海南省临高县2018年七年级数学下期末模拟试卷(有答案)-精
- 格式:doc
- 大小:875.50 KB
- 文档页数:8
临高县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若不等式组有三个非负整数解,则m的取值范围是()A.3<m<4B.2<m<3C.3<m≤4D.2<m≤3【答案】D【考点】一元一次不等式的特殊解【解析】【解答】解不等式组,可得,,即-3≤x<m,该不等式组有三个非负整数解,分析可知,这三个非负整数为0、1、2,由此可知2≤m<3.【分析】首先确定不等式组非负整数解,然后根据不等式的非负整数解得到一个关于m的不等式组,从而求解.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2、(2分)对于等式2x+3y=7,用含x的代数式来表示y,下列式子正确的是()A. B. C. D.【答案】A【考点】二元一次方程的解【解析】【解答】解;移项得:3y=7-2x系数化为1得:故答案为:A【分析】先将左边的2x移项(移项要变号)到方程的右边,再将方程两边同时除以3,即可求解。
3、(2分)在4,—0.1,,中为无理数的是()A. 4B. —0.1C.D.【答案】D【考点】无理数的认识【解析】【解答】解:这四个数中,4,—0.1,,是有理数是无理数故答案为:D【分析】根据无理数的定义,无限不循环的小数是无理数;开方开不尽的数是无理数;含的数是无理数。
即可得解。
4、(2分)下列各组数中互为相反数的一组是()A.|-2|与B.-4与-C.-与| |D.-与【答案】C【考点】立方根及开立方,实数的相反数【解析】【解答】A选项中,所以,错误;B选项中,所以-4=,错误;C选项中,与互为相反数,正确;D选项中,与即不相等,也不互为相反数,错误。
故答案为:C【分析】根据相反数的定义进行判断即可。
5、(2分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.【答案】A【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:由已知得方程组,解得,代入,得到,解得.【分析】先将只含x、y的的方程组成方程组,求出方程组的解,再将x、y的值代入另外的两个方程,建立关于a、b的方程组,解方程组,求出a、b的值。
2018 学年第二学期七年级期末模拟考试数学试题卷考生须知:1.全卷共三大题,24小题,满分为100分。
2.考试时间为90分钟,本次考试采用闭卷形式,不允许使用计算器。
3.全卷答案必须做在答题卷的相应位置上,做在试题卷上无效。
4.请用钢笔或黑色字迹签字笔将姓名、准考证号、座位号分别填在答题卷的相应位置上。
一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.计算:42x x ⋅ =( ▲ ) A .x 6B .3x C .5x D .6x2.红细胞的平均直径为0.0000072m ,该直径用科学记数法表示为( ▲ )A . 71072.0-⨯mB .6102.7⨯-mC .6102.7-⨯mD .6102.7⨯m3.如图,已知,43∠=∠,︒=∠701,则2∠的度数为(▲ ) A .︒70 B .︒60 C .︒20 D .︒110 4.分式b-a 1可变形为( ▲ ) A .b a 1+ B .a -b 1 C .a -b 1- D . b-a 1- 5.如图是七年级学生参加课外兴趣小组人数的扇形统计图,则表示参加绘画兴趣小组人数的扇形的圆心角是(▲ )A .︒108B .︒72C .︒54D .︒366.已知5ab =,且8b a =+,则22b a +的值为(▲ ) A .40 B .54 C .74D .137.若二次三项式9kx x 2++是完全平方式,则k 的值为(▲ ) A .6B .6-C .3±D .6±8.如图,将三角形ABC 沿着BC 方向向右平移1个单位得 到三角形DEF ,若四边 形ABFD 的周长等于12,则 三角形ABC 的周长等于(▲) A .10B .12C .14D .16a b1234(第8题)(第3题)(第5题)唱歌 30%篮球50%绘画 EFDCBA9.某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若按原计划每天修水渠x 米,则下列所列方程正确的是( ▲ ) A.x8.13600x 3600=B.20x8.13600x 3600-= C.20x8.13600x 3600+= D.20x8.13600x 3600=+ 10.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC ∥DE ;③如果∠2=30°,则有BC ∥AD ;④如果∠2=∠D ,必有∠4=∠C ,其中正确的有(▲ ) A . ①②③ B . ①②④ C . ③④ D . ①②③④二、填空题(本题有6小题,每小题3分,共18分) 11.因式分解:x 2- 12.当=x ▲ 时,分式3x 2x -+的值为0. 13.将一组样本容量是50的数据分成6组,第1~4组的频数分别是5,6,7,8,第5组的频率是0.3,则第6组的频数是 ▲ . 14.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+1my nx 6ny mx 的解,则n m 3+的值为 ▲ .15.已知01y 2y 3x 2=+++-,则yx 的值为 ▲ .16.已知等式a 2-3a +1=0可以有不同的变形,既可以变形为a 2-3a =-1,a 2=3a -1,a 2+1=3a ,也可以变形为a +1a =3等.那么: (1)代数式a 3-8a 的值为 ▲ ; (2)代数式a 2a 4+1的值为 ▲ .三、解答题(本题有8小题,共52分) 17.计算(本题6分,每小题3分)(1)()256a 2-a a ⨯÷. (2)化简:()()()1x x 43x 23x 2--+-.第10题18.解方程(组)(本题6分,每小题3分) (1)⎩⎨⎧=+=-95253y x y x .(2)5-1y y y 13-=-. 19.(本题6分)在正方形网格中,每个小正方形的边长均为1个单位长度,三角形ABC 如图所示,现将网格中的三角形ABC 平移,使点A 与点'A 重合,点B ,C 的对应点记为'B ,'C . (1)画出平移后的三角形'''C B A ;(2)连结'BB ,'CC ,请判断这两条线段之间的关系; (3)计算三角形'''C B A 的面积. 20.(本题6分) 先化简,再求值:)(1x 1-11x 2x x 2+÷++,其中2019x =. 21.(本题6分)如图,已知C ∠=∠1,︒=∠+∠18032. (1)说明FG BE //的理由;(2)若︒=∠67A ,︒=∠75C ,求BDE ∠的度数.22.(本题6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60≤m ≤100).组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如下不完整的统计图表.请根据以上信息,解决下列问题:(1)征文比赛成绩频数表中c 的值是________; (2)补全征文比赛成绩频数直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.A'CBA321G FE DCBA (第21题)(第19题)23.(本题8分)如图,在边长为a 的正方形中剪去一个边长为b(b<a)的小正方形,把剩下的部分拼成一个梯形,请回答下列问题:(1)这个拼图验证了一个乘法公式,它是_________________________________________;(2)已知的值,求,a -b 5b a 15b -a 22=+=(3)请利用这个公式计算:⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛22222501-151-141-131-121-124.(本题8分)七年级某班“勤工俭学”小组准备通过糊纸盒筹集资金.决定用22.4元购买甲、乙、 丙三种纸板(图1所示)若干张,按照图2方式糊成A 、B 两种类型的无盖纸盒,已 知甲、乙、丙三种纸板每张分别为0.6元、0.3元、0.2元.设A 、B 两种类型的纸盒分别糊x ,y 个,则(1)由图2可知,甲纸板需要()y x 2+张,乙纸板需要 ▲ 张,丙纸板需要 ▲ 张; (2)B A ,两种类型纸盒分别可以糊几个?写出所有可能的方案;(3)如果糊一个A 型纸盒可获利1.2元,糊一个B 型纸盒可获利1.6元,则(2)中 所有方案,哪一种方案获利最大,并求出此时甲、乙、丙三种纸板所需的张数.乙丙乙丙乙丙乙丙图1B甲乙A图2甲甲甲(第23题)七年级数学试卷参考答案和评分意见一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题3分,共18分)11.