北师大版八年级数学上册 第五章 二元一次方程组 单元测试卷(无答案)
- 格式:docx
- 大小:27.18 KB
- 文档页数:4
北师大版数学八年级上册第五章综合测试题一、选择题1、下列方程组中是二元一次方程组的是( )A .⎩⎨⎧xy =42x +y =6B .⎩⎪⎨⎪⎧4x -3y =31x =3y C .⎩⎪⎨⎪⎧x +z =0x -y =15D .⎩⎨⎧x -y =22x +y =4 2、下列方程组是二元一次方程组的是( )A .⎩⎨⎧x -y =1y +z =3B .⎩⎪⎨⎪⎧x -3y =21y+x =5 C .⎩⎨⎧x -y =33x -y =1 D .⎩⎨⎧x +y =7x 2-y 2=7 3、下列说法中正确的是( )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎨⎧x -y =0,x +y =0的解为0 D .方程组各个方程的公共解叫做这个方程组的解4、已知一个等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( )A .5B .4C .3D .5或45、某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种零件1个与乙种零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种零件x 天,生产乙种零件y 天,则有( )A.⎩⎨⎧x +y =30200x =100yB.⎩⎨⎧x +y =30100x =200yC.⎩⎨⎧x +y =302×200x =100yD.⎩⎨⎧x +y =302×100x =200y6、小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如A .64元B .65元C .66元D .67元7、晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5 min 后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y 1(m ),y 2(m )与运动时间x(min )之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200 m /min ;①m 的值是15,n 的值是3 000;①晓琳开始返回时与爸爸相距1 800 m ;①运动18 min 或30 min时,两人相距900 m .其中正确结论的个数是( )A .1个B .2个C .3个D .4个8、若⎩⎨⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( ) A .y =2x +7 B .y =7-2x C .y =-2x -5 D .y =2x -59、为丰富同学们的课余生活,某校计划成立足球和篮球课外兴趣小组,现购买了篮球和足球若干个,已知购买的篮球比足球少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各购买了多少个?设购买了篮球x 个,购买了足球y 个,可列方程组( )A .⎩⎨⎧x -y =160x +30y =480B .⎩⎨⎧x =y -160x +30y =480 C .⎩⎨⎧x =y -130x +60y =480 D .⎩⎨⎧x -y =130x +60y =48010、若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则( )A .m≠-2B .m≠0C .m≠3D .m≠4二、填空题11.已知二元一次方程2x -3y =1,若x =3,则y =___;若y =1,则x =____.12.若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是____.13.一次函数y =-2x +b 与x 轴交于点(3,0),则它与直线y =x 的交点坐标为____.14.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =____.15.如果实数x ,y 是方程组⎩⎨⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是____.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y元,根据题意可列方程组为____.三、解答题17、解下列方程组:(1)⎩⎨⎧3x +4y =19,x -y =4; (2)⎩⎨⎧8y +5x =2,4y -3x =-10.18、5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施,6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂6月份的用水量各是多少吨.19、某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?20、随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元,3辆A 型汽车、2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆的进价分别为多少万元;(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8 000元,销售1辆B 型汽车可获利5 000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?北师大版数学八年级上册第五章综合测试题参考答案一、选择题1、下列方程组中是二元一次方程组的是( D )A .⎩⎨⎧xy =42x +y =6B .⎩⎪⎨⎪⎧4x -3y =31x =3y C .⎩⎪⎨⎪⎧x +z =0x -y =15D .⎩⎨⎧x -y =22x +y =4 2、下列方程组是二元一次方程组的是( C )A .⎩⎨⎧x -y =1y +z =3B .⎩⎪⎨⎪⎧x -3y =21y+x =5 C .⎩⎨⎧x -y =33x -y =1 D .⎩⎨⎧x +y =7x 2-y 2=7 3、下列说法中正确的是( D )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎨⎧x -y =0,x +y =0的解为0 D .方程组各个方程的公共解叫做这个方程组的解4、已知一个等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( A )A .5B .4C .3D .5或45、某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种零件1个与乙种零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种零件x 天,生产乙种零件y 天,则有( C )A.⎩⎨⎧x +y =30200x =100yB.⎩⎨⎧x +y =30100x =200yC.⎩⎨⎧x +y =302×200x =100yD.⎩⎨⎧x +y =302×100x =200y6、小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如A .64元B .65元C .66元D .67元7、晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5 min 后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y 1(m ),y 2(m )与运动时间x(min )之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200 m /min ;①m 的值是15,n 的值是3 000;①晓琳开始返回时与爸爸相距1 800 m ;①运动18 min 或30 min 时,两人相距900 m .其中正确结论的个数是( C )A .1个B .2个C .3个D .4个8、若⎩⎨⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( B ) A .y =2x +7 B .y =7-2x C .y =-2x -5 D .y =2x -59、为丰富同学们的课余生活,某校计划成立足球和篮球课外兴趣小组,现购买了篮球和足球若干个,已知购买的篮球比足球少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各购买了多少个?设购买了篮球x 个,购买了足球y 个,可列方程组(B )A .⎩⎨⎧x -y =160x +30y =480B .