2013中考数学压轴题
- 格式:doc
- 大小:1.63 MB
- 文档页数:104
2013年中考数学冲刺必备压轴题汇编安徽10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A .10B .54C . 10或54D .10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯14.如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_____________解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立 安徽22.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c .(1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG ⊥CG . 解(1)∵D 、C 、F 分别是△ABC 三边中点 ∴DE ∥21AB ,DF ∥21AC , 又∵△BDG 与四边形ACDG 周长相等 即BD +DG +BG =AC +CD +DG +AG∴BG =AC +AG ∵BG =AB -AG ∴BG =2AC AB +=2cb +(2)证明:BG =2c b +,FG =BG -BF =2c b +-22bc = ∴FG =DF ,∴∠FDG =∠FGD 又∵DE ∥AB∴∠EDG =∠FGD ∠FDG =∠EDG ∴DG 平分∠EDF (3)在△DFG 中,∠FDG =∠FGD , △DFG 是等腰三角形,∵△BDG 与△DFG 相似,∴△BDG 是等腰三角形,∴∠B =∠BGD ,∴BD =DG , 则CD = BD =DG ,∴B 、CG 、三点共圆, ∴∠BGC =90°,∴BG ⊥CG23.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。
1、如图12,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x =>上一点C 的纵坐标为8,求A O C △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 .(2) 解法一:如图12-1,∵ 点C 在双曲线上,y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) .过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON .S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 .S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 .解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点C 在双曲线8y x =上,当y = 8时,x = 1 .∴ 点C 的坐标为 ( 1, 8 ).图12O x A y B x y 21x y 8=∵ 点C 、A 都在双曲线8y x =上 ,∴ S △COE = S △AOF = 4 。
∴ S △COE + S 梯形CEFA = S △COA + S △AOF .∴ S △COA = S 梯形CEFA .∵ S 梯形CEFA = 12×(2+8)×3 = 15 ,∴ S △COA = 15 .(3)∵ 反比例函数图象是关于原点O 的中心对称图形 ,∴ OP=OQ ,OA=OB .∴ 四边形APBQ 是平行四边形 .∴ S △POA = S 平行四边形APBQ = ×24 = 6 .设点P 的横坐标为m (m > 0且4m ≠),得P ( m , ) .过点P 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点P 、A 在双曲线上,∴S △POE = S △AOF = 4 .若0<m <4,如图12-3,∵ S △POE + S 梯形PEFA = S △POA + S △AOF ,∴ S 梯形PEFA = S △POA = 6 .∴ 18(2)(4)62m m +⋅-=.4141m8解得m = 2,m = - 8(舍去) .∴ P (2,4).若 m > 4,如图12-4,∵ S △AOF + S 梯形AFEP = S △AOP + S △POE ,∴ S 梯形PEFA = S △POA = 6 .∴18(2)(4)62m m +⋅-=,解得m = 8,m = - 2 (舍去) .∴ P (8,1).∴ 点P 的坐标是P (2,4)或P (8,1).2、如图,抛物线212y x mx n =++交x 轴于A 、B 两点,交y 轴于点C ,点P 是它的顶点,点A的横坐标是-3,点B 的横坐标是1.(1)求m 、n 的值;(2)求直线PC 的解析式;(3)请探究以点A 为圆心、直径为5的圆与直线 PC 的位置关系,并说明理由.(参考数:2 1.41≈,3 1.73≈,5 2.24≈) 解: (1)由已知条件可知: 抛物线212y x mx n =++经过A (-3,0)、B (1,0)两点. ∴ 903,210.2m n m n ⎧=-+⎪⎪⎨⎪=++⎪⎩ ……………………………………2分解得 31,2m n ==-. ………………………3分 (2) ∵21322yx x =+-, ∴ P (-1,-2),C 3(0,)2-. …………………4分设直线PC 的解析式是y kx b =+,则2,3.2k b b -=-+⎧⎪⎨=-⎪⎩ 解得13,22k b ==-. ∴ 直线PC 的解析式是1322yx =-. …………………………6分 说明:只要求对1322k b ==-,,不写最后一步,不扣分.(3) 如图,过点A 作AE ⊥PC ,垂足为E .设直线PC 与x 轴交于点D ,则点D 的坐标为(3,0). ………………………7分 在Rt△O CD 中,∵ O C =32,3O D =, ∴ 2233()3522C D =+=. …………8分∵ O A =3,3O D =,∴AD =6. (9)分 ∵ ∠C O D =∠AED =90o ,∠CD O 公用,∴ △C O D ∽△AED . ……………10分 ∴ OCC D AEAD =, 即335226AE =. ∴ 655AE =. …………………11分 ∵ 65 2.688 2.55> ,∴ 以点A 为圆心、直径为5的圆与直线PC 相离. …………12分。
25. 设,a b 是任意两个不相等的实数,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],a b . 对于一个函数,如果它的自变量x 与函数值y 满足:当m x n ≤≤时,有m y n ≤≤,我们就称此函数是闭区间[],m n 上的“闭函数”.