()()3x 3x -+ 12.1-=x 13.9 14.7 15.31 16三、解答题(本题有8小题,共52分) 每题要求写出必要的求解步骤 17.计算(本题6分,每小题3分)解:(1)原式=2a 4a ⨯=3a 4 ------3分 (2)原式=x 4x 49x 422+--=9x 4- ------3分18.解方程(组)(本题6分,每小题3分) 解:(1)由①⨯5得25y 5x 15=- ③把③+②得34x 17=解得2=x ,再把2=x 代入①解得1=y所以原方程组的解是⎩⎨⎧==12y x . ------3分解:(2)方程两边同时乘以()y 1-,得)(y -15--y 3=,化简整理,得8y 4= 解得2y =当2y =时,最简公分母0y 1≠-,所以2y =是原方程的解.所以原方程的解是2y = ------3分(没有检验扣1分) 19.(本题6分)(1)如图 ------2分 (2)'//'CC BB , ''CC BB = ------2分 (3)3.5 ------2分 20.(本题6分)解:原式=)()(1x 11x 1x 1x x 2+-++÷+=x 1x 1x x 2+⨯+)(=1x 1+ ------4分当2019x =时,原式=120191+ =20201(没约分不扣分)----2分21.(本题6分)解:(1)因为C ∠=∠1, 所以BC DE //.因为BC DE //, 所以EBC ∠=∠2. 因为︒=∠+∠18032, 所以︒=∠+∠1803EBC ,所以FG BE //. ------3分 (2)因为︒=∠67A ,︒=∠75C ,所以()()︒=︒+︒-︒=∠+∠-︒=∠487567180C A 180ABC . 因为BC DE //,所以︒=∠+∠180ABC BDE ,所以︒=︒-︒=∠-︒=∠13248180ABC 180BDE . ------3分22.(本题6分)解:(1)0.2 ------2分 (2)a=32,b=20(图略) ------2分(3)3002.01.01000=+⨯)()(篇) ------2分 23.(本题8分)解:(1)()()b a b a b a -+=-22(或()()22b a b a b a -=-+) ------2分(2) 3515b a b a b -a 22==+-=所以b-a=-3 ------3分(3)原式=5049505132342123⨯⨯⨯⨯ =505121⨯=10051-----3分321G FE DCBA24.(本题8分)解:(1)乙、丙纸板分别需要()y x 22+张、()y x +2张;------2分 (2)由题意可得方程()()()4.2222.0223.026.0=+++++y x y x y x整理,得5654=+y x ,所以y x 4514-=------2分因为y x ,是非负整数,所以可得当0=y 时,14=x ;当4=y 时,9=x ;当8=y 时,4=x . 共有三种方案:第一种方案:A 型纸盒糊14个;第二种方案:A 型纸盒糊9个,B 型纸盒糊4个;第三种方案:A 型纸盒糊4个,B 型纸盒糊8个. ------2分 (3)第一种方案获利8.16142.1=⨯(元),第二种方案获利2.1746.192.1=⨯+⨯(元), 第三种方案获利6.1786.142.1=⨯+⨯(元),所以第三种方案获利最大,甲、乙、丙纸板分别需要20张、24张、16张. ------2分。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正东方向10m 走到达点5A ,…按如此规律走下去,当机器人走到点2019A 时,点2019A 在第( )象限A .一B .二C .三D .四【答案】A 【解析】判断出A 2019的位置即可解决问题.【详解】观察坐标可知下标为4的倍数时,点在第四象限,因为2019=4×504+3,所以A 2019在第一象限.【点睛】本题考查规律型:点的坐标位置,找到规律是解本题的关键.2.不等式112x x ->的解集是( ) A .1x >B .2x >-C .12x <D .2x <-【答案】D【解析】首先移项,再合并同类项,最后把x 的系数化为1即可. 【详解】移项,1x x 12->的 合并同类项,1x 12-> 系数化为1,x<-2故选D【点睛】此题主要考查了一元一次不等式(组)的解法,关键是掌握不等式的基本性质.3.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q【答案】B【解析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【详解】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点睛】熟练掌握旋转的性质是确定旋转中心的关键所在.4.如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°【答案】C【解析】试题分析:根据对顶角相等及∠AOD和∠BOC的和为202°,即可求得结果.由图可知∠AOD=∠BOC,而∠AOD+∠BOC=202°,∴∠AOD=101°,∴∠AOC=180°-∠AOD=79°,故选C.考点:本题考查的是对顶角,邻补角点评:解答本题的关键是熟练掌握对顶角相等,邻补角之和等于180°.+的整数部分是()55|3|0x x y--=x yA.3 B.4 C.5 D.6【答案】B【解析】根据非负性求得x、y的值,再求出结果.-+-=50,|3|0x x y5|3|0-≥-≥,x x y∴5-x=0,3x-y=0,∴x y +=20,又∵16<20<25,∴4<20<5,∴x y +的整数部分是4,故选:B.【点睛】考查了算术平方根和绝对值的非负性,解题关键是抓住算术平方根和绝对值的非负求得x 、y 的值. 6.一件商品按成本价提高40%后标价,再打8折销售,售价为240元,设这件商品的成本价为x 元,根据题意得,下面所列的方程正确的是( )A .40%80%240x ⨯=B .(140%)80%240x +⨯=C .24040%80%x ⨯⨯=D .40%24080%x =⨯【答案】B【解析】首先理解题意找出题中存在的等量关系:成本价×(1+40%)×80%=售价240元,根据此列方程即可.【详解】解:设这件商品的成本价为x 元,成本价提高40%后的标价为x(1+40%),再打8折的售价表示为x(1+40%)×80%,又因售价为240元, 列方程为:x(1+40%)×80%=240, 故选B .【点睛】本题考查了一 元一次方程的应用,解此题的关键是理解成本价、标价、售价之间的关系及打8折的含义. 7.已知0<a <3,则点P (a ﹣3,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】由已知a-3<0,a>0,所以点P (a-3,a )在第二象限;故选B.8.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D【解析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.9.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠4+∠5=180°D.∠3+∠5=180°【答案】C【解析】根据同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;可以进行判定. 【详解】A选项,因为∠3和∠4一组内错角,且∠3=∠4,根据内错角相等两直线平行可以判定AB∥CD,不符合题意,B选项,因为∠1和∠5是一组同位角,且∠1=∠5根据同位角相等两直线平行可以判定AB∥CD,不符合题意, C选项,因为∠4和∠5一组邻补角,所以∠4+∠5=180°不能判定两直线平行,D选项,因为∠3和∠5是一组同旁内角,且∠3+∠5=180°,根据根据同旁内角互补两直线平行可以判定AB∥CD,不符合题意,故选C.【点睛】本题主要考查两直线平行的判定,解决本题的关键是要熟练掌握直线平行的判定定理.10.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000万人,将440000用科学记数法表示为( )A .4.4×106B .4.4×105C .44×104D .0.44×105 【答案】B【解析】试题解析:440000=4.4×1.故选B .二、填空题题11.用不等式表示“x 的3倍与1的差为负数”_______.【答案】3x-1<1【解析】分析:首先表示出x 的3倍是3x ,负数是小于1的数,进而列出不等式即可.详解:x 的3倍是3x ,由题意得:3x ﹣1<1.故答案为:3x ﹣1<1.点睛:本题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言描述的不等关系转化为用数学符号表示的不等式.12.幼儿园把新购进的一批玩具分给小朋友.