⎩⎨⎧x =y -160x +30y =480C .⎩⎨⎧x =y -130x +60y =480 D .⎩⎨⎧x -y =130x +60y =48010、若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则(C)A .m≠-2B .m≠0C .m≠3D .m≠4二、填空题11.已知二元一次方程2x -3y =1,若x =3,则y =__53__;若y =1,则x =__2__. 12.若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是__2__.13.一次函数y =-2x +b 与x 轴交于点(3,0),则它与直线y =x 的交点坐标为__(2,2)__.14.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =__1__.15.如果实数x ,y 是方程组⎩⎨⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是__1__.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y元,根据题意可列方程组为__⎩⎨⎧x +y =1000.9x +1.4y =100×1.2__. 三、解答题17、解下列方程组:(1)⎩⎨⎧3x +4y =19,x -y =4; (2)⎩⎨⎧8y +5x =2,4y -3x =-10.(1)解:⎩⎨⎧x =5,y =1(2)解:⎩⎨⎧x =2,y =-118、5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施,6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂6月份的用水量各是多少吨.解:设甲、乙工厂5月份的用水量分别为x 吨、y 吨,根据题意,得⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =174,解得⎩⎨⎧x =120,y =80,所以(1-15%)x =102,(1-10%)y =72,所以甲、乙工厂6月份的用水量分别为102吨、72吨19、某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.20、随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元,3辆A 型汽车、2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆的进价分别为多少万元;(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8 000元,销售1辆B 型汽车可获利5 000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得⎩⎨⎧2x +3y =80,3x +2y =95,解得⎩⎨⎧x =25,y =10.答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,依题意,得25m +10n =200,解得m =8-25n.因为m ,n 均为正整数,所以⎩⎨⎧m =6,n =5或⎩⎨⎧m =4,n =10或⎩⎨⎧m =2,n =15,所以共有以下3种购买方案:①购进A 型车6辆,B 型车5辆;①购进A 型车4辆,B 型车10辆;①购进A 型车2辆,B 型车15辆(3)方案①可获得利润8 000×6+5 000×5=73 000(元);方案①可获得利润8 000×4+5 000×10=82 000(元);方案①可获得利润8 000×2+5 000×15=91 000(元).因为73 000<82 000<91 000,所以购进A 型车2辆,B 型车15辆获利最大,最大利润是91 000元。
二元一次方程与一次函数练习题1、直线()0y kx b k =+≠的表达式就是一个关于,x y 的 方程;以二元一次方程y kx b -=的解为坐标的点组成的图象就是一次函数 的图象.2、以方程25x y +=的解为坐标的所有点组成的图形与一次函数 图象相同.3、如图所示的四条直线,其中直线上每个点的坐标都是二元一次方程22x y -=的解是( )4、当12k k ≠时,两条直线()()11112222:0,:0l y k x b k l y k x b k =+≠=+≠的交点的 就是方程组1122y k x b y k x b =+⎧⎨=+⎩的 ,当1212,k k b b =≠且时,两条直线平行,则方程组1122y k x b y k x b =+⎧⎨=+⎩ . 5、如图,已知函数2y x =-和21y x =-+的图象交于点P ,根据图象可得方程组221x y x y -=⎧⎨+=⎩的解是 .6、两条直线1122y k x b y k x b =+=+和相交于点A (-2,3),则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是( )A.23x y =⎧⎨=⎩B.23x y =-⎧⎨=⎩C.22x y =⎧⎨=-⎩D.32x y =⎧⎨=⎩7、方程组24122x y x y +=-⎧⎨-=-⎩的解是下面哪两个一次函数图象的交点坐标?( )A.1111242y x y x =-=-与 B. 1111242y x y x =--=+与 C. 1111242y x y x =--=-与 D. 1111242y x y x =-=+与A B C Dx -28、若一次函数1122y k x b y k x b =+=+与的图象没有交点,则方程组112200k x y b k x y b -+=⎧⎨-+=⎩的解的情况是( )A.有无数个解B.有两个解C.只有一个解D.没有解 9、用图形法解方程组2 4 1 x y x y +=⎧⎨-=⎩①②10、在同一平面直角坐标系内画出二元一次方程220x y --=和30x y -+=所对应的一次函数的图象.利用图象求:(1)方程223x x -=+的解;(2)方程组22030x y x y --=⎧⎨-+=⎩的解.12、A ,B 两地相距50km ,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车从A 地出发驶往B 地,图中折线PQR 和线段MN 分别表示甲和乙所行驶的路程s 与该日下午实践t 之间的关系.(1)甲出发多少小时,乙才出发?(2)乙行驶多少小时就追上了甲,这时两人离B 地还有多少千米?11、如图,直线AB :112y x =+分别与x 轴、y 轴交于点A ,B ,直线CD :y x b =+分别与x 轴,y 轴交于点C ,D ,直线AB 与CD 相交于点P ,且点P 的横坐标为4. (1)求点D 的坐标;(2)连接AD ,求△ADP 的面积.12、为奖励在演讲比赛种获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4本笔记本和2支钢笔,则需86元;如果买3本笔记本和1支钢笔,则需57元.(1)求购买每本笔记本和每支钢笔分别需要多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买()0x x >支钢笔需要1y 元,请你求出1y 与x 的函数表达式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10件,请帮小明判断买哪种奖品省钱.。