(1)请你判断:反比例函数2013y x
=是闭区间[]1,2013上的“闭函数”吗?并说明理由. (2)若一次函数(0)y kx b k =+≠是闭区间[],m n 上的“闭函数”,试求此函数的解析式.
(3) 若二次函数2147555
y x x =-- 是闭区间[],a b 上的“闭函数”,试求实数,a b 的值.
26. 如图,在平面直角坐标系中,直线AB 与x 轴,y 轴的正半轴分别交于点A(2,0),B (0,2), 点P (,)a b 在第一象限内运动,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N)分别与直线AB 相交于点E ,点F, 当点P (,)a b 运动时,矩形PMON 的面积为定值2.
(1) 求OAB ∠的度数;
(2) 求证:AOF ∆∽BEO ∆;
(3) 当点E,F 都在线段AB 上时,记OEF ∆的面积为1S ,记以三线段AE ,,EF ,BF 所组成
的三角形的内切圆的面积为2S ,试用含1S 的代数式表示2S .
建议:(1)点p 一定要作在反比例函数2y x
=的图像上,再把图像隐去 (2)坐标轴上最好不标长度单位与数字以及线段等分符号
(3) 此题特别要把图像作准确 但又不能引导学生去度量,不然又回到
尼罗河时代。
2013年各地数学中考附加题(2013.宜宾)1.如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是⌒BD错误!未指定书签。
的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.(2013.宜宾)2.如图,抛物线y1=x2-1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q 的坐标及h的最大值;若不存在,请说明理由(2013.宁波)3.若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.(2013.宁波)4. 如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.(2013.徐州)5.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF (点E、F分别在边AC、BC上)(1)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为____;②当AC=3,BC=4时,AD的长为___;(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.(2013.徐州)6.如图,二次函数y=12 x 2+bx-32的图象与x 轴交于点A (-3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y 轴交于点E .(1)请直接写出点D 的坐标:______;(2)当点P 在线段AO (点P 不与A 、O 重合)上运动至何处时,线段OE 的长有最大值,求出这个最大值;(3)是否存在这样的点P ,使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED 与正方形ABCD 重叠部分的面积;若不存在,请说明理由.(2013.滨州)7.根据要求,解答下列问题:(1)已知直线l 1的函数表达式为y=x ,请直接写出过原点且与l 1垂直的直线l 2的函数表达式;(2)如图,过原点的直线l 3向上的方向与x 轴的正方向所成的角为30°. ①求直线l 3的函数表达式;②把直线l 3绕原点O 按逆时针方向旋转90°得到的直线l 4,求直线l 4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=-15x 垂直的直线l 5的函数表达式.(2013.湖州)8.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC 中,AB=BC ,∠ABC=90°,BO⊥AC,于点O ,点PD 分别在AO 和BC 上,PB=PD ,DE⊥AC 于点E ,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB 平分∠ABO,其余条件不变.求证:AP=CD .(3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P′时,满足题中条件的点D 也随之在直线BC 上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)(2013.湖州)9.如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,sin∠AOB=45反比例函数y=k x(k >0)在第一象限内的图象经过点A ,与BC 交于点F . (1)若OA=10,求反比例函数解析式;(2)若点F 为BC 的中点,且△AOF 的面积S=12,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF∥OB,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.(2013.湛江)10.如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y 轴于A 点,交x 轴于B 、C 两点(点B 在点C 的左侧),已知A 点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(2013.杭州)11.(1)先求解下列两题: ①如图①,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB=BC=CD=DE ,已知∠EDM=84°,求∠A 的度数; ②如图②,在直角坐标系中,点A 在y 轴正半轴上,AC∥x 轴,点B ,C 的横坐标都是3,且BC=2,点D 在AC 上,且横坐标为1,若反比例函数y=k x(x >0)的图象经过点B ,D ,求k 的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.(2013.杭州)12.如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF 的面积为S 2,CF=x ,y= S 1S 2错误!未指定书签。
2013年中考压轴题精选”“XX专题训练一.解答题(共7小题)1.(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.2.已知抛物线y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)抛物线与x轴的另一个交点坐标;_________;(2)方程ax2+bx+c=0的两个根是_________;(3)不等式ax2+bx+c<0的解是_________;(4)y随x的增大而减小的自变量x的取值范围是_________;(5)求出抛物线的解析式及顶点坐标.3.(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.4.如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求新抛物线的解析式.5.(2009•柳州)如图,已知抛物线y=ax2﹣2ax﹣b(a>0)与x轴的一个交点为B(﹣1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;(2)以AD为直径的圆经过点C.①求抛物线的解析式;②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.6.如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.(1)求m的值和抛物线y=ax2+bx的解析式;(2)如在线段OB上有一点C,满足OC=2CB,在x轴上一点D(10,0),连接DC,且直线DC与y轴交于点E.①求直线DC的解析式;②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)7.(2008•宜宾)已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0)、B(0,﹣5)、C(5,0).(1)求此抛物线的表达式;(2)若平行于x轴的直线与此抛物线交于E、F两点,以线段EF为直径的圆与x轴相切,求该圆的半径;(3)在点B、点C之间的抛物线上有点D,使△BDC的面积最大,求此时点D的坐标及△BDC的面积.,解得因为抛物线的对称轴为直线解得:解得所以圆的半径为答:该圆的半径是.)代入得:解得:时,,,﹣,,﹣的面积是.。
