纳米二氧化钛的制备方法---钛醇盐气相热解法及气相氧化法
- 格式:doc
- 大小:25.00 KB
- 文档页数:1
纳米二氧化钛的制备方法及形貌特征盛丽雯重庆交通大学应用化学08300221摘要:纳米二氧化钛以其优异的性能成为半导体光催化剂的杰出代表,探寻优良的二氧化钛制备工艺有着重要的现实意义。
本文主要介绍了近年来国内外纳米二氧化钛制备工艺的研究状况,根据反应体系的物理形态将制备工艺分成气相、液相、固相三大类进行阐述,在此基础上分析比较了不同制备工艺的优缺点,最后展望了今后的发展方向。
关键词:纳米二氧化钛、制备方法、形貌特征。
1 纳米二氧化钛的制备方法1.1 气相法气相水解法利用氮气、氧气或空气作载气,把TiC1 或钛醇盐蒸气和水蒸气分别导人反应器,进行瞬间混合快速水解反应。
通过改变各种气体的停留时间、浓度、流速以及反应温度等来调节纳米TiO的晶型和粒径。
该方法制得的产品纯度高、分散性好、表面活性大,操作温度较低,能耗小,且对材质纯度要求不是很高,可实现连续生产;但控制过程复杂,并且直接影响着产品的晶型和粒径。
气相氧化法是以TiC1 为原料,氧气为氧源,氮气作为载气的氧化反应,反应经气、固分离后制得纳米TiO:。
该法制得的产品纯度高、分散性好;但设备结构复杂,材料要求耐高温、耐腐蚀,自动化程度高,研究开发难度大。
气相氢氧火焰法以TiC1 ,H2,O:为原料,将TiC1 气体在氢氧焰中(700~1 000℃)高温水解制得纳米TiO。
产品一般是锐钛型和金红石型的混晶型,产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小,自动化程度高;但所需温度高,对设备材质要求较高,对工艺参数控制要求精确。
气相热解法以TiC1 为原料,在真空或原料惰性气氛下加热至所需温度后,导入反应气体,使之发生热分解反应,最后在反应区沉积出纳米TiO。
产品化学活性高、分散性好,可以通过控制反应气体的浓度和炉温来控制纳米TiO的粒径分布;但投资大、成本高。
1.2 液相法溶胶一凝胶法以钛醇盐Ti(OR) 为原料,经水解与缩聚过程而逐渐凝胶化,再经低温干燥、烧结处理即可得到纳米TiO粒子。
纳米TiO2的制备方法综述纳米二氧化钛是一种新型的无机材料,粒径在10nm~50nm,具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强 ,表面活性大、热导性好、分散性好、所制悬浮液稳定、对人体无毒、价格低廉等优点,故其在诸多半导体光催化剂中脱颖而出,应用领域至今已遍及有机废水的降解、重金属离子的还原、空气净化、杀菌、防雾等众多方面。
由于其独特的性能和广泛的用途 , 纳米二氧化钛受到了国内外科学界的高度重视。
目前,纳米二氧化钛的制备根据反应物的相态,可以分为固相法、气相法和液相法,其中液相法是比较常用的一种制备方法固相法合成纳米二氧化钛是利用热分解或固相—固相的变化来进行的。
基础的固相法是钛或钛的氧化物按一定的比例充分混合 ,研磨后进行煅烧 ,通过发生固相反应直接制得纳米TiO2粉体 ,或者是再次粉碎得到TiO2纳米粉体。
固相法主要包括热分解法,固相反应法,火花放电法等。
固相法的主要优点是:经济,工艺过程和设备简单,但是耗能较大;由于固相反应反应不充分,因此产物的纯度不能得到很好的保证;此外由于固相法一般需要高温煅烧,得到的产物一般粒度大且分布不均匀。
因此,固相法只适用于对产品纯度和粒度要求不高的情况。
气相法指直接利用气体或者通过各种手段将物质变为气体 ,使之在气体状态下发生物理或化学反应 , 最后在冷却过程中凝聚长大形成纳米TiO2的方法。
用气相法制备的二氧化钛纳米粒子具有粒度细、化学活性高、粒子呈球形、单分散性好、凝聚粒子少、可见光透过性好、吸收紫外线的能力强等特点,易于工业放大,实现连续生产。
目前常见的方法有气相合成法和气相沉积法。
气相合成法是一种传统的方法。
其生产原理如下:Ti+2Cl2=TiCl4TiCl4+2H2+O2=TiO2+4HCl↑与其他方法相比,气相氢氧焰水解法[1]有以下优点:原料TiCl4获得容易,产品无需粉碎,生成的例子凝聚少,纯度高,粒度小,且粒度分布均匀。