《二元一次方程组》单元练习题一.选择题1.下列方程中是二元一次方程的是()A.x2﹣2y+1=0 B.x+2=0 C.2x+y+z=1 D.2x+y=22.下列各组x,y的值中,是方程3x﹣y=5的解的是()A.B.C.D.3.已知是方程组的解,则m+n的值为()A.4 B.﹣4 C.0 D.不能确定4.已知和是方程ax﹣by=1的解,则a+b的值为()A.﹣2 B.0 C.﹣1 D.25.我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米.根据题意,所列方程组正确的是()A. B.C. D.6.已知关于x,y的方程组与的解相同,则m+n的值为()A.2 B.3 C.﹣3 D.57.若直线y=2x﹣3与直线y=5x+2的交点坐标为(a,b),则解为的方程组是()A.B.C.D.8.如果关于x,y的方程组的解是二元一次方程3x﹣2y=2的一个解,那么m的值为()A.14 B.﹣26 C.26 D.﹣149.已知关于x,y的二元一次方程4x﹣3y=t,其取值如下表,则p的值为()x m2m+1y n2n﹣5t 5 pA.29 B.26 C.19 D.﹣110.2020年2月某敬老院为了更好的保护好老人,预防老人们感染新冠病毒,用4800元购进A,B口罩共160件,其中A型口罩每件24元,B型口罩每件36元.设购买A型口罩x件,B型口罩y件,依题意列方程组正确的是()A.B.C.D.二.填空题11.若,是方程ax+y=3的解,则a=.12.请你写出二元一次方程x﹣y=5的一个解:.13.已知x=6+3y,若用含x的代数式表示y,则y=.14.足球比赛的计分规则为:胜一场积3分,平一场积1分,负1场积0分.初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分,那么这支足球队胜了场.15.为防控新冠疫情,做好个人防护,小君去药店购买口罩.若买6个平面口罩和4个KN95口罩,则她所带的钱还剩下10元;若买4个平面口罩和6个KN95口罩,则她所带的钱还缺8元.若只买10个KN95口罩,则她所带的钱还缺元.16.已知是关于x、y的二元一次方程组的解,则a2﹣b2=.17.如果2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.那么1台大收割机和1台小收割机一起工作3小时共收割小麦公顷.三.解答题18.解方程组:(1);(2).19.已知关于x,y的二元一次方程组的解x,y互为相反数,求a的值.20.已知关于x,y的两个二元一次方程组和的解相同,求(m+2n)188的值.21.一家商店进行装修,若请甲、乙两个装修队同时施工,8天可以完成,需付两队费用3520元,若先请甲队单独做6天,再请乙队单独做16天可以完成,需付费用4040元.(1)甲、乙两队工作一天,商店各应付多少钱?(2)若装修完,商店每天可盈利200元,则如何安排施工更有利于商店?请说明理由.22.长沙市某公园的广]票价格如表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校九年级甲、乙两个班共100多人去该公园举行毕业联欢活动,其中甲班有50多人不到60人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共要付515元,问甲,乙两班分别有多少人?23.规定:形如关于x、y的方程x+ky=b与kx+y=b的两个方程互为共轭二元一次方程,其中k≠1;由这两个方程组成的方程组叫做共轭方程组.(1)求方程3x+y=5的共轭二元一次方程是;(2)若关于x、y的方程组为共轭方程组,则a=,b=;(3)若方程x+ky=b中x、y的值满足下列表格:x﹣1 0y0 2则这个方程的共轭二元一次方程是;(4)解下列方程组(直接写出方程组的解即可);的解为;的解为;的解为.结论:若共轭方程组的解是,请直接写出m与n的数量关系.参考答案一.选择题1.解:A、是二元二次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、是三元一次方程,故此选项错误;D、是二元一次方程,故此选项正确;故选:D.2.解:A、3×1﹣2=1,故选项A错误;B、2×3﹣1=5,故选项B正确;C、﹣2×3﹣1=﹣7,故选项C错误;D、0×3﹣5=﹣5,故选项D错误,故选:B.3.解:把代入方程组得:,解得:m=﹣2,n=2,则m+n=﹣2+2=0,故选:C.4.解:根据题意得,由②得:a=﹣1,将a=﹣1代入①得:﹣1﹣2b=1,解得b=﹣1,∴a+b=﹣1﹣1=﹣2,故选:A.5.解:由题意可得,,故选:D.6.解:∵方程组与的解相同,∴方程组的解也它们的解,解之得:,代入其他两个方程得,两式相加得5m+5n=15∴m+n=3,故选:B.7.解:∵直线y=2x﹣3与直线y=5x+2的交点坐标为(a,b),∴解为的方程组是,即.故选:C.8.解:由于方程组的解是二元一次方程3x﹣2y=2的一个解,∴方程组的解也是x+2y=m的解.解方程组,得当x=﹣6,y=﹣10时,m=x+2y=﹣6﹣20=﹣26.故选:B.9.解:根据题意得:4m﹣3n=5,4(2m+1)﹣3(2n﹣5)=p,整理得:p=8m+4﹣6n+15=2(4m﹣3n)+19=10+19=29.故选:A.10.解:设购买A型口罩x件,B型口罩y件,依题意列方程组得:.故选:B.二.填空题(共7小题)11.解:将x=2、y=2代入方程ax+y=3,得:2a+2=3,解得a=,故答案为:.12.解:∵x﹣y=5,∴y=x﹣5,不妨令x=6,则y=1.∴二元一次方程x﹣y=5的一个解是.故答案为(答案不唯一).13.解:方程x=6+3y,移项得:3y=x﹣6,解得:y=.故答案为:.14.解:设这支足球队胜了x场,平了y场,依题意,得:,解得:.故答案为:9.15.解:设平面口罩的单价为x元,KN95口罩的单价为y元,小君带的钱数为a元,依题意,得:,(6×②﹣4×①)÷2,得:10y=a+44,∴a﹣10y=﹣44.故答案为:44.16.解:将代入,∴∴a2﹣b2=(a﹣b)(a+b)=﹣1×5=﹣5,故答案为﹣5.17.解:设1台大收割机1小时收割小麦x公顷,1台小收割机1小时收割小麦y公顷,依题意,得:,解得:,∴3(x+y)=1.8.故答案为:1.8.三.解答题(共6小题)18.解:(1),由②得,y=3x+1③,把③代入①得,x+2(3x+1)=9,解得,x=1,把x=1代入③,解得y=4,∴原方程组的解是;(2)原方程组整理得,,①×3﹣②×2得,5y=﹣15,∴y=﹣3,把y=﹣3代入①,解得x=4,∴原方程组的解是.19.解:②﹣①,得3y=﹣9a﹣3,即y=﹣3a+1,把y=﹣3a+1代入①得,x=a﹣2,由题意得:a﹣2+(﹣3a+1)=0,解得:a=﹣0.5.20.解:由两个方程组的解相同,得,解得,所以有:,解得,所以(m+2n)188=(1﹣2)188=1.21.解:(1)设:甲队工作一天商店应付x元,乙队工作一天商店付y元.由题意得,解得,答:甲、乙两队工作一天,商店各应付300元和140元.(2)请两队同时装修更有利于商店,理由:设甲单独做需要a天完成,乙单独做需要b天完成,则.解得.即:甲单独做需要12天完成,乙单独做需要24天完成.甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.22.解:设甲班有x人,乙班有y人,依题意,得:,解得:.答:甲班有55人,乙班有48人.23.解:(1)方程3x+y=5的共轭二元一次方程是x+3y=5,故答案为x+3y=5;(2)由题意得,,解得a=1,b=1,故答案为1,1;(3)方程x+ky=b中,当x=﹣1时,y=0;当x=0时,y=2,∴,解得,∴这个方程的共轭二元一次方程是﹣x+y=﹣1,故答案为:﹣x+y=﹣1;(4))方程组的解为;的解为;的解为.结论:若共轭方程组的解是,则m=n.故答案为;;.。
北师大版八年级上册第五章二元一次方程组一、选择题1.下列方程中,属于二元一次方程的是( )A .523x -=B .31x y +=C .26x y -=D .221x y -=2.方程组的解是31x y x y +=⎧⎨-=-⎩的解是( ) A . B .32x y =-⎧⎨=-⎩ C .21.x y =⎧⎨=⎩, D .23.x y =⎧⎨=⎩, 3.在解二元一次方程组22425x y x y -=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .-①② B .由①变形得22x y =+③,将③代入②C .4⨯+①②D .由②变形得245y x =-③,将③代入①4.《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .B .C .D .5.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码( )A .350克B .300克C .250克D .200克6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ) 12x y =⎧⎨=⎩A.4.53xy=⎧⎨=⎩B.31xy=-⎧⎨=⎩C.13xy=⎧⎨=-⎩D.3xy=⎧⎨=⎩7.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是A.200元,240元B.240元,200元C.280元,160元D.160元,280元8.上学年初一某班的学生都是两人一桌,其中男生与女生同桌,这些女生占全班女生的,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x人,女生y人,则列方程组为()A.B.C.D.9.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()二、填空题11.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b = .12. 已知二元一次方程,请写出该方程的一组整数解.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程的解,则k 的值为 . 