2013中考压轴试题代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.()求抛物线的解析式;()若直线平分四边形OBDC 的面积,求k 的值.()把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . ()由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2,把2交(((D (点A(-1,0)、点B 是二次函数y=ax 2-2 的图象与x 轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x 2-2;②点B 与点A(-1,0)关于直线x=0对称,点B 的坐标为(1,0); (2)∠BOC=∠PDB=90º,点P 在直线x=m 上,设点P 的坐标为(m,p ), OB=1, OC=2, DB= m-1 , DP=|p| ,①当△BOC ∽△PDB 时,OB OC = DP DB ,12= |p|m-1 ,p= m-12 或p = 1- m2,点P 的坐标为(m ,m-12 )或(m ,1- m2 );②当△BOC ∽△BDP 时,OB OC = DB DP ,12= m-1|p|,p=2m-2或p=2-2m, 点P 的坐标为(m ,2m-2)或(m ,2-2m );综上所述点P 的坐标为(m ,m-12 )、(m ,1- m2 )、(m ,2m-2)或(m ,2-2m );(3)不存在满足条件的点Q 。
8.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式.(2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(解析)解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =- (20)A ∴-,,(20)B , ··················································· 1分又 点B 在34y x b =-+上 302b ∴=-+32b = BC ∴的解析式为3342y x =-+ ····················································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ························································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B , 4AB ∴=,94CD = ······································································································· 5分 1994242ABC S ∴=⨯⨯=△ ································································································· 6分 (3)过点N 作NP MB ⊥于点PEO MB ⊥NP EO ∴∥BNP BEO ∴△∽△ ········································································································ 7分BN NP BE EO∴= ···················································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP ∴=,65NP t ∴= ······························································································· 9分 16(4)25S t t ∴=- 2312(04)55S t t t =-+<< ··························································································· 10分 2312(2)55S t =--+ ····································································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. ······························ 12分 16.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30 的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.解:(1)由题意知点C '的坐标为(34)-,. 设2l 的函数关系式为2(3)4y a x =--. 又 点(10)A ,在抛物线2(3)4y a x =--上, 2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称,PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+, 4OD = ,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±. ∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时,P P OD '∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则 90AMB ∠= ,30BAM ∠= (或30ABM ∠= ),114222BM AB ∴==⨯=. 过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠= .112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,.但是,当4x =时,246451624533y =-⨯+=-+=-≠-. ∴不存在这样的点M 构成满足条件的直角三角形.。
2013年中考数学压轴题精选1. 如图,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值;(2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为 9∶10?若存在,直接写出m 的值;若不存在,请说明理由.2. 如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.3.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图24.如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E 作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图C 5. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12 cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