纳米TiO2的制备方法概述摘要:概述纳米TiO2的制备方法,包括气相法和液相法。
重点介绍了应用两种前驱体—Ti(OC4H9)4和H2TiO3的溶胶-凝胶制备方法,并通过对后者介绍,进行了纳米TiO2的表征。
关键词:纳米TiO2、制备方法、表征纳米TiO2的一个重要性质是其光催化性能。
尽管其它一些物质,如ZnO、Fe2O3、WO3和CdSe等也具有光催化性,但TiO2的应用最为广泛,因为其低毒、稳定和资源丰富(Ti的含量位于地壳层的第九位)。
TiO2光催化性能的应用表现在以下方面:自洁净能力、降低空气污染以及抗菌能力等[1]。
除此以外,纳米TiO2在许多领域中都有广泛的应用前景。
本文在参考多篇文献之后,对纳米TiO2的制备方法进行了概述。
制备纳米TiO2多采用合成方法,主要包括气相法和液相法两类。
其中,气相法可分为物理气相沉积法和化学气相沉积法,而液相法则有胶溶法、溶胶—凝胶法、化学沉淀法和水热合成法等。
但无论采用何种方法,制备纳米粒子都有如下要求[2];表面光洁,粒子的形状及粒径、粒度分布可控,粒子不易团聚,易于收集,热稳定性优良,产率高。
1气相法气相法是直接利用气体或通过各种手段将物质变为气体,使之在气态下发生物理变化或化学变化,最后在冷却过程中凝聚长大形成纳米粒子的方法。
气相法的特点是粉体纯度高、颗粒尺寸小、颗粒团聚少、组分更易控制,但其产率低,制备成本高。
[3]气相法主要指化学气相沉积法(CVD)。
化学气相沉积法制备纳米TiO2的初级过程包括:气相化学反应、表面反应、均相成核、非均相成核、凝结聚集或融合。
气相反应所需的母体有2类:TiCl4和钛醇盐。
化学反应可分为以下4类。
[4](1)TiCl4与O2氧化,化学反应方程式为:TiCl4(g)+O2(g)= TiO2+2Cl2n TiO2 (g)=( TiO2)n(s)(2)钛醇盐直接热裂法,化学反应方程式为:Ti(OR)4= TiO2+4CnH2n+2H2O(3)钛醇盐气相水解法(气溶胶法),化学反应方程式为:Ti(OR)4+2H2O= TiO2+4ROH(4)气相氢氧焰水解法[5],化学反应方程式为:TiCl4+2H2+O2= TiO2+4HCl其中,气相氢氧焰水解法(Aerosi法)于20世纪80年代中后期开始应用于工业生产。
纳米二氧化钛的制备方法综述纳米二氧化钛的制备方法综述【摘要】纳米二氧化钛(Ti02)具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点之一。
本文主要对纳米二氧化钛的各种制备方法作了简单介绍。
【关键词】纳米二氧化钛、制备【正文】二氧化钛的制备方法可分为气相法和液相法两大类。
一、气相制备法低压气体蒸发法此种制备方法是在低压的氩、氮气等惰性气体中加热普通的Ti02,然后骤冷生成纳米二氧化钛粉体,其加热源有以下几种:(1)电阻加热法;(2)等离子喷射法; (3)高频感应法; (4)电子束法; (5)激光法,这些方法可制备lOOnm以下的二氧化钛粒子。
活性氢—熔融金属反应法含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电离的N2,Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米二氧化钛微粒。
溅射法此方法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加的电压范围为0.3—1.5kV。
由于两电极间的辉光放电使Ar离子形成。
在电场的作用下Ar离子冲击阴极靶材表面,靶上的Ti02就由其表面蒸发出来,被惰性气体冷却而凝结成纳米TiO2粉末,粒度在50nm以下,粒径分布较窄。