如果每人 5 件,那么还剩余 12 件;如果每 人 8 件,那么最后一个小朋友分到玩具,但不足 4 件,这批玩具共有___________件.【答案】1【解析】分析: 设这个幼儿园有x 个小朋友,则有(5x+12)件玩具.根据关键语句“如果每人分8件,那么最后一个小朋友得到玩具但不足4件”得:0<5x+12-8(x-1)<4求解可得答案.详解: 设这个幼儿园有x 个小朋友,则有(5x+12)件玩具,由题意得:0<5x+12-8(x-1)<4, 解得:162033x <<, ∵x 为整数,∴x=6,∴5×6+12=1.故答案为:1.点睛: 此题主要考查了一元一次不等式组的应用,关键是弄懂题意,根据关键语句列出不等式组. 13.已知点O 是ABC ∆的三条角平分线的交点,若ABC ∆的周长为14cm ,点O 到AB 的距离为3cm ,则ABC ∆面积为______2cm .【答案】1【解析】作OE ⊥AB 于E ,OF ⊥BC 于F ,OH ⊥AC 于H ,根据角平分线的性质得到OF=OH=OE=3,根据三角形的面积公式计算即可.【详解】作OE ⊥AB 于E ,OF ⊥BC 于F ,OH ⊥AC 于H ,∵△ABC 的三条角平分线交于点O ,OE ⊥AB ,OF ⊥BC ,OH ⊥AC ,∴OF=OH=OE=3,∴△ABC 的面积=12×(AB+BC+AC )×3=1, 故答案是:1.【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.当x=1时,分式2x x +的值是_____. 【答案】13【解析】将1x =代入分式,按照分式要求的运算顺序计算可得. 【详解】当1x =时,原式11123==+. 故答案为:13. 【点睛】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.15.分解因式:a 4-1=______________【答案】(a 2+1)(a +1)(a -1)【解析】略16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a 1+1ab+b 1=(a+b )1【解析】试题分析:两个正方形的面积分别为a 1,b 1,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b)1,所以a 1+1ab +b 1=(a +b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.17.不等式组10{ 120x x +>->的解集是___________.【答案】﹣1<x <12 【解析】试题分析: 10{ 120x x +>->①②,∵解不等式①得:x >﹣1,解不等式②得:x <12, ∴不等式组的解集是﹣1<x <12. 故答案是﹣1<x <12. 考点:解一元一次不等式组.三、解答题18.如图1,已知//a b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD BC ⊥于E .(1)求证:90ABC ADC ∠+∠=︒;(2)如图2,BF 平分ABC ∠交AD 于点F ,DG 平分ADC ∠交BC 于点G ,求AFB CGD ∠+∠的度数;(3)如图3,P 为线段AB 上一点,I 为线段BC 上一点,连接PI ,N 为IPB ∠的角平分线上一点,且12NCD BCN ∠=∠,则CIP ∠、IPN ∠、CNP ∠之间的数量关系是__________. 【答案】(1)见解析;(2)225°;(3)3CNP CIP IPN ∠=∠+∠或3IPN CIP CNP ∠=∠+∠【解析】(1) 过E 作EF ∥a,由BC ⊥AD 可知90BED ∠=︒,由平行可知ADC DEF ∠=∠,ABE BEF ∠=∠,从而可得ABC ADC ∠+∠=DEF ∠+BEF ∠=90BED ∠=︒(2)作//FM a ,//GN b ,设ABF EBF x ∠=∠=,ADG CDG y ∠=∠=,由平行线性质和邻补角定义可得()1802AFB y x ∠=︒-+,()1802CGD x y ∠=︒-+,进而计算出()36033AFB CGD x y ∠+∠=︒-+即可解答,(3)分两种情况解答:I .∠NCD 在∠BCD 内部,II NCD BCD ∠∠在外部,仿照(2)解答即可.【详解】(1)证明:过E 作//EF a ,//a b∴////a b EFAD BC ⊥∴90BED ∠=︒//EF a∴ABE BEF ∠=∠//EF b∴ADC DEF ∠=∠∴90ABC ADC BED ∠+∠=∠=︒(2)解:作//FM a ,//GN b ,设ABF EBF x ∠=∠=,ADG CDG y ∠=∠=,由(1)知:2290x y +=︒,45x y +=︒,////FM a b ,∴2BFD y x ∠=+,∴()1802AFB y x ∠=︒-+,同理:()1802CGD x y ∠=︒-+,∴()36033360345225AFB CGD x y ∠+∠=︒-+=︒-⨯︒=︒(3)结论:3CNP CIP IPN ∠=∠+∠或3IPN CIP CNP ∠=∠+∠,I .∠NCD 在∠BCD 内部时,过I 点作//IG a ,过N 点作//QN b ,设∠IPN=∠BPN=x ,12NCD BCN ∠=∠=y , ∴∠BCD=3y.∵a ∥b ,∴//////QN IG a b ∴2IPB GIP x ∠=∠=,QNC DCN y ∠=∠=,QNP NPB x ∠=∠=,∴CNP x y ∠=+,3CIG BCD y ∠=∠=,∴32CIP CIG GIP y x ∠=∠+∠=+,∴323()CIP IPN y x x x y ∠+∠=++=+∴3CNP CIP IPN ∠=∠+∠II.NCD ∠在BCD ∠外部时,如图3(2):过I 点作//IG a ,过N 点作//QN b ,设∠IPN=∠BPN=x ,12NCD BCN ∠=∠=y , ∴∠BCD=y.∵a ∥b ,∴IG ∥a ∥//QN b ∴2IPB GIP x ∠=∠=,QNC DCN y ∠=∠=,QNP NPB x ∠=∠=,∴CNP x y ∠=-,2CIG BCD y ∠=∠=,∴32CIP CIG GIP y x ∠=∠+∠=+,∴23CIP CNP y x x y x ∠+∠=++-=∴3IPN CIP CNP ∠=∠+∠【点睛】本题考查了平行线的性质,角平分线的性质,熟练掌握平行线的性质定理是解题的关键.此类题目过拐点作平行线是常用辅助线作法.19.先化简,再求值:[(x ﹣y )1+(x+y )(x ﹣y )]÷1x,其中x =﹣1,y =1.【答案】x-y,-2.【解析】根据完全平方公式、平方差公式和多项式除以单项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】[(x ﹣y )1+(x+y )(x ﹣y )]÷1x=(x 1﹣1xy+y 1+x 1﹣y 1)÷1x=(1x 1﹣1xy )÷1x=x ﹣y ,当x =﹣1,y =1时,原式=﹣1﹣1=﹣2.【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.20.已知,如图,点A 、B 、E 共线,AD ∥BC ,∠1=∠2,∠A =100°,求∠C 的度数.【答案】∠C =100°.【解析】先根据两直线平行求出∠CBE =100°,再利用角度转化即可计算. 【详解】∵AD ∥BC ,∠A =100°,∴∠CBE =∠A =100°,∵∠1=∠2,∠1+∠C+∠COD =180°,∠CBE+∠2+∠BOE =180°,∠COD =∠BOE ,∴∠C =∠CBE =100°.【点睛】本题考查角度转换,能够利用好两直线平行的条件是解题关键.21.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中a=3,b=1 2 -.【答案】4-2ab;7.【解析】利用平方差公式、单项式乘以多项式去括号,同时先计算乘方,再计算除法运算,接着合并得到最简结果,然后把a、b的值代入计算即得.【详解】解:原式=4-a2+a2-5ab+3a5b3÷a4b2=4-5ab+3ab=4-2ab,当a=3,b=-12时,原式=4-2×3×(-12)=4+3=7.【点睛】此题考查整式的混合运算化简求值,解题关键在于掌握运算法则22.如图,AB BC=,BE BF⊥,BE BF=,65ABE∠=︒,70EGC∠=︒,AE与CF相等吗?说明你的理由.【答案】AE CF=,理由见解析.【解析】根据已知条件与等腰三角形的性质证明ABE CBF∆∆≌即可求解.【详解】AE CF=理由如下:因为BE BF⊥,BE BF=所以EBF∆是等腰直角三角形,45EFB∠=︒因为70BGF EGC∠=∠=︒180180457065CBF EFB BGF∠=︒-∠-∠=︒-︒-︒=︒因为65ABE∠=︒所以ABE CBF∠=∠在ABE∆和CBF∆中AB CBABE CBFBE BF=⎧⎪∠=∠⎨⎪=⎩所以ABE CBF ∆∆≌所以AE CF =【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知三角形的内角和。