2012中考数学压轴题及答案1.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)2. (11浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. (11浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使P Q R △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.(11山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、(2007浙江金华)如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.8. (2011浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.(2011山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(2011山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.13.(2011山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.16.(2011年浙江省绍兴市)将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒). (1)用含t 的代数式表示OP OQ ,;(2)当1t 时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(4) 连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC能否垂直?若能,求出相应的t 值;若不能,说明理由.17.(2011年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.(2011年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,3OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.19.(2011年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式.(2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?20.(2011年成都市)如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB =35,sin ∠OAB=55. (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积Q NR S ∆,求QMN S ∆∶Q NR S ∆的值.22.(2011年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22).24.(2011年大庆市)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示).(1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.25. (2011年上海市)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x ,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.27. (2011年山东省青岛市)已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.28.(2011年江苏省南通市)已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.29.(2011年江苏省无锡市)一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km的正方形城区示意图,供解题时选用)压轴题答案1.解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0)设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形 =111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似如图,BD=2222112BG DG +=+= BE=22223332BO OE +=+= DE=22222425DF EF +=+=所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆.2. (1) ∵A ,B 两点的坐标分别是A(10,0)和B(8,32),∴381032OAB tan =-=∠, ∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´,∴△A ´TA 是等边三角形,且A T TP '⊥,∴)t 10(2360sin )t 10(T P -=︒-=,)t 10(21AT 21AP P A -===',○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-=∵△A ´EB 的高是︒'60sin B A , ∴23)4t 10(21)t 10(83S 22⨯----= 34)2t (83)28t 4t (8322+--=++-=当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ´与CB 的交点,F 是TP 与CB 的交点),∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4, ∴3432421OC EF 21S =⨯⨯=⋅= 综上所述,S 的最大值是34,此时t 的值是2t 0≤<.3. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=. C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x -∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===. tan QR BA C CR CA ==, 366528x -+∴=,152x ∴=. 综上所述,当x 为185或6或152时,PQR △为等腰三角形.4.解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC .∴ AM AN AB AC =,即43x AN =. ∴ AN =43x . ……………2分 ∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .在Rt △ABC 中,BC =22AB AC +=5.由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC =,即45x MN =. ∴ 54MN x =, ∴ 58OD x =. …………………5分 过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,∴ △BMQ ∽△BCA .∴ BM QM BC AC=. ∴ 55258324x BM x ⨯==,25424AB BM MA x x =+=+=.∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………7分故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==. ∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形,∴ PN ∥AM ,PN =AM =x .又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形.∴ FN =BM =4-x .∴ ()424PF x x x =--=-.又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分 当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分 5. 解:(1)(-4,-2);(-m,-k m) (2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ一定是平行四边形②可能是矩形,mn=k 即可不可能是正方形,因为Op 不能与OA 垂直.