13.若方程组的解是 ,则直线y =-2x +b 与直线y =x -a 的交点坐标是 .14.在方程组中,若未知数x 、y 满足x +y >0,则m 的取值范围是 . 15.我国古代数学书《四元玉鉴》中有这样﹣一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是 .16.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,则可列二元一次方程组为: .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是________.三、解答题18.解方程组:(1). (2).19.已知方程组与有相同的解,求m 和n 值.20.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?21.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人. 3x y +=22.某班组织班团活动,班委会准备15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的数量关系式;(2)有多少种购买方案?请列举所有可能的结果.23.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?24.如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(23,n)(1)则n=,k=,b=_______.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.(3)求四边形AOCD的面积.25.某商场购进甲、乙两种服装后,都加价40%标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的标价和进价各是多少元?26.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从家打车到郊区,总里程为23千米,耗时30分钟,求小强需支付多少车费.28.植树造林可以减少二氧化碳排放,为实现“碳中和”做出贡献,还可以美化环境:为此某区计划由甲施工队把城区主干道某一段公路的一侧栽上若干棵小叶榕树;若施工队平均每人植5棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数少10棵;若施工队平均每人植6棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数多5棵.求甲施工队有多少人?计划种植的小叶榕树有多少棵?。
北师大版八年级数学上册第五章 二元一次方程组 单元测试题一、选择题:1、下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2、若方程组⎩⎨⎧=+++=10)1(232y k kx y x 的解互为相反数,则k 的值为( )A.8B.9C.10D.113、用加减消元法解方程组⎩⎨⎧=-=+823132y x y x 时,有以下四种结果,其中正确变形是( )①⎩⎨⎧=-=+846396y x y x②⎩⎨⎧=-=+869164y x y x③⎩⎨⎧=-=+1646396y x y x④⎩⎨⎧=-=+2469264y x y xA.只有①和②B.只有③和④C.只有①和③D.只有②和④4、某校150名学生参加数学考试,平均分55分,其中及格学生平均77分,不及格学生平均47分,则不及格的学生人数为( ) .A.49B.101C.110D.405、甲、乙两条绳共长17 m,如果甲绳减去51,乙绳增加1 m,两条绳长相等,求甲、乙两条绳各长多少?若设甲绳长x m,乙绳长y m,则得方程组( )A.⎪⎩⎪⎨⎧+=-=+15117y x y xB.⎪⎩⎪⎨⎧-=+=+1511y x y xC.⎪⎩⎪⎨⎧+=-=+15117y x x y xD.⎪⎩⎪⎨⎧-=+=+15117y x x y x 6、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( )A.k <31B.31<k <1 C.k >1 D.k >1或k <317、已知方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩,则a+b+c 的值为( ).A .6B .-6C .5D .-58、方程组⎩⎨⎧=-+=+3)1(134y k kx y x 的解x 和y 的值相等,则k 的值等于( )A.9B.10C.11D.12二、填空题9、已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________.10、兄弟两人,弟弟五年后的年龄与哥哥五年前的年龄相等,3年后兄弟两人的年龄和是他们年龄之差的3倍,则兄弟两人今年的岁数分别是________.11、方程组⎩⎨⎧=+=+5222y x y x 的解为________,则一次函数y =2-2x ,y =5-2x 的图象之间________.12、已知甲、乙两人从相距18千米的两地同时出发,相向而行,154小时相遇.如果甲比乙先走32小时,那么在乙出发后23小时两人相遇.设甲、乙两人速度分别为每小时x 千米和y 千米,则x =________,y =________.13、无论m 取何实数,直线y =x +3m 与y =-x +1的交点不可能在第__________象限.14、如果方程组864x y y z z x +=⎧⎪+=⎨⎪+=⎩的解满足方程kx+2y-z =10,则k =________.三、解答题15、解下列方程组(1)⎩⎨⎧=+-=-33225y x y x (2)⎩⎨⎧=--=52332b a b a(3)⎪⎪⎩⎪⎪⎨⎧++=---=-23222622y x x y x x y (4)⎩⎨⎧-=+--=+--1)(5)(221)(7)(6y x y x y x y x(5) 2321122x y z x y x y z -=⎧⎪⎪+=⎨⎪⎪-=+⎩ (6)32522642730x y z x y z x y z ++=⎧⎪--=⎨⎪+-=⎩16、当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)有相同的解,求a 的值.17、在等式2y ax bx c =++中,当x =1时,y =4;当x =2时,y =3;当x =-1时,y =0,求a 、b 、c 的值.18、小明去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮,按商店规定,若给全组每人各买2枝铅笔和1块橡皮,则必须按零售价计算,需支付39元;若给全组每人各买3枝铅笔和2块橡皮,则可以按批发价计算,需支付42元.已知每枝铅笔的批发价比零售价低0.1元,每块橡皮的批发价比零售价低0.25元,求这家商店每支铅笔和每块橡皮的批发价各为多少元?19、A ,B 两地相距50km ,甲于某日下午13:00骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车从A 地出发驶往B 地。
第五章《二元一次方程组实际应用》专项练习1.疫情期间,为满足市场需求,某厂家每天定量生产医用口罩和N95口罩共80万个.当该厂家生产的两种口罩当日全部售出时,则可获得利润35万元.两种口罩的成本和售价如下表所示:成本(元/个)售价(元/个)医用口罩0.8 1.2N95口罩 2.5 3 (1)求每天定量生产这两种口罩各多少万个.(2)该厂家将每天生产的口罩打包(每包1万个)并进行整包批发销售.为了支持防疫工作,现从生产的两种口罩中分别抽取若干包口罩免费捐赠给疫情严重的地区,且捐赠的N95口罩不超过医用口罩的三分之一.若该企业把捐赠后剩余的口罩全部售出后,每日仍可盈利2万元,则从医用口罩和N95口罩中各抽取多少包?2.列方程组解应用题:2020年5月1日,新修订的《北京市生活垃圾管理条例》正式实施,生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类.北京市现有生活垃圾处理设施中的焚烧设施和生化设施共34座,总处理能力达到约24550吨/日,其中每一座焚烧设施处理能力约为1500吨/日,每一座生化设施处理能力约为350吨/日.则北京市现有生活垃圾处理设施中的焚烧设施和生化设施各有多少座?3.某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60 50 1140第二次购物30 70 1110第三次购物90 80 1062 (1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.4.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.现由A、B两种货车运输救助物资,已知3辆A车和1辆B车每次可运救助物资15吨,4辆A车和3辆B车每次可运救助物资25吨.(1)1辆A车和1辆B车一次分别可运多少吨?(2)若用A,B两种货车一次运完35吨救助物资(货车均装满),该如何安排A、B 两种货车的数量?请写出所有的安排方案.。
