduce程序,实现单词计数功能。
第四章:YARN(资源管理器)4.1 课程目标掌握YARN的基本概念与架构了解YARN的工作原理与调度策略掌握YARN的资源管理与优化方法4.2 教学内容YARN的基本概念与架构YARN的工作原理与调度策略YARN的资源管理与优化方法4.3 教学方法讲解与案例分析相结合实操演练,掌握YARN的资源管理方法4.4 课后作业分析一个YARN集群的资源使用情况,提出优化方案。
第四章分布式计算框架MapReduce4.1初识MapReduceMapReduce是一种面向大规模数据并行处理的编程模型,也一种并行分布式计算框架。
在Hadoop流行之前,分布式框架虽然也有,但是实现比较复杂,基本都是大公司的专利,小公司没有能力和人力来实现分布式系统的开发。
Hadoop的出现,使用MapReduce框架让分布式编程变得简单。
如名称所示,MapReduce主要由两个处理阶段:Map阶段和Reduce 阶段,每个阶段都以键值对作为输入和输出,键值对类型可由用户定义。
程序员只需要实现Map和Reduce两个函数,便可实现分布式计算,而其余的部分,如分布式实现、资源协调、内部通信等,都是由平台底层实现,无需开发者关心。
基于Hadoop开发项目相对简单,小公司也可以轻松的开发分布式处理软件。
4.1.1 MapReduce基本过程MapReduce是一种编程模型,用户在这个模型框架下编写自己的Map函数和Reduce函数来实现分布式数据处理。
MapReduce程序的执行过程主要就是调用Map函数和Reduce函数,Hadoop把MapReduce程序的执行过程分为Map和Reduce两个大的阶段,如果细分可以为Map、Shuffle(洗牌)、Reduce三个阶段。
Map含义是映射,将要操作的每个元素映射成一对键和值,Reduce含义是归约,将要操作的元素按键做合并计算,Shuffle在第三节详细介绍。
下面以一个比较简单的示例,形象直观介绍一下Map、Reduce阶段是如何执行的。
有一组图形,包含三角形、圆形、正方形三种形状图形,要计算每种形状图形的个数,见下图4-1。
图:4-1 map/reduce计算不同形状的过程在Map阶段,将每个图形映射成形状(键Key)和数量(值Value),每个形状图形的数量值是“1”;Shuffle阶段的Combine(合并),相同的形状做归类;在Reduce阶段,对相同形状的值做求和计算。
hadoop高级实操题Hadoop是一个开源的分布式计算框架,用于处理大规模数据集的存储和处理。
它的设计目标是能够在普通硬件上进行可靠、可扩展和高效的数据处理。
下面是一道关于Hadoop高级实操的题目,我将从多个角度进行回答。
题目,假设你有一个包含大量文本文件的Hadoop集群,并且你想要统计这些文件中每个单词的出现次数。
请描述你会如何实现这个任务,并说明你的步骤。
回答:1. 数据准备,首先,你需要将这些文本文件上传到Hadoop集群的HDFS(Hadoop分布式文件系统)中。
可以使用Hadoop提供的命令行工具(如hadoop fs -put)或者API进行文件上传。
2. Map阶段,接下来,你需要编写一个Map函数来处理每个文件。
在Map函数中,你可以使用Hadoop提供的输入键值对(key-value)来读取每个文件的内容,并将每个单词作为输出键值对的键,出现次数作为值。
你可以使用Java编写Map函数,并使用Hadoop的MapReduce框架来运行它。
3. Reduce阶段,在Reduce阶段,你需要编写一个Reduce函数来对Map阶段输出的键值对进行合并和计数。
Reduce函数可以接收多个Map函数的输出,并将相同键的值进行累加。
最终,你可以将每个单词作为输出键,累加后的出现次数作为值。
4. 结果输出,最后,你可以将Reduce阶段的输出结果写入Hadoop集群的HDFS中,或者将结果导出到其他存储系统中。
你可以使用Hadoop提供的命令行工具(如hadoop fs -get)或者API 进行文件下载或导出。
在实现这个任务时,还需要考虑一些细节和优化:输入文件格式,如果文件是以文本格式存储的,你可以使用Hadoop提供的TextInputFormat来读取文件。