解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-,的以直线AB 的解析式为 343y x =-+(2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o =23,∴B(23,2)∵A(0,4),设AB 的解析式为4y kx =+,所以2342k +=,解得33k =-, 以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o ,∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=(1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………………………4分(2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴同理在③二图中分别可得P点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4),E点在A点下方不可能.综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-83,4)、P(8,4)、P(4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22by b x -=-+,令4y =得3(8,4)2b P -.由已知可得2PE DE =即222232(8)(42)42b b b b ⨯-+-=+化简得2332640b b -+=解得 121883b b P P ==∴=3b,将之代入(-8,4)(4,4)、22(4,4)P -;第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即2222(48)(42)4b b b b -+-=+化简得22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE =即2222844b b +=+解得12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).事实上,我们可以得到更一般的结论:如果得出AB a OC b ==、、OA h =、设b ak h-=,则P 点的情形如下∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFNS 正方形. ∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. ……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分 由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34. 若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得 1021=x . ……………………………………………11分 ∴ EF =21147272105x -=-⨯=<4. ∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFN S 正方形.(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =,1CD ∴=,(13)D ∴,.(3)①PQ 能与AC 平行.若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=. ②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,则23335t QF OQ QFAC OC +==.253QF t ⎛⎫∴=+ ⎪⎝⎭.EF QF QE QF OQ ∴=-=-22533t t ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭2(51)(51)3t =-+-.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 6326(51)3t t -∴=⎛⎫-+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤,t ∴不存在.17. 解:(1)直线33y x =--与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -, ··························································································· 1分 点A C ,都在抛物线上,23033a c c ⎧=++⎪∴⎨⎪-=⎩ 333a c ⎧=⎪∴⎨⎪=-⎩∴抛物线的解析式为2323333y x x =-- ·························································· 3分 ∴顶点4313F ⎛⎫- ⎪ ⎪⎝⎭, ································································································ 4分 (2)存在 ················································································································ 5分 1(03)P -, ·············································································································· 7分2(23)P -, ·············································································································· 9分 (3)存在 ·············································································································· 10分 理由: 解法一:延长BC 到点B ',使BC B C '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.····················································································· 11分在Rt BB H '△中,1232B H BB ''==, 36BH B H '==,3OH ∴=,(323)B '∴--, ·················································· 12分 设直线B F '的解析式为y kx b =+233433k b k b ⎧-=-+⎪∴⎨-=+⎪⎩ 解得36332k b ⎧=⎪⎪⎨⎪=-⎪⎩33362y x ∴=- ································································································· 13分 3333362y x y x ⎧=--⎪∴⎨=-⎪⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,310377M ⎛⎫∴- ⎪ ⎪⎝⎭,∴在直线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ····· 14分03533k b b =+⎧⎪⎨=-⎪⎩ 解得539533k b ⎧=⎪⎪⎨⎪=-⎪⎩ 553393y ∴=- ································································································· 13分 55339333y x y x ⎧=-⎪∴⎨⎪=--⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩310377M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. 1 18. 