北师大版八年级数学上册第五章 二元一次方程组 单元测试题一、选择题(每小题3分,共30分)1.若方程■x -2y =x +5是二元一次方程,■是被弄污的x 的系数,则■的值(C)A .不可能是-1B .不可能是-2C .不可能是1D .不可能是22.解方程组⎩⎪⎨⎪⎧2x -3y =5,①x =3y +7 ②的步骤正确的是(B)A .①+②,得3x =12B .①-②,得x =-2C .②×2-①,得3y =2D .②-①,得x =23.二元一次方程组⎩⎪⎨⎪⎧2x +y =3,x -y =3的解为(B)A.⎩⎪⎨⎪⎧x =2y =1B.⎩⎪⎨⎪⎧x =2y =-1 C.⎩⎪⎨⎪⎧x =-2y =-1 D.⎩⎪⎨⎪⎧x =-2y =1 4.【整体思想】(宁夏中考)已知x ,y 满足方程组⎩⎪⎨⎪⎧x +6y =12,3x -2y =8,则x +y 的值为(C)A .9B .7C .5D .35.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组⎩⎪⎨⎪⎧k 1x +b 1-y =0,k 2x +b 2-y =0的解为(A)A.⎩⎪⎨⎪⎧x =2y =4 B.⎩⎪⎨⎪⎧x =4y =2 C.⎩⎪⎨⎪⎧x =-4y =0D.⎩⎪⎨⎪⎧x =3y =0 6.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =2,y =1,则||m -n 的值为(D)A .1B .3C .5D .27.、为避免粉尘污染,某校决定对校内所有教室的黑板(样式相同)进行无尘专用膜升级改造,另配备若干盒无尘粉笔,经过测算,对教室内一块黑板进行无尘专用膜升级改造,再配备一盒无尘粉笔共需180元,该校升级改造65块黑板,并配备45盒无尘粉笔共需10 100元,设一块黑板进行无尘专用膜升级改造需x 元,配备一盒无尘粉笔需y 元,下列方程组正确的是(C)A.⎩⎪⎨⎪⎧x +45y =18065x +y =10 100B.⎩⎪⎨⎪⎧45x +y =180x +65y =10 100 C.⎩⎪⎨⎪⎧x +y =18065x +45y =10 100 D.⎩⎪⎨⎪⎧x +y =18045x +65y =10 100 8.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,bx -ay =2和方程组⎩⎪⎨⎪⎧bx +ay =-80,3x -5y =16有相同的解,那么(a +b)2 019的值为(C)A .-2 019B .-1C .1D .2 0199.利用两块一样的长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是(C)A .73 cmB .74 cmC .75 cmD .76 cm10.【注重阅读理解】对于数对(a ,b),(c ,d),定义:当且仅当a =c 且b =d 时,(a ,b)=(c ,d);并定义其运算如下:(a ,b)※(c ,d)=(ac -bd ,ad +bc),如(1,2)※(3,4)=(1×3-2×4,1×4+2×3)=(-5,10).若(x ,y)※(1,-1)=(1,3),则x y的值是(C)A .-1B .0C .1D .2 二、填空题(每小题3分,共18分) 11.若3x3m -4n -1+5ym -2n +1=4是关于x ,y 的二元一次方程,则mn的值等于2.12.若|x -2y +1|+|2x -y -5|=0,则x +y 的值为6.13.若方程x +y =3,x -y =1和x -2my =0有公共解,则m 的值为1.14.一次长跑中,当小明跑了1 600 m 时,小刚跑了1 400 m ,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图,则这次长跑的全程为2__200m.15.如图,正方形是由k 个相同的长方形组成,上下各有2个水平放置的长方形,中间竖放若干个长方形,则k =8.16.已知x ,y 满足方程组⎩⎪⎨⎪⎧x -5y =-2,2x +5y =-1,求代数式(x -y)2-(x +2y)(x -2y)的值_35___三、解答题(共52分) 17.解方程组:(1)⎩⎪⎨⎪⎧3x -2y =5,①x +3y =9;② 解:②×3-①,得11y =22.解得y =2. 将y =2代入②,得x +6=9.解得x =3.所以方程组的解为⎩⎪⎨⎪⎧x =3,y =2.(2)⎩⎪⎨⎪⎧3x +4z =7,①2x +3y +z =9,②5x -9y +7z =8.③解:②×3+③,得11x +10z =35.④①与④组成方程组⎩⎪⎨⎪⎧3x +4z =7,①11x +10z =35,④解得⎩⎪⎨⎪⎧x =5,z =-2.把⎩⎪⎨⎪⎧x =5,z =-2代入方程②,得y =13.所以方程组的解为⎩⎪⎨⎪⎧x =5,y =13,z =-2.18.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧4x +3y =7,kx +(k -1)y =3的解x ,y 的值相等,求k 的值.解:由题意可知x =y ,所以4x +3y =7可化为4x +3x =7, 所以x =1,y =1.将x =1,y =1代入kx +(k -1)y =3中,得k +k -1=3,所以k =2.19.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.解:设买鸡的有x 人,鸡的价格为y 文钱.根据题意,得⎩⎪⎨⎪⎧y =9x -11,y =6x +16.解得⎩⎪⎨⎪⎧x =9,y =70. 答:买鸡的有9人,鸡的价格为70文钱.20.如图,直线l 1的函数表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C.(1)求点D 的坐标; (2)求直线l 2的表达式; (3)求△ADC 的面积.解:(1)∵D 在直线l 1:y =-3x +3的图象上, ∴当y =0时,0=-3x +3, 解得x =1. ∴D(1,0).(2)设直线l 2的表达式为y =kx +b. ∵直线l 2过B(3,-32),A(4,0),∴⎩⎪⎨⎪⎧-32=3k +b ,0=4k +b ,解得⎩⎪⎨⎪⎧k =32,b =-6. ∴直线l 2的表达式为y =32x -6.(3)联立⎩⎪⎨⎪⎧y =-3x +3,y =32x -6,解得⎩⎪⎨⎪⎧x =2,y =-3.∴C(2,-3).∴S △ADC =12×AD ×3=12×(4-1)×3=92.21.张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节”期间,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y 甲(元),在乙园所需总费用为y 乙(元),y 甲,y 乙与x 之间的函数关系如图所示,折线OAB 表示y 乙与x 之间的函数关系.(1)甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是30元/千克; (2)当x >10时,求y 乙与x 的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同?解:(2)当x >10时,设y 乙与x 的函数表达式是y 乙=kx +b.根据题意,得⎩⎪⎨⎪⎧10k +b =300,25k +b =480,解得⎩⎪⎨⎪⎧k =12,b =180. 即当x >10时,y 乙与x 的函数表达式是y 乙=12x +180. (3)由题意可得,y 甲=60+30×0.6x =18x +60. 当0<x <10时,令18x +60=30x ,得x =5; 当x >10时,令12x +180=18x +60,得x =20.答:采摘5或20千克草莓时,甲、乙两家采摘园的总费用相同.22.为了响应“足球进校园”的号召,某校计划为学校足球队购买一批足球,已知购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)求A ,B 两种品牌的足球的单价;(2)求该校购买20个A 品牌的足球和2个B 品牌的足球的总费用.解:(1)设A 品牌的足球的单价为x 元,B 品牌的足球的单价为y 元.依题意,得⎩⎪⎨⎪⎧2x +3y =380,4x +2y =360.解得⎩⎪⎨⎪⎧x =40,y =100.答:A ,B 两种品牌的足球的单价分别为40元、100元. (2)20×40+2×100=1 000(元).答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1 000元. 23.已知一次函数y 1=-b4x -4与y 2=2ax +4a +b.(1)求a ,b 为何值,两函数的图象重合?(2)如果它们图象的交点为P(-1,3),试确定方程组⎩⎪⎨⎪⎧y =-b 4x -4,y =2ax +4a +b 的解,并求a ,b的值.解:(1)根据题意,得⎩⎪⎨⎪⎧-b 4=2a ,-4=4a +b ,解得⎩⎪⎨⎪⎧a =1,b =-8,即当a =1,b =-8时,两函数的图象重合.(2)由题意,得方程组⎩⎪⎨⎪⎧y =-b 4x -4,y =2ax +4a +b的解为⎩⎪⎨⎪⎧x =-1,y =3.把⎩⎪⎨⎪⎧x =-1,y =3代入,得⎩⎪⎨⎪⎧b4-4=3,-2a +4a +b =3,解得⎩⎪⎨⎪⎧a =-252,b =28.。