流动液面上真空蒸发法用电子束在高真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2超微粒子钛醇盐气相水解法该工艺可以用来开发单分散的纳米TiO2,其反应式如下: nTi(0R)4,+2nH2O(g)————>nTiO2(s)+4nROH优点是操作温度较低、能耗小,对材质要求不是很高,并且可以连续化TiCl4,高温气相水解法该法与气相法生产白炭黑的原理相似,是将TiCl4气体导入高温的氢氧火焰中进行气相水解,其化学反应式为: TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g)优点工艺制备的纳米粉体产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小。
纳米TiO2的制备方法摘要:报告主要研究了纳米TiO2的制备方法,包括物理法、化学法和综合法。
其中物理法主要是气相蒸发沉积法,蒸发-凝聚法;化学法包括溶胶-凝胶法,沉淀法,水解法,气相水解法等;综合法涉及到激光CVD 法,等离子CVD 法。
关键词:气相蒸发沉积法水解法 CVD 法近年来,伴随着全球环境污染日益严重,纳米半导体光催化剂材料一直是材料学和光催化学研究的热点。
目前,比较简单的半导体光催化剂有TiO2、SnO2、Fe2O3、MoO3、WO3、PbS、ZnS、ZnO 和CdS 等,纳米TiO2因其具有性质稳定、抗光腐蚀性强、耐酸碱腐蚀性强、原料丰富等优点。
制备纳米TiO2粉体的方法有很多,按照所需粉体的形状、结构、尺寸、晶型、用途选用不同的制备方法。
根据粉体制备原理的不同,这些方法可分为物理法、化学法和综合法。
1 物理法物理法是最早采用的纳米材料制备方法,其方法是采用高能消耗的方式,“强制”材料“细化”得到纳米材料。
物理法的优点是产品纯度高。
1. 1 气相蒸发沉积法此法制备纳米TiO2粉体的过程为: 将金属Ti 置于钨舟中,在( 2 ~ 10) ×102 Pa 的He 气氛下加热蒸发,从过饱和蒸汽中凝固的细小颗粒被收集到液氮冷却套管上,然后向反应室注入5 ×103 Pa 的纯氧,使颗粒迅速、完全氧化成TiO2粉体。
利用该方法制备的TiO2纳米粉体是双峰分布,粉体颗粒大小为14 nm。
1. 2 蒸发-凝聚法此法是将将平均粒径为3 μm 的工业TiO2轴向注入功率为60 kW 的高频等离子炉Ar - O2混合等离子矩中,在大约10 000 K 的高温下,粗粒子TiO2汽化蒸发,进入冷凝膨胀罐中降压,急冷得到10 ~ 50 nm 的纳米TiO2。
2 化学法化学法可以根据反应物的物态,将其划分为液相化学反应法、气相化学反应法和固相反应法。
此类方法制造的纳米粉体产量大,粒子直径可控,也可得到纳米管和纳米晶须,同时,该法能方便地对粒子表面进行碳、硅和有机物包覆或修饰处理,使粒子尺寸细小且均匀,性能更加稳定。
1.纳米TiO 2粉体制备方法物理法 气相冷凝法:预先处理为气相的样品在液氮的气氛下冷凝成核制得纳米TiO2 粉体,但该法不适于制备沸点较高的半导体氧化物高能球磨法:工艺简单,但制得的粉体形状不规则,颗粒尺寸分布宽,均匀性差化学法 固相法:依靠固体颗粒之间的混合来促进反应,不适合制备微粒液相法:就是将钛的氯化物或醇盐先水解生成氢氧化钛(或羟基氧钛) ,再经煅烧得到TiO2. 研究最广泛。
以四氯化钛为原料,其反应为TiCl4 + 4H2O → Ti (OH) 4 + 4HCl ,Ti (OH) 4 → TiO2 + 2H2O.以醇盐为原料,其反应为Ti (OR) 4 + 4 H2O → Ti (OH) 4 + 4 ROH ,Ti (OH) 4 −−−→煅烧TiO2 + 2 H2O.主要包括硫酸法、水解法、溶胶-凝胶(Sol2gel) 法、超声雾化、热解法等。
溶胶- 凝胶法就是将钛醇盐制备成二氧化钛溶胶. 为了得到多孔催化剂,通常采用煅烧等方法将凝胶进行干燥,去除溶剂,制得干凝胶. Dagan 等[25 ]采用超临界干燥法所制得的TiO2气凝胶孔隙率为85 % ,比表面积高达600 m2·g - 1 ,晶粒尺寸为5. 0 nm ;对水杨酸的光催化氧化表明该催化剂具有比Degussa P - 25 TiO2粉末更高的催化活性.气相法:其核心技术是反应气体如何成核的问题. 通过四氯化钛与氧气反应或在氢氧焰中气相水解获得纳米级TiO2 ,目前德国Degussa 公司P-25 粉末光催化剂是通过该法生产的常用的化学制备方法有溶胶-凝胶法、沉淀法、水解法、喷雾热解法、水热法和氧化- 还原法等。
