基于PLC的桥式起重机变频控制系统设计
- 格式:doc
- 大小:1.54 MB
- 文档页数:62
桥式起重机俗称行车,是工矿企业应用非常广泛的起重机械。
传统的桥式起重机为了提高起动转矩,采用绕线式异步电动机拖动,通过鼓形凸轮控制器的操作来改变其转子所串电阻调速。
随着新技术和控制设备的发展,现在人们普遍采用变频器作为变频调速电源,用笼形异步电动机取代原来的绕线异步电动机,用PLC作为控制装置进行无触点控制。
从而改善了调速性能,增加了系统的可靠性。
本文通过一个实例分析变频器和PLC在系统中的具体应用。
1、桥式起重机拖动系统1.1 桥式起重机的运行机构1)大车拖动系统拖动整台起重机顺着车间方向左右移动(以司机的坐向为参考)2)小车拖动系统拖动吊钩及重物顺着桥架作前后运动。
3)吊钩拖动系统拖动重物作吊起或放下的上下运动。
大型起重机(超过10t)有两个起升机构:主起升机构(主钩)和副起升机构(副钩)。
通常主钩与副钩不能同时起吊重物。
1.2 负荷特点桥式起重机的拖动系统负载都属于恒转矩性质,且其起升机构为位能性负载,当起升机构起吊重物下降或者快速减速运行时,电动机处于再生发电制动状态。
需要将电能通过反馈装置反送给电网或消耗在制动电阻上,以防直流处的泵升电压影响制动效果。
1.3 控制要求1)起升机构要求起动转矩大,起动运行平稳。
能够实现正反转运行且要有超载、限位、限流等多种保护。
2)起升机构在启停过程中易出现“溜钩”问题。
由于制动器从抱紧到松开,以及从松开到抱紧的动作过程需要时间(约0.65),而电动机转矩的产生或消失,是在通电或断电瞬间就立刻反应的。
因此,制动器和电动机在动作的配合上极易出现问题。
如电动机已经通电,而制动器尚未松开,将导致电动机的严重过载;反之,如电动机已经断电,而制动器尚未抱紧,则重物必将下滑,即出现溜钩现象。
因此要有相应的防止措施。
起升机构中要有机械制动器。
起重用变频器具有零速全转矩功能(又称零伺服功能,即零速时电动机仍能输出150%的额定转矩,使重物停在空中),但是若重物停在空中时出现电源瞬间停电等情况,就会有重物下滑的危险。
PLC和变频器桥式起重机控制系统设计毕业设计毕业设计题目:PLC和变频器桥式起重机控制系统设计摘要:本文以桥式起重机为研究对象,通过PLC和变频器控制系统设计,实现对桥式起重机的自动化控制。
首先,对桥式起重机的工作原理和结构进行了详细介绍;然后,分析了PLC和变频器在桥式起重机控制系统中的优势和应用;最后,进行了PLC和变频器桥式起重机控制系统设计。
关键词:桥式起重机;PLC;变频器;控制系统;自动化一、引言桥式起重机是一种非常常见的起重设备,广泛应用于工厂、码头、港口等场所。
它具有运载能力强、工作灵活、结构稳定等特点。
目前,为了提高桥式起重机的操作效率和安全性,许多企业将自动化控制引入到桥式起重机中。
二、桥式起重机的工作原理和结构桥式起重机一般由桥架、行车和起重机构等组成。
工作时,起重机电机通过驱动机构提供动力。
起重机构由卷筒、悬挂系统和钩组成。
具体工作原理和结构可参考相关教材。
三、PLC和变频器在桥式起重机控制系统中的应用PLC和变频器作为现代自动化控制的重要组成部分,广泛应用于桥式起重机控制系统中。
PLC主要负责控制逻辑的实现,如控制起升、小车前后移动、大车左右移动等操作;变频器则用于控制电机的转速,实现对起重机各部分的精确控制和调速。
四、PLC和变频器桥式起重机控制系统设计1.系统硬件设计根据桥式起重机的实际需求和控制要求,选择合适的PLC和变频器设备,并搭建起相应的控制系统硬件平台。