第五章单元测试一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的是( )A .⎩⎨⎧x -z =1,y =2B .⎩⎨⎧x =-1,y -2x =2C .⎩⎨⎧x +y =1,xy =xzD .⎩⎨⎧x -y =0,y 2=12.已知⎩⎨⎧x =2k ,y =3k 是二元一次方程2x +y =14的解,则k 的值是( ) A .2 B .-2 C .3 D .-33. 直线l 1:y =k 1x +b 1和直线l 2:y =k 2x +b 2在平面直角坐标系中如图所示,通过观察我们就可以得到方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为⎩⎨⎧x =1,y =1,这一求解过程主要体现的数学思想是( )A .数形结合思想B .分类讨论思想C .类比思想D .公理化思想4.以方程2x +y =14的解为坐标的点组成的图象是一条直线,这条直线对应的一次函数表达式为( )A .y =2x +14B .y =2x -14C .y =-2x +14D .y =-x +75.设直线y =kx +b 经过点(-5,1),(3,-3),那么k 和b 的值分别是( )A .-2,-3B .1,-6C .-12,-32D .1,66.用加减消元法解方程组⎩⎨⎧2x +5y =-10,①5x -3y =-1②时,下列结果正确的是( ) A .要消去x ,可以用①×3-②×5 B .要消去y ,可以用①×5+②×2C .要消去x ,可以用①×5-②×2D .要消去y ,可以用①×3+②×27.为安置200名因暴风雪受灾的灾民,需要搭建可容纳12人和8人的两种帐篷(不能只搭建一种,且每顶帐篷都要住满),则搭建方案共有( )A .8种B .9种C .16种D .17种8.已知关于x ,y 的方程组⎩⎨⎧ax -by =4,ax +by =2的解为⎩⎨⎧x =4,y =2,则4a -3b 的值为( ) A .-92 B .92 C .-32 D .329.天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x 元和y 元,则可列方程组为( )A .⎩⎨⎧x +y =500,(1+5%)x +(1-8%)y =500×(1+0.2%) B .⎩⎨⎧x +y =500,(1-5%)x +(1+8%)y =500×0.2% C .⎩⎨⎧x +y =500,(1-5%)x +(1+8%)y =500×(1+0.2%) D .⎩⎨⎧x +y =500,5%x +8%y =500×(1+0.2%) 10.汪老师购买了一条18米长的彩带来装饰教室,他用剪刀剪了a (a >2)次,把彩带剪成了一段5米长,一段7米长和若干段相同长度(长度为整数)的彩带,则a 的所有可能取值的和为( )A .11B .12C .14D .16二、填空题(每题3分,共15分)11.如果4x a +b -2y a -b =8是二元一次方程,那么a =________.12. 已知x ,y 满足方程组⎩⎨⎧2x +y =5,x +2y =4,则x +y 的值为______. 13.《九章算术》中的算筹图是竖排的,为了看图方便,我们把它改成横排,图1,图2中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是⎩⎨⎧x +3y =18,2x +4y =26.类似地,图2所示的算筹图,可以表述为______________________.14. 如图,一次函数y =kx +b 和y =-13x +13的图象交于点M .则关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =kx +b ,y =-13x +13的解是__________. 15.《九章算术》中有一题为“今有人共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?”题目的大意是:有几人共同出钱买鸡,每人出9枚铜钱,则多了11枚铜钱;每人出6枚铜钱,则少了16枚铜钱,那么共有________人买鸡,鸡的价格为________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.解下列方程组:(1)⎩⎨⎧x +5y =6,3x -6y -4=0; (2)⎩⎨⎧2a +3b =2,4a -9b =-1;(3)⎩⎪⎨⎪⎧5(x -9)=6(y -2),x 4-y +13=2; (4)⎩⎨⎧x -y +z =0,4x +2y +z =3,25x +5y +z =60.17.若关于x ,y 的方程组⎩⎨⎧3x +5y =m +2,2x +3y =m的解x 与y 的值的和等于2,求m 2-4m +4的值.18.一个两位数的十位数字与个位数字的和为6,如果把这个两位数加上36,那么恰好成为个位数字与十位数字对调后组成的两位数,则原来的两位数是多少?19.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以12千米/时的速度下山,以9千米/时的速度通过平路,到学校共用了55分钟.回去时,通过平路的速度不变,但以6千米/时的速度上山,回到营地共花去了1小时10分钟,则夏令营到学校有多少千米?20.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3 h完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50 t,甲、乙两队在此路段的清雪总量y(t)与清雪时间x(h)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为________t.(2)求此次任务的清雪总量m.(3)求乙队调离后y与x之间的函数关系式.21.某扶贫帮扶小组积极响应政策,对农民实施精准扶贫.某农户老张种植花椒和黑木耳两种干货共800千克,扶贫帮扶小组通过市场调研发现,花椒市场价为60元/千克,黑木耳市场价为48元/千克,老张全部售完可以收入4.2万元.已知老张种植花椒的成本为25元/千克,种植黑木耳的成本为35元/千克,根据脱贫目标任务要求,老张种植花椒和黑木耳两种干货的纯收入(销售收入-种植成本)在2万元以上才可以顺利脱贫.请你分析一下扶贫帮扶小组是否能帮助老张顺利脱贫.22.如图,在平面直角坐标系xOy中,直线l1:y=x+1与x轴交于点A,直线l2与x轴交于点B(1,0),l1与l2相交于点C(m,3).(1)求直线l2的表达式;(2)过x轴上一动点D(t,0),作垂直于x轴的直线,分别与直线l1,l2交于P,Q两点.连接AQ,若S△AQC=2S△ABC,求此时点Q的坐标.23.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地,轿车比货车晚出发1.5 h,如图,线段OA表示货车离甲地的距离y(km)与货车出发的时间x(h)之间的函数关系;折线BCD表示轿车离甲地的距离y(km)与货车出发的时间x(h)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程中,轿车行驶多少时间时,两车相距15 km?答案一、1. B 2. A 3. A 4. C 5. C 6. C 7.A 8.B9. C 10. C二、11.1 12.313.⎩⎨⎧3x +2y =19,x +4y =23 14.⎩⎨⎧x =-2,y =115.9;70 三、16.解:(1)⎩⎪⎨⎪⎧x =83,y =23. (2)⎩⎪⎨⎪⎧a =12,b =13. (3)⎩⎨⎧x =-18,y =-20.5. (4)⎩⎨⎧x =3,y =-2,z =-5.17.解:⎩⎨⎧3x +5y =m +2,2x +3y =m ,①② ①-②得x +2y =2.③因为x +y =2,④所以③-④得y =0.