2018年 七年级数学下册 期末模拟试卷一、选择题: 1.在﹣2,4,22,3.14,322,(2)0中有理数的个数是( )A .5B .4C .3D .2 2.在平面直角坐标系中,点(-3,3)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.如图∠BCA=90,CD ⊥AB ,则图中互余的角有( )对.A .1B .2C .3D .44.下列命题中,是真命题的是( )A .同位角相等B .邻补角一定互补. C.相等的角是对顶角. D .有且只有一条直线与已知直线垂直.5.如果|x+y-1|和2(2x+y-3)2互为相反数,那么x 、y 的值是( )6.若点P (m ﹣1,3)在第二象限,则m 的取值范围是( ) A .m >1 B .m <1 C .m ≥﹣1 D .m ≤17.如图,AB ∥CD,直线l 交AB 于点E,交CD 于点F,若∠2=80°,则∠1等于( )A .120°B .110°C .100°D .80°8.如图,线段AB 经过平移得到线段A 1B 1,其中点A ,B 的对应点分别为点A 1,B 1,这四个点都在格点上.若线段AB 上有一个点P(a ,b),则点P 在A 1B 1上的对应点P ′的坐标为( ) A .(a-2,b +3) B .(a-2,b-3) C .(a +2,b +3) D .(a +2,b-3)9.使不等式x -1≥2与3x -7<8同时成立的x 的整数值是( )A .3,4B .4,5C .3,4,5D .不存在10.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是( ) A .0.1 B .0.15 C .0.25D .0.311.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()12.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A.29人B.30人C.31人D.32人13.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F.三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.314.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(-13,-13)C.(14,14)D.(-14,-14)二、填空题:15.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)16.当x_____时,式子3x - 5的值大于5x+3的值.17.在平面直角坐标系中,已知点P在第二象限,距离x轴3个单位长度,距离y轴2个单位长度,则点P 的坐标为.18.若方程组的解是则方程组解为三、解答题:19.计算:20.解方程组:21.解不等式组:22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.23.如图,AB∥DE,∠1=∠ACB,AC平分∠BAD,(1)试说明: AD∥BC.(2)若∠B=80°,求∠ADE的度数.24.某商店需要购进A.B(1)当A.B1100元;(2)若商店计划购进A种商品不少于66件,且销售完这批商品后获利多于1260元,请你帮该商店老板预算有几种购货方案?获利最大是多少元?25.已知AB∥CD.如图1,你能得出∠A+∠E+∠C=360°吗?如图2,猜想出∠A.∠C、∠E的关系式并说明理由.如图3,∠A.∠C、∠E的关系式又是什么?参考答案1.A.2.B;3.B4.B5.A6.B.7.A8.D9.A10.B11.C12.A.13.B.14.C.15.答案为:①②④16.答案为:x<-4;17.答案为:(﹣2,3).18.答案为:x=6.3,y=2.2.19.答案为:20.答案为:x=2,y=-1.5;21.答案为:0<x≤7;22.解:(1)由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF=0.5×1×3+0.5×1×3+0.5×2×4+3×3=16。
2018年人教版七年级数学下册期末测试题及答案精选版(共五套)2018年人教版七下期末一、选择题:1.若 $m>-1$,则下列各式中错误的是()A。
$6m>-6$。
B。
$-5m0$。
D。
$1-m<2$2.下列各式中,正确的是(。
)A。
$16=\pm4$。
B。
$\pm16=4$。
C。
$3-27=-3$。
D。
$(-4)=-4$3.已知 $a>b>$,那么下列不等式组中无解的是()A。
$\begin{cases} xa \\ x>-a \\ x>-a \end{cases}$ B。
$\begin{cases} x-b \\ xb \\ x>-a \\ xa \\ xb \end{cases}$4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40° B。
先右转50°,后左转40°C。
先右转50°,后左转130° D。
先右转50°,后左转50°5.解为 $\begin{cases} x=1 \\ y=2 \end{cases}$ 的方程组是()A。
$\begin{cases} x-y=1 \\ 3x-y=1 \end{cases}$ B。
$\begin{cases} x-y=-1 \\ 3x+y=5 \end{cases}$ C。
$\begin{cases} x-y=3 \\ 3x+y=-5 \end{cases}$ D。
$\begin{cases} x-2y=-3 \\3x+y=5 \end{cases}$6.如图,在△ABC中,∠ABC=50,∠ACB=80,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100° B.110° C.115° D.120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A.4 B.3 C.2 D.18.在各个内角都相等的多边形中,一个外角等于一个内角的 $\frac{1}{2}$,则这个多边形的边数是()A.5 B.6 C.7 D.89.如图,△$A_1B_1C_1$是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形$A_1DC_1$的面积为()A.10 cm² B.12 cm² C.15 cm² D.17 cm²10.在课间操时,XXX、小军、XXX的位置如图1所示。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.某商场将A 商品按进货价提高50%后标价,若按标价的八折销售可获利40元,设该商品的进货价为x 元,根据题意列方程为( )A .0.8(150%)40x ⨯+=B .8(150%)40x ⨯+=C .0.8(150%)40x x ⨯+-=D .8(150%)40x x ⨯+-=【答案】C【解析】首先理解题意找出题中存在的等量关系:售价-成本=利润,根据此列方程即可.【详解】解:设这件的进价为x 元,则这件衣服的标价为(1+50%)x 元,打8折后售价为0.8×(1+50%)x 元,可列方程为0.8×(1+50%)x-x=40,故选:C .【点睛】本题考查了由实际问题抽象出一元一次方程,此题的关键是理解成本价、标价、售价之间的关系及打8折的含义.2.如图,直线m ⊥n ,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为( )A .O 1B .O 2C .O 3D .O 4【答案】A 【解析】试题分析:因为A 点坐标为(-4,2),所以,原点在点A 的右边,也在点A 的下边2个单位处,从点B 来看,B (2,-4),所以,原点在点B 的左边,且在点B 的上边4个单位处.如下图,O 1符合.考点:平面直角坐标系.3.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°【答案】B 【解析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠E MB′+∠FMB′=∠FME,∴∠EMF=90°,故选B .【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.4.下列代数式中,没有公因式的是( )A .ab 与bB .a+b 与22a b +C .a+b 与22a b -D .x 与26x【答案】B【解析】能因式分解的先进行因式分解,再确定没有公因式即可.