如果文件是以其他格式存储的,你可能需要自定义输入格式。
分片和并行处理,Hadoop会自动将输入文件切分成多个小块,并分配给不同的Map任务进行处理。
《Hadoop大数据开发实战》教学教案(第一部分)一、教学目标1. 理解Hadoop的基本概念和架构2. 掌握Hadoop的安装和配置3. 掌握Hadoop的核心组件及其作用4. 能够搭建简单的Hadoop集群并进行基本的操作二、教学内容1. Hadoop简介1.1 Hadoop的定义1.2 Hadoop的发展历程1.3 Hadoop的应用场景2. Hadoop架构2.1 Hadoop的组成部分2.2 Hadoop的分布式文件系统HDFS2.3 Hadoop的计算框架MapReduce3. Hadoop的安装和配置3.1 Hadoop的版本选择3.2 Hadoop的安装步骤3.3 Hadoop的配置文件解读4. Hadoop的核心组件4.1 NameNode和DataNode4.2 JobTracker和TaskTracker4.3 HDFS和MapReduce的运行原理三、教学方法1. 讲授法:讲解Hadoop的基本概念、架构和组件2. 实践法:引导学生动手实践,安装和配置Hadoop,了解其运行原理3. 讨论法:鼓励学生提问、发表观点,共同探讨Hadoop的应用场景和优缺点四、教学准备1. 教师准备:熟悉Hadoop的安装和配置,了解其运行原理2. 学生准备:具备一定的Linux操作基础,了解Java编程五、教学评价1. 课堂参与度:学生提问、回答问题的积极性2. 实践操作:学生动手实践的能力,如能够独立完成Hadoop的安装和配置3. 课后作业:学生完成课后练习的情况,如编写简单的MapReduce程序4. 综合评价:结合学生的课堂表现、实践操作和课后作业,综合评价学生的学习效果《Hadoop大数据开发实战》教学教案(第二部分)六、教学目标1. 掌握Hadoop生态系统中的常用组件2. 理解Hadoop数据存储和处理的高级特性3. 学会使用Hadoop进行大数据处理和分析4. 能够运用Hadoop解决实际的大数据问题七、教学内容1. Hadoop生态系统组件7.1 YARN的概念和架构7.2 HBase的概念和架构7.3 Hive的概念和架构7.4 Sqoop的概念和架构7.5 Flink的概念和架构(可选)2. Hadoop高级特性8.1 HDFS的高可用性8.2 HDFS的存储策略8.3 MapReduce的高级特性8.4 YARN的资源管理3. 大数据处理和分析9.1 Hadoop在数据处理中的应用案例9.2 Hadoop在数据分析中的应用案例9.3 Hadoop在机器学习中的应用案例4. Hadoop解决实际问题10.1 Hadoop在日志分析中的应用10.2 Hadoop在网络爬虫中的应用10.3 Hadoop在图像处理中的应用八、教学方法1. 讲授法:讲解Hadoop生态系统组件的原理和应用2. 实践法:引导学生动手实践,使用Hadoop进行数据处理和分析3. 案例教学法:分析实际应用案例,让学生了解Hadoop在不同领域的应用九、教学准备1. 教师准备:熟悉Hadoop生态系统组件的原理和应用,具备实际操作经验2. 学生准备:掌握Hadoop的基本操作,了解Hadoop的核心组件十、教学评价1. 课堂参与度:学生提问、回答问题的积极性2. 实践操作:学生动手实践的能力,如能够独立完成数据处理和分析任务3. 案例分析:学生分析实际应用案例的能力,如能够理解Hadoop在不同领域的应用4. 课后作业:学生完成课后练习的情况,如编写复杂的MapReduce程序或使用Hadoop生态系统组件进行数据处理5. 综合评价:结合学生的课堂表现、实践操作、案例分析和课后作业,综合评价学生的学习效果重点和难点解析一、Hadoop的基本概念和架构二、Hadoop的安装和配置三、Hadoop的核心组件四、Hadoop生态系统组件五、Hadoop数据存储和处理的高级特性六、大数据处理和分析七、Hadoop解决实际问题本教案涵盖了Hadoop的基本概念、安装配置、核心组件、生态系统组件、数据存储和处理的高级特性,以及大数据处理和分析的实际应用。