解:(1)点E 在y 轴上 ···················································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,3BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······································································· 3分(2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,32OM = 点D 在第一象限, ∴点D 的坐标为3122⎛⎫ ⎪ ⎪⎝⎭, ························································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A 的坐标为(31)-, ·························································································· 6分 抛物线2y ax bx c =++经过点E ,2c ∴= 由题意,将(31)A -,,3122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得33213312422a b a b ⎧-+=⎪⎨++=⎪⎩ 解得89539a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:2853299y x x =--+ ······················································ 9分 (3)存在符合条件的点P ,点Q . ······································································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为23.由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ································································································ 11分依题意设点P 的坐标为(2)m , 点P 在抛物线2853299y x x =--+上 28532299m m ∴--+= 解得,10m =,2538m =-1(02)P ∴,,25328P ⎛⎫- ⎪ ⎪⎝⎭,以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,3PQ OB ==,∴当点1P 的坐标为(02),时, 点Q 的坐标分别为1(32)Q -,,2(32)Q ,;当点2P 的坐标为5328⎛⎫- ⎪ ⎪⎝⎭,时,点Q 的坐标分别为313328Q ⎛⎫-⎪ ⎪⎝⎭,,43328Q ⎛⎫ ⎪ ⎪⎝⎭,. ·············································· 14分 (以上答案仅供参考,如有其它做法,可参照给分)19.解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ··················································· 1分 又点B 在34y x b =-+上 302b ∴=-+ 32b = BC ∴的解析式为3342y x =-+ ················································································ 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ······················································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B , 4AB ∴=,94CD = ································································································ 5分 1994242ABC S ∴=⨯⨯=△ ··························································································· 6分 (3)过点N 作NP MB ⊥于点PEO MB ⊥NP EO ∴∥BNP BEO ∴△∽△ ································································································· 7分 BN NP BE EO∴= ··········································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭,∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP ∴=,65NP t ∴= ························································································· 9分 16(4)25S t t ∴=- 2312(04)55S t t t =-+<< ······················································································ 10分 2312(2)55S t =--+ ······························································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. 20. 解:(1)如图,过点B 作BD ⊥OA 于点D.在Rt △ABD 中,∵∣AB ∣=35,sin ∠OAB=55, ∴∣BD ∣=∣AB ∣·sin ∠OAB =35×55=3. 又由勾股定理,得22A D AB B D =- 22(35)36=-=∴∣OD ∣=∣OA ∣-∣AD ∣=10-6=4.∵点B 在第一象限,∴点B 的坐标为(4,3). ……3分。
【2013 •北京• 24题】在厶ABC 中,AB=AC ,/ BAC a (0°VaV 60°,将线段 BC 绕点B 逆时针旋转60°得到 线段BD 。
(1) 如图1,直接写出/ ABD 的大小(用含 a 的式子表示);(2) 如图2,Z BCE=150,/ ABE=60,判断△ ABE 的形状并加以证明;(3) 在(2)的条件下,连接 DE ,若/ DEC=45,求a 的值。
解:(1)AB=AC •/ BC=BD/ ABC= / ACB• △ ABD ◎△ EBC(AAS ) / BAC+ / ABC+ / ACB=180,/ BAC= a • AB=EB1/ ABC=90 ——a•△ ABE 是等腰三角形2•••/ ABE=60/ ABC= / ABD+ / DBC ,且/ DBC=604• △ ABE 是等边三角形1/ ABD=30 ——a(3)vZ BCE=150,/ BCD=60连接AD 、 CD 、ED 。
DEC=45•/ BC=BD ,/ DBC=60DCE 是等腰直角三角形是等边三角形•CE=CD •BD=CD •/ BC=CD•/ AB=AC,AD=AD•BC=CE•••由⑵知,/ CBE=301BEC= a2/ ACD= / ABD=30• 30° -2/ DBC=60• / DBE+ / ABD= / DBE+ / CBE • / CBE= / ABD=30 - - a2•••/ BCE=150• / BEC=180 - / BCE- / CBE= 1 a2• / BEC= / BAD= 1 a2【2013 •北京• 25题】对于平面直角坐标系 xOy 中的点P 和O C ,给出如下定义:若O C 上存在两个点 A 、B ,11使得/ APB=60,则称P 为O C 的关联点。
已知点 DE ( 0, -2),F (2 J3 , 0)22(1 )当0 O 的半径为1时,① 在点D 、E 、F 中,O O 的关联点是 ________________② 过点F 作直线I 交y 轴正半轴于点 G ,使/ GFO=30,若直线I 上的点P (m , n )是O O 的关联点,求 m 的取值范围; (2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围。