10. 纳米TiO2薄膜制备方法:除了与粉体制备相同的制备方法如溶胶-凝胶法、热解法外,还有液相沉积法、化学气相沉积法、磁控溅射法等。
溶胶-凝胶法(Sol-Gel):制备的薄膜纯度高,且制备工艺简单,易批量生产;水热合成法:通过水解钛的醇盐或氯化物前驱体得到无定形沉淀,然后在酸性或碱性溶液中胶溶得到溶胶物质,将溶胶在高压釜中进行水热Ostwald熟化。
纳米TiO2的制备综述应091-2纳米二氧化钛的制备摘要:纳米二氧化钛,亦称纳米钛白粉。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在100纳米以下,其外观为白色疏松粉末。
具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。
纳米二氧化钛在生活和生产中有着不可替代的作用:纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。
目前,制备纳米TiO2的方法很多,基本上可归纳为物理法和化学法。
物理法又称为机械粉碎法,对粉碎设备要求很高;化学法又可分为气相法、液相法和固相法。
关键词:纳米二氧化钛制备方法生产生活应用二氧化钛目前主要有以下几种制备方法:一:液相法1.1.溶胶-凝胶法【1】溶胶凝胶法是液相合成制备纳米TiO2的典型方法。
以化学纯的有机钛酸丁脂[Ti(OC4H9)4]为前驱体,将其溶于无水乙醇中,缓慢加水使[Ti(OC4H9)4]水解,得到稳定的TiO 凝胶。
生产中原料物质的量比n[Ti(OC4H9)4]:n[EtOH]:n[H2O]=3:4:3,制得的TiO2凝胶在100~C干燥5h后,放入马弗炉在500"C保温(灼烧)l0h,取出后自然冷却至室温,研磨后即得纳米TiO2粉体。
1.2.水解沉淀法【2】水解沉淀法制备TiO2粉体的工艺流程为:首先在自然冷却下,将TiCl4缓慢滴加到去离子水、浓盐酸水溶液、浓盐酸+硫酸铵水溶液和其他沉淀剂的水溶液中;其后在一定温度下,搅拌、回流、保温一段时间,制备出沉淀物,经冲洗、过滤、干燥;然后在不同温度条件下煅烧一段时间,获得TiO2粉体。
二:气相法:2.1.四氯化钛气相氧化法【3】此法多是以四氯化钛为原料,以氮气为载气,以氧气为氧源,在高温条件下四氯化钛和氧气发生反应生成纳米二氧化钛。
纳米TiO2的制备方法综述1.引言纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。
由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。
其中纳米二氧化钛作为一类无机功能材料备受关注。
氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。
纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。
制备和开发纳米二氧化钛成为国内外科技界研究的热点。
纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。
纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。
目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。
2.气相法气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。
气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。
PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。
在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。
[3]2.1 扩散火焰法以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。