【详解】A 选项:ab 与b 的公因式是b ,故不符合题意;B 选项:a+b 与22a b +没有公因式,故符合题意;C 选项:因为a 2-b 2=(a+b)(a-b),所以a+b 与22a b -的公因式为a+b,故不符合题意;D 选项:x 与26x 的公因式是x ,故不符合题意.故选:B【点睛】考查公因式的确定,掌握找公因式的正确方法,注意互为相反数的式子,只需改变符号即可变成公因式.5.如图,a∥b,含有45°角的直角三角尺ABC的直角顶点C在直线b上,若直角边BC与直线b的夹角为∠α,斜边AB与直线a的夹角为∠β,则∠α和∠β的关系是()A.∠α+∠β=30°B.∠α+∠β=45°C.∠α+∠β=60°D.∠α+∠β=75°【答案】B【解析】过点B作BD∥a,根据平行线的性质即可求解.【详解】解:过点B作BD∥a,∵直线a∥b,∴BD∥a∥b∴∠1=∠α,∵∠ABC=45°,∴∠2=∠ABC﹣∠1,∴∠β=∠2=45°﹣∠1=45°﹣∠α.∴∠α+∠β=45°故选:B.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.6.作∠AOB的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是()A.SAS B.ASA C.AAS D.SSS【答案】D【解析】连接CD、CE,根据作图步骤知OD=OE、CD=CE、OC=OC,据此根据三角形全等的判定可得;【详解】连接CD、CE,根据作图步骤知OD=OE、CD=CE、OC=OC所以根据SSS可判定△OCE≌△OCD,所以∠BOC=∠AOC,OC平分∠AOB故用尺规作图画∠AOB的角平分线OC,作图依据是SSS,故选:D.【点睛】本题主要考查作图-复杂作图,解题的关键是熟练掌握全等三角形的判定与性质.7.如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=200 , 则∠2的度数为()A.20° B.25° C.30° D.35°【答案】B.【解析】试题分析:过点B作BD∥l,由直线l∥m,可得BD∥l∥m,根据两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数是,继而求得∠2的度数.考点:平行线的性质.8.若关于x的不等式组无解,则m的取值范围是()A.B.C.D.【答案】C【解析】不等式组整理后,由无解确定出m的范围即可.【详解】不等式组整理得:,由不等式组无解,得到m.故选C.【点睛】本题考查了解一元一次不等式组,熟练掌握运算法则是解答本题的关键.9.若=5-6x,则x的取值范围( )A .x >B .x <C .x ≤D .x ≥【答案】C【解析】先根据绝对值的性质判断出6x-5的符号,再求出x 的取值范围即可.【详解】∵|6x-5|=5-6x ,∴6x-5≤1,∴x≤.故选:C .【点睛】解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.10.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠【答案】D【解析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.二、填空题题11.2________ 2【解析】根据只有符号不同的两个数互为相反数,可得答案.【详解】解:22. 2.【点睛】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.12.点(,)P x y 点在第四象限,且点P 到x 轴、y 轴的距离分别为6、8,则点P 的坐标为__________.【答案】(8,6)-【解析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】∵点P 在第四象限,且点P 到x 轴和y 轴的距离分别为6、8,∴点P 的横坐标是8,纵坐标是-6,即点P 的坐标为(8,6)-.故答案为(8,6)-.【点睛】此题考查点的坐标,解题关键在于掌握横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.13.如图,△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为______.【答案】65°【解析】先根据三角形内角和定理求出∠BAC 的度数,再由线段垂直平分线的性质得出∠C =∠CAD ,进而可得出结论.【详解】解:∵△ABC 中,∠B =55°,∠C =30°,∴∠BAC =180°﹣55°﹣30°=95°.∵直线MN 是线段AC 的垂直平分线,∴∠C =∠CAD =30°,∴∠BAD =∠BAC ﹣∠CAD =95°﹣30°=65°.故答案为:65°.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键. 14.如果点()2,A n 在x 轴上,那么点()2,1B n n -+在第______象限.【答案】二【解析】由题意n=0,从而得到点B 的坐标,从而根据负,正在第二象限.【详解】∵点A (2,n )在x 轴上,∴n=0,∴B 为(-2,1),∴点B 在第二象限.故答案为:二.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 15.某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐的学生共有 _________人.【答案】190【解析】试题解析:根据扇形统计图的定义,各部分占总体的百分比之和为1,由图可知,爱好音乐的学生占总体的百分比为:1-32%-33%-16%=19%,所以爱好音乐的学生共有1000×19%=190人.故答案为190.16.单项式23a b -的系数是_____________. 【答案】﹣13【解析】试题分析:单项式中数字因数叫做单项式的系数,从而可得出答案. 解:单项式23a b -的系数是﹣13. 故答案为:﹣13. 17.于x 的不等式(2)20a b x a b -+->的解为710<x ,则不等式ax b >的解为_______。
数学期末考试试卷一、选择题(共10小题,每小题3分,共30分)1、若点A (a ,2)在第二象限,则( )A 、a ≤ 0B 、a ≥0C 、a<0D 、a>02、不等式组2010x x -<⎧⎨+≥⎩的解集是( )A 、x ≥-1B 、x<2C 、-1≤ x<2D 、x>23、要调查下面几个问题,你认为应该作全面调查的是( )A 、鞋厂检查生产的鞋底能承受的弯折次数B 、调查市场上某种食品的色素含量是否符合国家标准C 、了解全班同学每周体育锻炼的时间D 、检测某城市的空气质量4、下列四个实数:-2,13,0.8,0.5050050005……(相邻两个5之间依次多一个0),其中无理数的个数有( )A 、4个B 、3个C 、2个D 、1个5、若a>b ,则下列不等式的变形错误..的是( ) A 、-8+a>-8+b B 、-3a>-3bC 、a+5>b+5D 、2211a b m m >++ 6、在等式y=kx+4中,当x=2,y=-6,则k 的值为( )A 、-5B 、-1C 、1D 、57、若3220x y -++=,则x y 的值等于( )A 、-36B 、-64C 、36D 、648、已知(3n n ≥,且n 为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点,如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;……依此规律,当n=8时,共有交点个数为( )A 、20B 、27C 、28D 、359、“戒烟一小时,健康亿人行”。
今年国际无烟日,小华就公众对餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A .顾客出面制止;B .劝说进吸烟室;C .餐厅老板出面制止;D .无所谓.他将调查结果绘制了两幅不完整的统计图.以下结论:①这次抽样的公众有200人;②“餐厅老板出门制止”部分的人数是60人;③在扇形统计图中“无所谓”部分对应的圆心角是18°,其中正确的结论有()A、3个B、2个C、1个D、0个10、如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0).得到正方形A′B′C′D′及其内部的点,其中点A、B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,则点F的坐标为( )A、-1B、0C、2D、1二、填空题(共有6小题,每小题3分,共18分)11、用不等式表示:a与3的和是负数。