圆压轴100题2013中考版第100题(2010.广东省深圳市中考模拟) (4)第099题(2011.湖北省荆州市中考) (4)第098题(2010.四川省南充市中考) (5)第097题(2005湖北.省荆门市中考) (6)第096题(2010.广东省深圳市中考) (7)第095题(自选) (8)第094题(2002.广东省深圳市中考) (9)第093题(2004.年广东省深圳市中考) (10)第092题(2005.广东省深圳市中考) (11)第091题(2009年广东省深圳市中考) (13)第090题(2006.广东省深圳市中考) (14)第089题(2011.广东省广州市中考) (15)第088题(2008.湖北省十堰市中考) (16)第087题(2008.湖北省襄阳市中考) (17)第086题(2010.贵州省安顺市中考) (18)第085题(2009.北京市房山区九上期末) (19)第084题(自选) (20)第083题(2008.安徽省芜湖市中考) (21)第082题(2008.河南省濮阳市中考) (22)第081题(2009.四川省成都市中考) (23)第080题(2006.湖北省黄冈市中考) (24)第079题(2010年四川省广安市中考) (25)第078题(2009.四川省遂宁市中考) (26)第077题(2009.广东省中山市中考) (27)第076题(2010.辽宁省铁岭市) (28)第075题(2010.江苏省镇江市中考) (28)第074题(2010.广西桂林市中考) (30)第073题(2012.湖南省湘潭市) (31)第072题(2006.山东省莱芜市) (32)第071题(2010.湖北省荆门市中考) (33)第070题(2006.山东省烟台市中考) (34)第069题(2011.江苏省镇江市实验学校中考数学二模) (35)第068题(2011.北京市昌平区中考数学二模试卷) (36)第067题(自选) (37)第066题(2010.内蒙古包头市中考) (38)第065题(2012.江苏省南京市江宁区中考数学一模) (39)第064题(2010.陕西省中考) (40)第063题(江苏省无锡市锡中实验学校九上期中考试) (41)第062题(2010.山东省德州市中考) (42)第061题(2010.四川省绵阳市中考) (43)第060题(2005.四川省广元市中考) (44)第053题(2012.四川省成都市金牛区重点学校中考二模) (51)第052题(2008.四川省广安市中考) (51)第051题(2006.江苏省盐城市中考) (52)第050题(2011.江苏省盐城市中考) (53)第049题(2011.四川省广安市中考) (55)第048题(2006.江苏省盐城市中考) (56)第047题(2011.四川省凉山州中考) (57)第046题(2011.湖北省随州市中考) (58)第045题(2011.山东省东营市中考) (59)第044题(2008.湖南省岳阳市中考) (60)第043题(2011.山东省菏泽市中考) (61)第042题(2011.山东省莱芜市中考) (62)第041题(2011.山东省烟台市中考) (63)第040题(2011.四川省泸州市中考) (64)第039题(2011.湖北省孝感市中考) (65)第038题(2010.江苏省宿迁市九上期末) (66)第037题(2011.广东省珠海市中考) (67)第036题(2012.浙江省杭州市中考模拟) (68)第035题(2008.广东省深圳市中考) (69)第034题(2012.山东省东营市中考) (70)第033题(2011.山东省济宁市中考) (71)第032题(2012.四川省资阳市中考) (72)第031题(2011.山东省潍坊市中考) (73)第030题(2011.广西百色中考) (74)第029题(2011.四川省成都市中考) (75)第028题(2011.四川省宜宾市中考) (76)第027题(2012.江苏省宿迁市中考) (77)第026题(2012.江苏省扬州市中考) (78)第025题(2012湖北恩施州中考) (79)第024题(2012.山西省运城市垣曲县英言初中九下月考) (80)第023题(2011.四川省遂宁市中考) (81)第022题(2005.福建宁德市中考) (82)第021题(2010. 山东省泰安市宁阳县中考数学模拟) (83)第020题(2012.湖南省衡阳市中考) (84)第019题(2011.浙江省义乌市中考) (85)第018题(2011.内蒙古包头市中考) (85)第017题(2009.广东省深圳市实验中学高一直升考试) (86)第016题(2007.北京市东城区中考数学一模) (87)第015题(2006.广东省佛山市中考) (89)第014题(2011.辽宁省丹东市中考) (90)第013题(2010.广东省广州市广雅实验中学中考一模) (91)第012题(2011.湖北省武汉市九上期中) (92)第011题(2010.广东省汕头市澄海区九上期末) (93)第004题(2005.福建宁德中考) (100)第003题(2010.安徽省芜湖市中考) (101)第002题(2002.吉林省中考) (102)第001题(2005.浙江省温州市中考) (103)第101题(此题未收录) (104)第100题(2010.广东省深圳市中考模拟)如图是一圆形纸片,AB 是直径,BC 是弦,将纸片沿弦BC 折叠后,劣弧BC 与AB 交于点D ,得到BDC .(1)若BD ︵=CD ︵,求证:BDC 必经过圆心O ;(2)若AB =8,BD ︵=2CD ︵,求BC 的长.如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.(1)求B点坐标;(2)求证:ME是⊙P的切线;如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=12 BC.(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.已知:如图,抛物线y=13x 2x+m 与x 轴交于A 、B 两点,与y 轴交于C 点,∠ACB=90°, (1)求m 的值及抛物线顶点坐标;(2)过A 、B 、C 的三点的⊙M 交y 轴于另一点D ,连接DM 并延长交⊙M 于点E ,过E 点的⊙M 的切线分别交x 轴、y 轴于点F 、G ,求直线FG 的解析式;(3)在条件(2)下,设P 为CBD 上的动点(P 不与C 、D 重合),连接PA 交y 轴于点H ,问是否存在一个常数k ,始终满足:AH •AP=k ? 如果存在,请写出求解过程;如果不存在,请说明理由.如图1所示,以点M(-1,O)为圆心的圆与y轴、x轴分别交于点A,B,C,D,直线y=与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦A T交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.第095题(自选)如图,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧BC上一个动点,且A(-1,0),E(1,0).(1)求点C的坐标;(2)连接PA,PC.若CQ平分∠PCD交PA于Q点,当P点在运动时,线段AQ的长度是否发生变化;若不变求出其值,若发生变化,求出变化的范围;(3)连接PD,当P点在运动时(不与B、C两点重合),求证:PC PDPA的值不变第094题(2002.广东省深圳市中考)如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.(1)若HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.(2)如图,连接EG、DF. EG与HF交于点M,与DF交于点N,求GNNE的值.直线y=-x+m与直线y=x+2相交于y轴上的点C,与x轴分别交于点A、B.(1)求A、B、C三点的坐标;(2)经过上述A、B、C三点作⊙E,求∠ABC的度数,点E的坐标和⊙E的半径;(3)若点P是第一象限内的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,设∠APC=θ,试求点M、N的距离.(可用含θ的三角函数式表示)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.(1)求证:△AHD∽△CBD;(2)连HO,若CD=AB=2,求HD+HO的值.如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.