纳米二氧化钛的制备及其应用研究进展纳米二氧化钛是一种具有广泛应用潜力的纳米材料。
它具有高比表面积、优异的光催化性能以及良好的化学稳定性,因而在光催化、防污涂料、太阳能电池、化妆品等领域有着广泛的应用。
本文将介绍纳米二氧化钛的制备方法及其在各个领域的应用研究进展。
首先,从制备方法角度来看,纳米二氧化钛可以通过物理法、化学法以及生物法等多种方法得到。
其中,物理法包括气相法、溶胶凝胶法、机械法等,化学法主要包括水热法、溶剂热法、水热法等,生物法则是通过利用生物体或其提取物来合成纳米颗粒。
每种方法都有其优缺点,研究者可以根据具体需求选择适合的制备方法。
其次,纳米二氧化钛在光催化领域的应用研究较为广泛。
纳米二氧化钛可以通过光催化过程将光能转化为化学能,用于降解废水中的有机污染物。
研究发现,添加一些能够吸收可见光的材料,如碳量子点、半导体量子点等,可以提高纳米二氧化钛的光催化活性。
此外,光催化技术也可以应用于空气净化、自洁涂料等领域。
在防污涂料领域,纳米二氧化钛的应用也备受关注。
纳米二氧化钛具有超疏水性和自洁性,可以防止油污、水渍等附着在表面上,使涂层具有良好的自洁效果。
此外,纳米二氧化钛还可以通过光催化分解有机污染物,达到净化空气的目的。
防污涂料的应用不仅可以提高建筑物外墙的清洁度,还可以延长建筑物的使用寿命。
太阳能电池也是纳米二氧化钛的一个重要应用领域。
纳米二氧化钛具有优异的光催化性能和电化学性质,可以作为太阳能电池中的电极材料。
目前,纳米二氧化钛主要应用于染料敏化太阳能电池(DSSC)和钙钛矿太阳能电池(PSC)中。
通过纳米二氧化钛的光催化作用,可以有效提高太阳能电池的光电转换效率。
此外,纳米二氧化钛在化妆品领域的应用也日益增多。
纳米二氧化钛可以作为防晒剂,有效抵御紫外线的伤害。
同时,纳米二氧化钛还具有抗菌作用,可以用于制备抗菌化妆品。
然而,由于纳米二氧化钛对人体的潜在风险,其在化妆品中的应用仍需谨慎。
一、钛醇盐气相热解法
该工艺以钛醇盐为原料,将其加热气化,用氮气、氦气或氧气作载气,把钛醇盐蒸气预热分解炉,进行热分解反应。
其反应式如下:
nTi(OC4H9)4(g)===nTiO2(s)+2nH2O(g)+4nC4H8(g)
日本出光兴产株式会社利用钛醇盐气相热解法生产球形非晶型的TiO2,这种纳米TiO2可以用作吸附剂、光催化剂、催化剂载体和化状品等。
据称,为提高分解反应速率,载气中最好含有水蒸气,分解温度以250~350℃为合适,钛醇盐蒸气在热分解炉中的停留时间为0.1~10s,其流速为10~1000mm/s,体积分数为0.1%~10%;为提高所生成纳米TiO2的耐候性,可向热分解炉中同时导入易挥发的金属化合物(如铝、锆的醇盐)蒸气,使纳米TiO2粉体制备和无机表面处理同时进行,该工艺的最大缺点是原料成本较高,产物中残炭含量高,难以合成纯金红石型的纳米TiO2。
二、钛醇盐气相氧化法
将钛醇盐蒸气导入反应器与氧气反应,由于饱和蒸气压的原因,反应前体一般选用钛酸民丙醇酯(TTIP).
Arabi-Katbi等以TTIP为原料,研究了火焰的方位和结构对合成纳米TiO2的影响。
预混合反应器的方位主要影响停留时间,对晶型组成、颗粒尺寸有一定影响,但对粒子的形貌影响不大。
在层流扩散焰反就器中合成纳米TiO2反应器的混合方式和火焰结构可以有效控制产物的平均原始粒径(10~50mm)和晶型组成(金红石型的质量分数为6%~50%)。
为增大粒径和提高产物的金红石型含量,可以通过增加甲烷气体的流量而提高反应温度来实现。
气相合成纳米TiO2的方法,除上述几种以外,还有低温等离子体化学法、激光化学反应法、金属有机化合物气相沉积法、强光离子束蒸法、乳液燃烧法等,虽然这些气相法制得的纳米TiO2粉体纯度高,粒径分布窄,分散性好,团聚少,表面活性大,反应速率快,能实现连续化生产。
但是气相法反应在高温下瞬间完成,要求反应物在极短的时间内达到微观上的均匀混合,对反应器的型式、设备的材质、加热方式、进料方式均有很高的要求,加之生产成本高。
因此应用价值不大。
在上述各种方法中,TiCl4气相氧化法由于经济、环保和生产工艺的柔性而最具竞争力。