⼀起学Hadoop——使⽤IDEA编写第⼀个MapReduce程序(Java和Python)上⼀篇我们学习了MapReduce的原理,今天我们使⽤代码来加深对MapReduce原理的理解。
wordcount是Hadoop⼊门的经典例⼦,我们也不能免俗,也使⽤这个例⼦作为学习Hadoop的第⼀个程序。
本⽂将介绍使⽤java和python编写第⼀个MapReduce程序。
本⽂使⽤Idea2018开发⼯具开发第⼀个Hadoop程序。
使⽤的编程语⾔是Java。
打开idea,新建⼀个⼯程,如下图所⽰:在弹出新建⼯程的界⾯选择Java,接着选择SDK,⼀般默认即可,点击“Next”按钮,如下图:在弹出的选择创建项⽬的模板页⾯,不做任何操作,直接点击“Next”按钮。
输⼊项⽬名称,点击Finish,就完成了创建新项⽬的⼯作,我们的项⽬名称为:WordCount。
如下图所⽰:添加依赖jar包,和Eclipse⼀样,要给项⽬添加相关依赖包,否则会出错。
点击Idea的File菜单,然后点击“Project Structure”菜单,如下图所⽰:依次点击Modules和Dependencies,然后选择“+”的符号,如下图所⽰:选择hadoop的包,我⽤得是hadoop2.6.1。
把下⾯的依赖包都加⼊到⼯程中,否则会出现某个类找不到的错误。
(1)”/usr/local/hadoop/share/hadoop/common”⽬录下的hadoop-common-2.6.1.jar和haoop-nfs-2.6.1.jar;(2)/usr/local/hadoop/share/hadoop/common/lib”⽬录下的所有JAR包;(3)“/usr/local/hadoop/share/hadoop/hdfs”⽬录下的haoop-hdfs-2.6.1.jar和haoop-hdfs-nfs-2.7.1.jar;(4)“/usr/local/hadoop/share/hadoop/hdfs/lib”⽬录下的所有JAR包。
hadoop实训报告Hadoop 实训报告一、实训背景随着大数据时代的到来,数据量呈爆炸式增长,传统的数据处理方式已经无法满足需求。
Hadoop 作为一个开源的分布式计算框架,能够有效地处理海量数据,因此在数据处理和分析领域得到了广泛的应用。
为了深入了解和掌握 Hadoop 技术,提高自己的大数据处理能力,我参加了本次 Hadoop 实训。
二、实训目的1、熟悉 Hadoop 生态系统的核心组件,包括 HDFS(Hadoop 分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理框架)等。
2、掌握 Hadoop 集群的搭建和配置方法,能够独立完成集群的部署。
3、学会使用 Hadoop 进行数据的存储、处理和分析,能够编写MapReduce 程序解决实际问题。
4、培养团队合作精神和解决问题的能力,提高自己在大数据领域的实践能力和综合素质。
三、实训环境1、操作系统:CentOS 762、 Hadoop 版本:Hadoop 3213、 Java 版本:JDK 184、开发工具:Eclipse、IntelliJ IDEA四、实训内容(一)Hadoop 集群搭建1、准备工作安装 CentOS 76 操作系统,配置网络、主机名等。
安装 Java 环境,配置 JAVA_HOME 环境变量。
2、安装 Hadoop下载 Hadoop 321 安装包,并解压到指定目录。
配置 Hadoop 环境变量,包括 HADOOP_HOME、PATH 等。
3、配置 Hadoop 集群修改 coresitexml、hdfssitexml、mapredsitexml、yarnsitexml 等配置文件,设置 namenode、datanode、resourcemanager、nodemanager 等相关参数。
启动 Hadoop 集群,包括 namenode 格式化、启动 HDFS、启动YARN 等。
(二)HDFS 操作1、文件上传与下载使用 hadoop fs put 命令将本地文件上传到 HDFS 中。