把y =0代入④得x =2,把x =2,y =0代入②,得m =4,所以m 2-4m +4=42-4×4+4=4.18.解:设原来的两位数的十位数字为x ,个位数字为y ,由题意得⎩⎨⎧ x +y =6,10x +y +36=10y +x ,解得⎩⎨⎧x =1,y =5,则原来的两位数是15.19.解: 设平路有x 千米, 山路有y 千米,由题意得⎩⎪⎨⎪⎧x 9+y 12=5560,x 9+y 6=11060,解得⎩⎨⎧x =6,y =3, 故夏令营到学校有3+6=9(千米).20.解:(1)270(2)乙队调离前,甲、乙两队每小时的清雪总量为270÷3=90(t), 因为乙队每小时清雪50 t ,所以甲队每小时的清雪量为90-50=40(t),所以m =270+40×3=390.(3)由(2)可知点B 的坐标为(6,390),设乙队调离后y 与x 之间的函数关系式为y =kx +b (k ≠0), 因为图象经过点A (3,270),B (6,390),所以⎩⎨⎧3k +b =270,6k +b =390,解得⎩⎨⎧k =40,b =150.所以乙队调离后y 与x 之间的函数关系式是y =40x +150.21.解:设老张种植花椒x 千克,黑木耳y 千克,依题意得⎩⎨⎧x +y =800,60x +48y =42 000,解得⎩⎨⎧x =300,y =500,(60-25)×300+(48-35)×500=17 000(元),17 000<20 000,所以扶贫帮扶小组不能帮助老张顺利脱贫.22.解:(1)因为直线l 1:y =x +1与l 2相交于点C (m ,3),所以3=m +1,解得m =2,所以点C (2,3).设直线l 2的表达式为y =kx +b ,因为直线l 2与x 轴交于点B (1,0),与l 1相交于点C (2,3),所以⎩⎨⎧k +b =0,2k +b =3,解得⎩⎨⎧k =3,b =-3,所以直线l 2的表达式为y =3x -3.(2)当点D 在B 的左侧时,由S △AQC =2S △ABC ,C (2,3),易得Q (t ,-3).将(t ,-3)代入y =3x -3,得-3=3t -3,解得t =0,所以Q (0,-3);当点D 在B 的右侧时,由S △AQC =2S △ABC ,C (2,3),易得Q (t ,9).将(t ,9)代入y =3x -3,得9=3t -3,解得t =4,所以Q (4,9).综上所述,点Q 的坐标为(0,-3)或(4,9).23.解:(1)由图象可得,货车的速度为300÷5=60(km/h),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(km).(2)设线段CD 对应的函数表达式是y =kx +b ,将点C (2.5,80),点D (4.5,300)的坐标代入,得⎩⎨⎧2.5k +b =80,4.5k +b =300,解得⎩⎨⎧k =110,b =-195,即线段CD 对应的函数表达式是y =110x -195(2.5≤x ≤4.5).(3)当x =2.5时,两车之间的距离为60×2.5-80=70(km),因为70>15,所以在轿车行进过程中,两车相距15 km 的时间是在2.5 h ~4.5 h 之间,由图象可得,线段OA 对应的函数表达式为y =60x ,则|60x -(110x -195)|=15,解得x 1=3.6,x 2=4.2.因为轿车比货车晚出发1.5 h ,3.6-1.5=2.1(h),4.2-1.5=2.7(h),所以在轿车行进过程中,轿车行驶2.1 h 或2.7 h 时,两车相距15 km .。
第五章 二元一次方程组一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( C )A.⎩⎪⎨⎪⎧3x +2y =7xy =5B.⎩⎪⎨⎪⎧2x +y =1x +z =2C.⎩⎪⎨⎪⎧y =2x3x +4y =2D.⎩⎪⎨⎪⎧5x +y 3=12x +2y =32.如果{x =1y =2是二元一次方程组{ax +by =1,bx +ay =2的解,那么a ,b 的值是( B )A.{a =-1b =0B.{a =1b =0C.{a =0b =1D.{a =0b =-13.如果二元一次方程组{x -y =a ,x +y =3a 的解是二元一次方程3x -5y -7=0的一个解,那么a 的值是( C )A .3B .5C .7D .94.如果15a 2b 3与-14a x +1b x +y是同类项,则x ,y 的值是( D )A.{x =1y =3B.{x =2y =2C.{x =2y =3D.{x =1y =25.在等式y =kx +b 中,当x =0时,y =-1;当x =-1时,y =0,则这个等式是( A ) A .y =-x -1 B .y =-x C .y =-x +1 D .y =x +16.(2014·某某)将一X 面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( A )A .6种B .7种C .8种D .9种7.(2014·某某)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( D )A.⎩⎪⎨⎪⎧x =y -18y -x =18-yB.⎩⎪⎨⎪⎧y -x =18x -y =y +18C.⎩⎪⎨⎪⎧x +y =18y -x =18+yD.⎩⎪⎨⎪⎧y =18-x18-y =y -x8.如图,直线AB :y =12x +1分别与x 轴、y 轴交于点A ,B ,直线CD :y =x +b 分别与x 轴、y 轴交于点C ,D .直线AB 与CD 相交于点P ,已知S △ABD =4,则点P 的坐标是( B )A .(3,52) B .(8,5)C .(4,3)D .(12,54)9.小明和小莉出生于2000年12月份,他们的生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期和是22,那么小莉的生日是( D )A .15号B .16号C .17号D .18号10.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( B )A .310元B .300元C .290元D .280元二、填空题(每小题3分,共24分)11.已知方程2m -3n =15中m 与n 互为相反数,那么m =__3__,n =__-3__. 12.已知(2x +3y -4)2+|x +3y -7|=0,则x =__-3__,y =__103__.13.如果直线y =2x +3与直线y =3x -2b 的交点在x 轴上,那么b 的值为__-94__.14.如图,若直线l 1与l 2相交于点P ,则根据图象可得二元一次方程组⎩⎪⎨⎪⎧y =2x -3y =-x +3的解是__⎩⎪⎨⎪⎧x =2y =1__.第14题图第15题图15.某博物馆通过浮动门票价格的方法既保证必要的收入,又要尽量控制参观人数,调查统计发现,每周参观人数与票价之间的关系可近似的看成如图所示的一次函数关系.如果门票价格定为6元,那么本周大约有__9_000__人参观.16.小明解方程组⎩⎪⎨⎪⎧3x +y =●3x -y =15的解为⎩⎪⎨⎪⎧x =4y =★,由于不小心,滴上了两滴墨水,刚好遮住了两数●和★,请你帮他找回这两个数,●=__9__,★=__-3__.17.已知方程组⎩⎪⎨⎪⎧x =6t +2y =3t -5,则y 与x 之间的关系式为__y =x2-6__.18.某车间每天可以生产甲种零件600个或乙种零件300个或丙种零件500个,这三种零件各一个可以配成一套,现要在63天的生产中,使生产的三种零件全部配套,这个车间应安排__15__天生产甲种零件,__30__天生产乙种零件,__18__天生产丙种零件,才能使生产出来的零件配套.三、解答题(共66分)19.(8分)解方程组:(1)⎩⎪⎨⎪⎧y =3x -7,①5x +2y =8;② (2)⎩⎪⎨⎪⎧3x -y +z =4,①2x +3y -z =12,②x +y +z =6.③解:(1)⎩⎪⎨⎪⎧x =2y =-1(2)⎩⎪⎨⎪⎧x =2y =3z =120.(8分)(2014·某某)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10X ,总价为5800元.其中小组赛球票每X550元,淘汰赛球票每X700元,问小李预定了小组赛和淘汰赛的球票各多少X ?解:小李预定了小组赛球票x X ,淘汰赛球票y X ,由题意有⎩⎪⎨⎪⎧x +y =10550x +700y =5800,解得⎩⎪⎨⎪⎧x =8y =2,所以,小李预定了小组赛球票8X ,淘汰赛球票2X21.(8分)在解方程组⎩⎪⎨⎪⎧ax +5y =15,4x -by =-2时,由于粗心,甲看错了方程组中的a ,而得解为⎩⎪⎨⎪⎧x =-3,y =-1,乙看错了方程组中的b ,而得解为⎩⎪⎨⎪⎧x =5,y =4. (1)甲把a 看成了什么,乙把b 看成了什么; (2)求出原方程组的正确解.