2018年七年级数学下册期末模拟考试题一、选择题(每小题3分,共30分)1 )A . 2x ≠B . 2x ≥C . 2x >D . 2x ≤2.在平面直角坐标系中,点A 位于第二象限,距离x 轴1个单位长度,距y 轴4个单位长度,则点A 的坐标为( ) A .(1,4) B .(-4,1) C .(-1,4) D .(4,-1)3.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A . 1x >- B . 1x <C . 11x -≤<D . 11x -<≤4.下列调查中,适宜采用全面调查方式的是( )A .了解某班学生的身高情况B .调查春节晚会的收视率C .了解某水库中鱼的种类D .调查市场上牛奶的质量5.如图,AB //CD ,EF 交AB 于点E ,交CD 于点F ,若EG 平分∠BEF 交CD 于点G ,EF 平分∠AEG ,则∠2的度数是( )A .40°B .50°C .60°D .70° 6.下列各式正确的是( )A 3=B .2(16= C 3=± D 4=-7.若a b >,则下列不等式不一定成立.....的是( ) A .a m b m +>+ B .22(1)(1)a m b m +>+ C .22a b -<- D .22a b >8.甲、乙两仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,则有( ) A . 450(160%)(140%)30x y x y +=⎧⎨---=⎩ B .45060%40%30x y x y +=⎧⎨-=⎩ C . 450(140%)(160%)30x y y x +=⎧⎨---=⎩D .45040%60%30x y x y +=⎧⎨-=⎩9.如图是我国2003~2007年粮食产量及其增长速度的统计图,下列说法不正确...的是( ) A .这5年中,我国粮食产量先增后减 B .后4年中,我国粮食产量逐年增加C .这5年中,2004年我国粮食产量年增长率最大D .这5年中,2007年我国粮食产量年校长率最小10.若不等式5(2)86(1)7x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为( ) A . 3.5a = B . 3a = C . 2.5a = D . 2a = 二、填空题(每小题3分,共18分)11.= ;的算术平方根是 ;= .12.如图,直线AB 与CD 相交于点O ,∠AOD =20°,∠DOF ︰∠FOB =1︰7,射线OE 平分∠BOF ,则13.如图,正方形网格ABCD 是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐标系中,使BC //x 轴,若点E 的坐标为(-4,2),点F 的横坐标为5,则点H 的坐标为 . 14.方程25x y +=的正整数解为 .15.在一扇形统计图中,若扇形的圆心角为90°,则此扇形表示的部分占总体的百分比为 %.16.若关于x 的不等式23x m +<有三个正整数解,则m 的取值范围是 .三、解答题(共8小题,共72分) 17.(每小题4分,本题8分)(1(2)解方程组:4311213x y x y -=⎧⎨+=⎩18.(本题8分)解不等式组:11323312x x x x x +-⎧<-⎪⎪⎨-⎪+≥+⎪⎩,并在数轴上表示它的解集.19.(本题8分)如图,已知△ABC 的顶点坐标分别为A (-1,-1),B (-3,-3),C (0,-4),将△ABC 先向右平移2个单位,再向上平移4个单位得△'''A B C .(1)画出△'''A B C ,写出点',','A B C 的坐标并求出△'''A B C 的面积; (2)D 为y 轴上一点,若△ACD 的面积为4,则D 点坐标为 .图2图1B B 20.(本题8分)某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区20万用户中约有多少用户的用水全部享受基本价格? 21.(本题8分)已知:如图1,已知AB //DC ,∠A =∠C . (1)求证:AD //BC ;(2)如图2,过B 点作BF ⊥BC 于B ,BF 交CA 的延长线于F ,若∠BAF =105°,∠D =2∠ACB ,求∠FBA 的度数.(说明:不能直接使用三角形内角和定理)22.(本题10分)某公司要将100吨货物运往A 地销售,计划租用甲、乙两种型号的汽车共6辆一次将货物全部运走.其中每辆甲型汽车每次最多能装该种货物16吨,每辆乙型汽车每次最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车需2500元;租用2辆甲型汽车和1辆乙型汽车需2450元,且同一型号的汽车每辆租车费用相同.(1)求租用1辆甲型汽车、1辆乙型汽车的费用分别要多少钱?(2)若该公司计划租车总费用不超过5000元,则共有几种租车方案?并求出最低的租车费.图3图2图1备用图x备用图x23.(本题10分)我们知道,通过添加平行线,可以得到相等的角.(1)如图1,已知△ABC 中,∠B =∠C ,AD ⊥BC 于D ,若过A 点作MN //BC ,请根据图中的辅助线,说明:∠DAB =∠DAC ;(2)如图2,请用添加平行线的方法解决问题:已知D 为∠BAC 内一点,连结BD 、CD .求证:∠BDC =∠A +∠B +∠C ;(3)如图3,已知∠A =50°,∠B +∠F =70°,∠F +∠C =60°,∠B +∠C =50°,则∠D +∠E = °(不写求解过程,直接写出结果)24.(本题12分)已知在平面直角坐标系中,A (-a ,a ),0a ≠,B (b ,c ),a 、b 、c 满足231a b c --=-,2354a b c --=-.(1)若0c =,求A 、B 两点的坐标;(2)在(1)的条件下,C (m ,0)为一动点,且0m >,连接AB 、AC ,平移线段AB 得到线段ED ,使B 点的对应点D 落在线段AC 上,则∠EDC 、∠ABC 、∠ACB 之间有何数量关系?证明你的结论;(3)若将线段AB 平移到OF 处,点F 在第二象限,坐标原点O 与点A 对应,F 与B 对应,求F 点的坐标.参考答案及评分说明二、填空题(每小题3分,共18分)17.(1)原式=2-2-13……3分=-13……4分(2)②×3得:6x+3y=39 ③,……1分①+③得:10x=50,∴x=5,……2分∴y=3,……3分∴53xy=⎧⎨=⎩……4分18.解:由①得:x>-1,……2分由②得:1x≤,……4分∴不等式组的解集为:-1<1x≤……6分,能正确在数轴上表示不等式组的解集………8分.19.(1)A′(1,3)B′(-1,1)C′(2,0)并画图……2分S△ABC=4 ……4分(2)D(0,4)或(0,-12)……8分20.解:(1)10÷10%=100(户)……2分(2)“15—20吨”有20户……3分圆心角为72°……5分(3)(10+20+38)÷100×20=13.6(万户)……7分即该地区20万用户中约有13.6万户的用水全部享受基础价格……8分21.(1)AB//CD,则∠B+∠C=180°,……2分又∠A=∠C,∴∠A+∠B=180°,……3分∴AD∥BC ……4分(2)设∠ACB=x,∠D=2x,∵∠BAF=105°∴∠BAC=75°……5分又∵AB∥DC∴∠ACD=∠BAC=75°……6分∴3x+75°=180°x=35°……7分∴∠CAD=35°∴∠ABC=70°∴∠FBA=90°-70°=20°……8分22.(1)设1台甲型汽车和1台乙型汽车的租车费用分别为x元、y元,……1分则2250022450x yx y+=⎧⎨+=⎩,……3分解方程组得:800850xy=⎧⎨=⎩……4分即租一辆甲型汽车要800元,租用一辆乙型汽车要850元……5分(2)设租用甲型汽车a辆,则租用乙型汽车为(6-a)辆,依题意有:1618(6)800850(6)5000a aa a+-⎧⎨+-⎩≥100≤解不等式组得:a2≤≤4,a取整数,∴a=2,3或4.……8分①共有3种方案:甲型2辆,乙型4辆;甲型3辆,乙型3辆;甲型4辆;乙型2辆②第三种方案费用最低,费用4×800+2×850=4900元.……10分23.(1)∵MN∥BC∴AD⊥MN,∠ABC=∠BAM,∠ACB=∠CAN.∴∠DAB=∠DAC(2)过D点作AB及AC的平行线,据平行线的性质可得证.……7分(3)140°……10分24.(1)A(5,-5) B(-2,0) ……3分(2)画图,∠EDC=∠ABC+∠ACB ……4分过D作DF∥BC,延长ED交BC于G,可证……7分(3)由方程组可得:b=-a-7,c=a+5.则B(-a-7,a+5)……10分而A点的坐标为(-a,a),当A(-a,a)移到坐标原点时,a=0.此时B点坐标为(-7,5),与之对应的F点的坐标为(-7,5).……12分。