项目1 Hadoop基础知识1.Hadoop是由哪个项目发展来的?答:2002年,开源组织Apache成立开源搜索引擎项目Nutch,但在Nutch开发过程中,始终无法有效地将计算任务分配到多台计算机上。
2004年前后,Google陆续发表三大论文GFS、MapReduce和BigTable。
于是Apache在其Nutch里借鉴了GFS和MapReduce思想,实现了Nutch版的NDFS和MapReduce。
但Nutch项目侧重搜索,而NDFS和MapReduce则更像是分布式基础架构,因此,2006年,开发人员将NDFS和MapReduce移出Nutch,形成独立项目,称为Hadoop。
2.Hadoop主要有哪些版本?答:目前Hadoop的发行版除了Apache的开源版本之外,还有华为发行版、Intel发行版、Cloudera发行版(CDH)、Hortonworks发行版(HDP)、MapR等,所有这些发行版均是基于Apache Hadoop衍生出来的。
Apache Hadoop版本分为两代,第一代Hadoop称为Hadoop 1.0,第二代Hadoop称为Hadoop 2.0。
第一代Hadoop包含三个大版本,分别是0.20.x,0.21.x和0.22.x,其中,0.20.x 最后演化成1.0.x,变成了稳定版,而0.21.x和0.22.x增加了NameNode HA等新的重大特性。
第二代Hadoop包含两个版本,分别是0.23.x和2.x,它们完全不同于Hadoop 1.0,是一套全新的架构,均包含HDFS Federation和YARN两个系统,相比于0.23.x,2.x增加了NameNodeHA和Wire-compatibility两个重大特性。
3.简要描述Hadoop的体系结构,分析1.x与2.x版本间的区别。
答:Hadoop 2.x相比Hadoop 1.x最大的变化是增加了YARN组件,YARN是一个资源管理和任务调度的框架,主要包含三大模块:ResourceManager(RM)、NodeManager(NM)和ApplicationMaster(AM)。
北京尚学堂提供Hadoop从这里开始!和我一起学习下使用Hadoop的基本知识,下文将以Hadoop Tutorial为主体带大家走一遍如何使用Hadoop分析数据!这个专题将描述用户在使用Hadoop MapReduce(下文缩写成MR)框架过程中面对的最重要的东西。
Mapreduce由client APIs和运行时(runtime)环境组成。
其中client APIs用来编写MR程序,运行时环境提供MR运行的环境。
API有2个版本,也就是我们通常说的老api和新api。
运行时有两个版本:MRv1和MRv2。
该教程将会基于老api和MRv1。
其中:老api在org.apache.hadoop.mapred包中,新api在 org.apache.hadoop.mapreduce中。
前提首先请确认已经正确安装、配置了CDH,并且正常运行。
MR概览Hadoop MapReduce 是一个开源的计算框架,运行在其上的应用通常可在拥有几千个节点的集群上并行处理海量数据(可以使P级的数据集)。
MR作业通常将数据集切分为独立的chunk,这些chunk以并行的方式被map tasks处理。
MR框架对map的输出进行排序,然后将这些输出作为输入给reduce tasks处理。
典型的方式是作业的输入和最终输出都存储在分布式文件系统(HDFS)上。
通常部署时计算节点也是存储节点,MR框架和HDFS运行在同一个集群上。
这样的配置允许框架在集群的节点上有效的调度任务,当然待分析的数据已经在集群上存在,这也导致了集群内部会产生高聚合带宽现象(通常我们在集群规划部署时就需要注意这样一个特点)。
MapReduce框架由一个Jobracker(通常简称JT)和数个TaskTracker(TT)组成(在cdh4中如果使用了Jobtracker HA特性,则会有2个Jobtracer,其中只有一个为active,另一个作为standby处于inactive状态)。