解:(1)甲:⎩⎪⎨⎪⎧x =-3,y =-1,代入原方程组,得⎩⎪⎨⎪⎧-3a -5=15,4×(-3)+b =-2.解得⎩⎪⎨⎪⎧a =-203,b =10..乙:将⎩⎪⎨⎪⎧x =5,y =4代入原方程组,得⎩⎪⎨⎪⎧5a +20=15,20-4b =-2.解得⎩⎪⎨⎪⎧a =-1,b =112.故甲把a 看成-203,乙把b 看成了112 (2)由(1)可知原方程组中a =-1,b =10.故原方程组为⎩⎪⎨⎪⎧-x +5y =15,4x -10y =-2.解得⎩⎪⎨⎪⎧x =14,y =295.22.(10分)(2014·某某)在平面直角坐标系中,若点P(x ,y)的坐标x ,y 均为整数,则称点P 为格点,若一个多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L ,例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)求出图中格点四边形DEFG 对应的S ,N ,L.(2)已知格点多边形的面积可表示为S =N +aL +b ,其中a ,b 为常数,若某格点多边形对应的N =82,L =38,求S 的值.解:(1)观察图形,可得S =3,N =1,L =6;(2)根据格点三角形ABC 及格点四边形DEFG中的S ,N ,L 的值可得,⎩⎪⎨⎪⎧4a +b =11+6a +b =3,解得⎩⎪⎨⎪⎧a =12b =-1,∴S =N +12L -1,将N =82,L =38代入可得S =82+12×38-1=10023.(10分)小明的爸爸骑摩托车带着小明在公路上匀速行驶,小明第一次注意到路边里程碑上的数时,发现它是一个两位数且它的两个数字之和为9,刚好过1个小时,他发现路边里程碑上的数恰好是第一次看到的个位和十位数字颠倒后得到的,又过3小时,他发现里程碑上的数字比第一次看到的两位数中间多个0,你知道小明爸爸骑摩托车的速度是多少吗?解:设小明第一次注意到路边里程碑上的两位数的十位数字为x ,个位数字为y.⎩⎪⎨⎪⎧x +y =9,(100x +y )-(10y +x )=3[(10y +x )-(10x +y )]. 解得⎩⎪⎨⎪⎧x =2,y =7.小明第一次注意到路边里程碑上的数字为27,1小时后小明看到的里程碑上的数字为72,72-27=45(千米/时).答:小明爸爸骑摩托车的速度是45千米/时24.(10分)琳琳在A ,B 两家超市发现她看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求琳琳看中的随身听和书包的单价各是多少元?(2)“十一”期间,琳琳上街,恰在此时赶上商家促销,超市A 所有商品八折销售,超市B 全场购满100元返购物券30元(不足100元不返券,购物券全场通用),但她只带了400元钱,如果她只在一家超市购买看中的这两样物品,你能说明她可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:(1)设书包的单价为x 元,随身听的单价为y元.则根据题意,得⎩⎪⎨⎪⎧x +y =452,y =4x -8.解得⎩⎪⎨⎪⎧x =92,y =360. (2)在A 超市购买随身听与书包各一件需花费现金:452×80%=(元).因为<400,所以可以选择在超市A 购买.在B 超市可先花费现金360元购买随身听.再利用得到的90元返券加上2元现金购买书包.总计共花费现金360+2=362(元).因为362<400,所以也可以在超市B 购买.又因为362>,所以在超市A 购买更省钱25.(12分)为调动销售人员的工作积极性,A ,B 两公司采取如下工资支付方式:A 公司每月2 000元基本工资,另加销售额的2%作为奖金;B 公司每月1 600元基本工资,另加销售额的4%作为奖金.已知A ,B 两公司两位销售员小李、小X1~6月份的销售额如下表:(1)请问小李与小X3月份的工资各是多少?(2)小李1~6月份的销售额y 1与月份x 的函数关系式是y 1=1 200x +10 400,小X1~6月份的销售额y 2也是月份x 的一次函数,请求出y 2与x 的函数关系式.(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问:几月份起小X 的工资高于小李的工资?解:(1)小李3月份工资=2000+2%×14000=2280(元);小X 3月份工资水平1600+4%×11000=2040(元) (2)设y 2=kx +b ,取表中的两对数(1,7400),(2,9200)代入函数关系式,得⎩⎪⎨⎪⎧7400=k +b ,9200=2k +b.解得⎩⎪⎨⎪⎧k =1800,b =5600.所以y 2=1800x +5600 (3)小李的工资w 1=2000+2%(1200x +10400)=24x +2208;小X 的工资w 2=1600+4%(1800x +5600)=72x +1824.当w 1=w 2时,x =8.根据计算可知从9月份起,小X 的工资高于小李的工资。
第3页,共4页
第五章 二元一次方程组 单元测试卷
1. 已知方程5x −2y =1,当x 与y 相等时,x 与y 的值分别是( ) A.x =1
3
,y =1
3
B.x =−1,y =−1
C.x =1,y =1
D.x =2,y =2
2. 已知方程组{ax −by =4ax +by =2的解为{x =2
y =1,则6a +3b 的值为( )
A.4
B.6
C.−6
D.−4
3. 有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆
小货车一次可以运货35吨.设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是( ) A.{2x +3y =15.5,5x +6y =35
B.{2x +3y =35,5x +3y =15.5
C.{3x +2y =15.5,5x +6y =35
D.{2x +3y =15.5,6x +5y =35
4. 北京市某企业生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x 人,生产螺帽y 人,由题意列方程组( ) A.{
x +y =90,
2×15x =24y
B.{x =90+y ,15x 2
=24y
C.{x +y =90,15x =24y
D.{x =90−y ,2×24y =15x
5. 方程组{x =y +5
2x −y =5的解为( )
A.{x =1y =2
B.{x =0y =5
C.{x =0y =−5
D.{x =1y =5
6. 把12m 长的彩绳截成2m 或3m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( ) A.1种 B.2种 C.3种 D.4种
7. 下列方程组中是二元一次方程组的是( ) A.{
xy =1
6
,
x +y =2
B.{5x −2y =3,1x
+y =3
C.{2x +y =0,3x −y =15
D.{z =1
5
,
x
2
+y 3=7
8. 若关于x ,y 的二元一次方程组{x +2y =5k +2,
x −y =4k −5
的解满足x +y =9,则k 的值是
( ) A.1 B.2
C.3
D.4
9. 已知方程组{mx +ny =82x +y =5和{3x +y =7
nx −my =1的解相同,则2m −n 的算术平方根为
( ) A.4 B.2 C.√2 D.±2
10. 巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽
车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm/ℎ,ykm/ℎ,则下列方程组正确的是( )
A.{45(x +y)=12645(x −y)=6
B.{3
4
(x +y)=126
x −y =6
C.{3
4(x +y)=12645(x −y)=6
D.{3
4(x +y)=12634
(x −y)=6
二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )
11. 已知二元一次方程:(1)x +2y =1;(2)3x −2y =11;(3)4x −3y =8.从这三
个方程中任选两个方程组成一个方程组,并求出这个方程组的解.所选方程组为________.
12. 把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有________种.
13. 二元一次方程组{x +y =6,2x +y =7 的解为________.
14. 某班的篮球个数比排球个数的2倍少3,足球、篮球、排球共11个,则排球可能有________个.。