2018年七年级下学期期末数学试题(有答案)★第一篇:2018年七年级下学期期末数学试题(有答案)2018年七年级下学期期末数学试题(有答案)又到了一年一度的期末考试阶段了,同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇七年级下学期期末数学试题,希望可以帮助到大家!一、选择题(每小题2分,共16分)1.要调查下列问题,你认为哪些适合抽样调查(▲)①市场上某种食品的某种添加剂的含量是否符合国家标准②调查某单位所有人员的年收入③检测某地区空气的质量④调查你所在学校学生一天的学习时间A.①②③B.①③C.①③④D.①④2.下列计算正确的是(▲)A.B.C.D.3.如图,在所标识的角中,同位角是(▲)A.1和B.1和C.1和D.2和34.学校为了了解300名初一学生的体重情况,从中抽取30名学生进行测量,下列说法中正确的是(▲)A.总体是300B.样本容量为30C.样本是30名学生D.个体是每个学生5.-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为(▲)A.6B.7C.8D.96.甲和乙两人玩打弹珠游戏,甲对乙说:把你珠子的一半给我,我就有10颗珠子,乙却说:只要把你的给我,我就有10颗,如果设乙的弹珠数为x颗,甲的弹珠数为y颗,则列出方程组正确的是(▲)A.B.C.D.7.如图,△ACB≌△,则的度数为(▲)A.20B.30C.35D.408.如图,OA=OB,B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在O的平分线上,其中正确的结论是(▲)A.只有①B.只有②C.只有①②D.有①②③二.填空题(每小题2分,共20分)9.某种流感病毒的直径大约为0.000 000 08米,用科学记数法表示为▲ 米.10.某班级45名学生在期末学情分析考试中,分数段在120~130分的频率为0.2,则该班级在这个分数段内的学生有▲ 人.11.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是▲.12.如果,则▲.13.如图,AD、AE分别是△ABC的角平分线和高,B=60,C=70,第11题图则EAD= ▲.14.如图,把边长为3cm的正方形ABCD先向右平移l cm,再向上平移l crn,得到正方形EFGH,则阴影部分的面积为▲ cm2.15.如图,△ABC中,C=90,DB是ABC的平分线,点E是AB的中点,且DEAB,若BC=5cm,则AB= ▲ cm.16.已知x=a,y=2是方程的一个解,则a= ▲.17.一个三角形的两边长分别是2和6,第三边长为偶数,则这个三角形的周长是▲.18.如图a是长方形纸带,DEF=25,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的CFE的度数是▲.三、计算与求解.19.(每小题4分,共8分)计算:(1)(2).20.(每小题4分,共8分)分解因式:(1);(2).21.(本小题6分)先化简再求值:,其中.22.(本小题6分)解方程组:四、操作与解释.23.(本小题6分)如图,在△ABC中,CDAB,垂足为D,点E在BC上,EFAB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果2,且3=115,求ACB的度数.24.(本小题6分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该班共有_______________名学生;(2)将骑自行车部分的条形统计图补充完整;(3)在扇形统计图中;求出乘车部分所对应的圆心角的度数;(4)若全年级有600名学生,试估计该年级骑自行车上学的学生人数.25.(本小题8分)如图,线段AC、BD相交于点O,OA=OC,OB=OD.(1)△OAB 与△OCD全等吗?为什么?(2)过点O任意作一条与AB、AC都相交的直线MN,交点分别为M、N,OM与ON相等吗?为什么?五、解决问题(本题满分8分)26.某汉堡店员工小李去两户家庭外送汉堡包和澄汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了32元,第二家送2个汉堡包和3杯橙汁,向顾客收取了28元.(1)如果汉堡店员工外送4个汉堡包和5杯橙汁,那么他应收顾客多少元钱?(2)若有顾客同时购买汉堡包和橙汁且购买费用恰好为20元,问汉堡店该如何配送?六、探究与思考(本题满分8分)27.如图,已知△ABC中,AB=AC=6 cm,BC=4 cm,点D为AB 的中点.(1)如果点P在线段BC上以1 cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案及评分标准一、选择题(每小题2分,共16分)题号12345678答案CDCBADBD二.填空题(每小题2分,共20分)9.8 10.9;11.三角形的稳定性;12.6;13.5;14.4;15.10;16.;17.14;18.105;三.计算与求解19.解:(1)原式= 2分=..3分=..4分(2)原式=..3分=9..4分20.解:(1)原式= 2分4分(2)原式 2分 4分21.解:原式 3分4分5分当时,原式=96分22.解:①10,得③ 1分②-③,得 2分3分把代入③,得 4分5分原方程组的解是 6分四.操作与解释23.(1).理由如下:∵,.2分.3分(2)∵,.4分∵,..5分分1.6分24.(1)40.1分(2)略.3分(3).5分(4)60020%=120(名).6分25.(1)△OAB 与△OCD全等.理由如下:在△OAB 与△OCD中,△OAB≌△OCD(SAS).(2)OM与ON相等.理由如下:5分∵ △OAB≌△OCD,.6分分1在△OAB 与△OCD中,7分△MOB≌△NOD(ASA)..8分26.解:(1)设每个汉堡为x元和每杯橙汁y元.1分根据题意,得 3分解之,得 4分所以.5分答:他应收顾客52元钱.6分(2)设配送汉堡a只,橙汁b杯.根据题意,得.7分.又∵ a、b为正整数,;,.答:汉堡店该配送方法有两种:外送汉堡1只,橙汁3杯或外送汉堡2只,橙汁27.(1)①△BPD与△CQP全等.理由如下:∵ D是AB的中点,.经过1秒后,.∵,.1杯.8分在△BPD与△CQP中,△BPD≌△CQP(SAS).3分②设点Q的运动速度为x cm/s,经过t秒后△BPD≌△CQP,则,.解得即点Q的运动速度为 cm/s时,能使△BPD与△CQP全等.5分(2)设经过y秒后,点P与Q第一次相遇,则,解得.7分此时点P的运动路程为24 cm.∵ △ABC的周长为16,点P、Q在边上相遇.8分编辑老师给您带来的七年级下学期期末数学试题,希望可以更好的帮助到您!第二篇:七年级期末数学试题(无答案)2017年下学期期末考试试卷初一年级数学学科命题人:阳岳红审题人:熊琦一、选择题(每题 3 分,共 36 分)1.-的相反数是()A.B.-C.2 D. 2 -2.据统计,2017 年双十一当天,天猫成交额 1682 亿,1682 亿用科学记数法可表示为()元.A.16.82⨯1010B.0.1682⨯1012C.1.682⨯1011D.1.682⨯10123.如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是()121212A.雅B.教C.集D.团4.已知axb2与aby的和是13158xyab,则(x-y)y等于()15A.2 B.1 C. 2 - D. 1 - 5.下列各式计算正确的是()A.19a2b-9ab2=10a2bB.3x+3y=6xyC.16y2-7y2=9D.2x-5x=-3x-6.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,C是AB的中点,D是BC的中点,下列等式不正确的是()A.CD=AD-BCB.CD=AC-ABC.CD=ABD.CD=AB-DB 8.下列解方程步骤正确的是()A.由2x+4=3x+1,得2x-3x=1+4 B.由7(x-1)=3(x+3),得7x-1=3x+3 C.由0.2x-0.3x=2-1.3x,得2x-3=2-13xD.由---9.如图,AB ∥CD,直线 EF 分别与直线 AB、CD 相交于点 G、H,已知∠3 =50°,GM平分∠HGB交直线CD 于点M,则∠1 等于()x-1x+2-=2,得2x-2-x-2=123613129题图11题图A.60°- B.80°- C.50°- D.130°10.在雅礼社团年会上,各个社团大放光彩,其中话剧社52 人,舞蹈社 38 人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3 倍.设从舞蹈队中抽调了 x 人参加话剧社,可得正确的方程是()=38+xB.52+x=3(38-x)C.52-3x=38+x D.52-x=3(38-x)--A.3(52-x)11.如图,在△ ABC中,∠A =90,点 D 在 AC 边上,DE∥ BC,若∠1= 155°,则∠B的度数为()A.65°- B.25°- C.55°-D.155°12.如图,都是由边长为1 的正方体叠成的立体图形,例如第⑴个图形由 1 个正方体叠成,第⑵个图形由 4 个正方体叠成,第⑶个图形由 10 个正方体叠成,依次规律,第⑺个图形由()个正方形叠成.A.86 B.87 C.85 D.84二、填空题题(每题 3分,共 18分)13.