在平面直角坐标系xoy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为AE的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,OFPF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)若M是线段BE的中点,N是线段AD的中点,证明:MN= ;(2)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1= 是否成立?若是,请证明;若不是,说明理由.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=12,⊙O的半径为3,求OA的长.如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3)当AB=5,BC=6时,求⊙O的半径.第085题(2009.北京市房山区九上期末)如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为等边三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)判断点C是否为弧OB的中点?并说明理由;(2)求B、C两点的坐标及直线CD的函数解析式;(3)点P在线段OB上,且满足四边形OPCD是等腰梯形,求点P坐标.第084题(自选)如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)求B,C两点的坐标;(2)求直线CD的函数解析式;(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;(2)求⊙O的半径;(3)设⊙O交BC于点F,连接EF,求EFAC的值.如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交于CA 的延长线于点E ,∠EBC=2∠C .(1)求证:AB=AC ;(2)当AB BC = 时,①求tan ∠ABE 的值; ②如果AE=2011,求AC 的值.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(,求⊙O的面积.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF,求证:AB⊥ED;(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC 于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=35,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的1 3(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的1 3第076题(2010.辽宁省铁岭市)如图,已知矩形ABCD内接于⊙O,BD为⊙O直径,将△BCD沿BD所在的直线翻折后,得到点C的对应点N仍在⊙O上,BN交AD与点M.若∠AMB=60°,⊙O的半径是3cm.(1)求点O到线段ND的距离;(2)过点A作BN的平行线EF,判断直线EF与⊙O的位置关系并说明理由.如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长;(3)如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则求r的取值范围.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.第073题(2012.湖南省湘潭市中考)如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=12AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.第072题(2006.山东省莱芜市)半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知43BCCA,点P在AB上运动,过点C作CP的垂线,与PB的延长线交于点Q.(1)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到AB的中点时,求CQ的长;(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知43BCCA,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC•CD=PC•BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.如图,已知点C在⊙O上,延长直径AB到点P,连接PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)若AC=PC,且PB=3,M是⊙O下半圆弧上一动点,当M点运动到使△ABM的面积最大时,CM交AB于点N,求MN•MC 的值.第069题(2011.江苏省镇江市实验学校中考数学二模)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求∠P的度数;(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.第068题(2011.北京市昌平区中考数学二模试卷)如图,已知点C在⊙O上,延长直径AB到点P,连接PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)若AC=PC,且PB=3,M是⊙O下半圆弧的中点,求MA的长.第067题(自选)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)点M是弧AB的中点,CM交AB于点N,求∠CNA的度数.第066题(2010.内蒙古包头市中考)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=12 AB;(3)点M是AB的中点,CM交AB于点N,若AB=4,求MN•MC的值.第065题(2012.江苏省南京市江宁区中考数学一模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC的垂直平分线交BC于D点,交AC于E点,连接BE.(1)直线BE是否与△DEC的外接圆⊙O相切?为什么?(2)当AB=3时,求图中阴影部分的面积.第064题(2010.陕西省中考)如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE.(1)若BE是△DEC的外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.第063题(2011.江苏省无锡市锡中实验学校九上期中考试)四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.(1)试求∠AED的度数.(2)若⊙O的半径为,试求:△ADE面积的最大值.如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于点G,交AB于点F.(1)求证:BC与⊙O相切;(2)若AB=5,BC=8,求⊙O的半径.(3)若∠BAC=120°时,求∠EFG的度数.如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.(1)求证:FB=FC;(2)求证:FB2=FA•FD;(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)若BD=4,PA=32AO,过点B作BC∥MP交⊙O于C点,求BC的长.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)如图,△ABC内接于⊙O,∠BAC=60°,点D是BC的中点.BC,AB边上的高AE,CF相交于点H.试证明:(1)∠FAH=∠CAO;(2)四边形AHDO是菱形.第055题(2008.陕西省中考)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的∠ACB的角平分线,过A、C、D三点的圆O 与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.第054题(2008.山东省枣庄市中考)已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.。