一个角的补角比这个角的余角的2 倍大18°,则这个角的度数为________. 14.若 a 的相反数是-3,b的绝对值是 4,且|b|=-b,则 a-b=________. 15.已知代数式x-3y-1的值为 3,则代数式5+6y-2x的值为________. 16.如果线段 AB=5cm,BC=4 cm,且 A、B、C 在同一条直线上,那么 A、C 两点的距离是________.17.如图,直线a∥b,直角三角形ABC的直角顶点C在直线b 上,∠1=1 20,∠2=2∠A,则∠A = ________.18.按照下列程序计算输出值为 2018 时,输入的 x 值为________.三、解答题有(本大题有8 个小题,共66 分)19.(本小题8分)计算:⑴(-+--------------20.(本小题8分)解方程:⑴ 2x+3=12-3(x-3)--(2)----21.(本小题 6 分)先化简,再求值:x2-3(2x2-4y)+2(x2-y),其中|x+2|+(5y-1)2=0 16351)⨯(-12)--⑵-|-5|⨯(-1)2-4÷(-)2-- 41223x-22x-1 =2-4322.(本小题8 分)如图,在△ABC中,GD ⊥AC 于点D,∠AFE=∠ABC,∠1 +∠2=180°,∠AEF=65°,求∠1的度数.解:∵∠AFE=∠ABC(已知)-∴ ____________________(同位角相等,两直线平行)∴∠1= _________ ---(两直线平行,内错角相等)∵∠1 +∠2=180°(已知)∴- ________________(等量代换)∵-EB∥ DG()∴∠GDE=∠ BEA ---()∵GD⊥ AC(已知)-∴ ____________________(垂直的定义)∴∠BEA =90°(等量代换)∵∠AEF=65°(已知)∴∠1=∠ _____-∠ ______ =90°-65°= 25 °(等式的性质)23.(本小题8分)如图:∠ BCA=64,CE平分∠ACB,CD平分∠EC B,DF∥BC 交 CE 于点 F,求∠CDF和∠DCF的度数.24.(本小题 8 分)中雅七年级⑴班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?⑴根据这段对话,你能算出篮球和排球的单价各是多少吗?⑵六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999 减 100,1999 减 200;两种活动不重复参与,学校打算买 15 个篮球,13 个排球作为奖品,请问如何安排更划算?25.(本小题10分)“幸福是奋斗出来的”,在数轴上,若C到A 的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”⑴如图1,点A表示的数为-1,则 A的幸福点 C所表示的数应该是___________;⑵如图2,M、N为数轴上两点,点 M 所表示的数为4,点N所表示的数为-2,点 C就是 M、N的幸福中心,则C所表示的数可以是___________(填一个即可);⑶如图3,A、B、为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是 A和 B的幸福中心?26.(本小题10分)已知AM//CN,点B为平面内一点,AB⊥BC于点 B。
2018年 七年级数学下册 期末模拟试卷
一、选择题:
1.在﹣2,4,
22,3.14,322,(2)0中有理数的个数是( ) A .5 B .4 C .3 D .2
2.在平面直角坐标系中,点(-3,3)所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.如图∠BCA=90,CD ⊥AB ,则图中互余的角有( )对.
A .1
B .2
C .3
D .4
4.下列命题中,是真命题的是( )
A .同位角相等
B .邻补角一定互补.
C.相等的角是对顶角. D .有且只有一条直线与已知直线垂直.
5.如果|x+y-1|和2(2x+y-3)2
互为相反数,那么x 、y 的值是( )
6.若点P (m ﹣1,3)在第二象限,则m 的取值范围是( )
A .m >1
B .m <1
C .m ≥﹣1
D .m ≤1
7.如图,AB ∥CD,直线l 交AB 于点E,交CD 于点F,若∠2=80°,则∠1等于( )
A .120°
B .110°
C .100°
D .80°
8.如图,线段AB 经过平移得到线段A 1B 1,其中点A ,B 的对应点分别为点A 1,B 1,这四个点都在格点上.若线段AB 上有一个点P(a ,b),则点P 在A 1B 1上的对应点P ′的坐标为( )
A .(a-2,b +3)
B .(a-2,b-3)
C .(a +2,b +3)
D .(a +2,b-3)
9.使不等式x-1≥2与3x-7<8同时成立的x的整数值是( )
A.3,4 B.4,5 C.3,4,5 D.不存在
10.学校为了解七年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则七年级学生参加绘画兴趣小组的频率是()
A.0.1 B.0.15 C.0.25 D.0.3
11.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()
12.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )
A.29人B.30人C.31人D.32人
13.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F.三个条件中选出两个作为已知条件,另
一个作为结论所组成的命题中,正确命题的个数为()
A.0 B.1 C.2 D.3
14.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,
6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()
A.(13,13)B.(-13,-13)C.(14,14)D.(-14,-14)
二、填空题:
15.已知三条不同的直线a,b,c在同一平面内,下列四个命题:
①如果a∥b,a⊥c,那么b⊥c;
②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;
④如果b⊥a,c⊥a,那么b∥c.
其中真命题的是.(填写所有真命题的序号)
16.当x_____时,式子3x - 5的值大于5x+3的值.
17.在平面直角坐标系中,已知点P在第二象限,距离x轴3个单位长度,距离y轴2个单位长度,则点P的坐标为.
18.若方程组的解是则方程组解为
三、解答题:
19.计算:
20.解方程组:
21.解不等式组:
22.如图,已知四边形ABCD(网格中每个小正方形的边长均为1). (1)写出点A,B,C,D的坐标;
(2)求四边形ABCD的面积.
23.如图,AB∥DE,∠1=∠ACB,AC平分∠BAD,
(1)试说明: AD∥BC.
(2)若∠B=80°,求∠ADE的度数.
24.某商店需要购进A.B两种商品共160件,其进价和售价如表:
(1)当A.B1100元;
(2)若商店计划购进A种商品不少于66件,且销售完这批商品后获利多于1260元,请你帮该商店老板预算有几种购货方案?获利最大是多少元?
25.已知AB∥CD.
如图1,你能得出∠A+∠E+∠C=360°吗?
如图2,猜想出∠A.∠C、∠E的关系式并说明理由.
如图3,∠A.∠C、∠E的关系式又是什么?
参考答案
1.A.
2.B;
3.B
4.B
5.A
6.B.
7.A
8.D
9.A
10.B
11.C
12.A.
13.B.
14.C.
15.答案为:①②④
16.答案为:x<-4;
17.答案为:(﹣2,3).
18.答案为:x=6.3,y=2.2.
19.答案为:
20.答案为:x=2,y=-1.5;
21.答案为:0<x≤7;
22.解:(1)由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF=0.5×1×3+0.5×1×3+0.5×2×4+3×3=16。
23.
24.解:(1)设甲种商品应购进x件,乙种商品应购进y件.
根据题意得:.解得:.
答:甲种商品购进100件,乙种商品购进60件.
(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.
根据题意得.解不等式组,得66≤a<68.
∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.
方案一:甲种商品购进66件,乙种商品购进94件.
方案二:甲种商品购进67件,乙种商品购进93件.
最大获利为;66×5+94×10=1270元;答:有两种购货方案,其中获利最大的是方案一.25.图2中,∠A+∠C=∠E;图3中∠A+∠E-∠C=180°。