2.系统软件设计利用PLC编程软件进行控制逻辑的设计和实现,包括起升、小车前后移动、大车左右移动等操作的代码编写。
同时,利用变频器的调试软件,设置合适的参数,实现电机的精确调速。
3.系统测试和调试将设计好的控制系统连接到实际的桥式起重机上,进行系统的测试和调试。
通过不断调整参数,检查系统运行状态,确保系统性能满足要求。
五、总结通过本文的研究,我们成功设计出了基于PLC和变频器的桥式起重机控制系统。
该控制系统具有自动化程度高、操作灵活、性能稳定等优点,可以提高桥式起重机的工作效率和安全性。
本科毕业设计(论文)题目:基于PLC的起重机变频调速系统设计学院:电气工程与自动化学院专业:电气工程及其自动化班级:学号:学生:指导教师:职称:副教授时间:2017年6月3日本科毕业设计(论文)任务书电气工程与自动化学院电气专业 2013级(2017 届)3班学生题目:基于PLC的起重机变频调速系统设计专题题目(若无专题则不填):原始依据(包括设计(论文)的工作基础、研究条件、应用环境、工作目的等):常用的桥式起重机大多存在电能浪费严重、自动化水平低等问题, 随着计算机技术和自动控制技术的不断进步与发展,许多领域中都引入了计算机自动检测与控制技术。
现设计一种全新的基于无线网络、PLC和变频回馈装置的高性能起重机控制系统, 把基于可编程序控制器PROFIBUS总线和变频器应用于桥式起重机控制系统上,减少了硬件和控制线,极大提高了系统的稳定性,可靠性。
主要内容和要求:(包括设计(研究)内容、主要指标与技术参数,并根据课题性质对学生提出具体要求):一、硬件部分:该课题所需要的硬件包括CPU315-2DP型号的S7-300,变频器6SE70,电机,触摸屏等。
二、软件部分:主要分为两部分:1.主程序通过调用功能FC实现五段调速,并将FC输出值通过在主程序中转换后通过DP通信传送给变频器。
2.PLC S7-300通过调用SFC15把发送数据打包,调用SFC14把接收数据解包,并且输入输出按实际需要的产生动作。
由上叙述可知本课题所需要的技术有:PLC S7-300,变频器、检测技术等。
所以不仅要求学生具有系统的专业综合理论知识,而且要具有一定的创新实践能力和应用能力、分析与解决问题的能力。
日程安排:主要参考文献和书目:[1]刘艳梅,任双艳,李一波编著.S7-300 可编程控制器(PLC)教程.北京:人民邮电出版社,2008.1:150~178.[2]张运刚,宋小春,郭武强编著.西门子S7-300/400PLC技术与应用:人民邮电出版社,2007.8:224~350.[3]陈雨春,李景学.可编程控制器应用软件设计方法与技巧.北京:电子工业出版社,1992:5~16,34~65.[4]佟纯厚.近代交流调速技术.冶金工业出版社,2008.7:41~58.[5]张燕宾.SPWM变频器调速应用技术.北京机械工业出版社,1997:12~33.[6]丁斗章.变频调速技术与系统应用〔M〕.北京:机械工业出版社,2005.[7]马宁,孔红.S7-300PLC和MM440变频器的原理与应用〔M〕.北京:机械工业出版社,2006.[8]刘小庆.基于PLC控制的变频调速在桥式起重机中的应用[M].武汉科技大学,2005.[9]张三豹.变频调速起重机中的PLC.起重运输机械,2001:27~29.[10]SIEMENS公司.SIMATIC S7一300可编程序控制器系统手册.2002.[11]朱少祥.可编程控制器(PLC)原理及应用.上海交通大学出版社,1998.[]许大中.交流电动机调速理论.杭州:浙江大学出版社,1991.[12]Germany Profibus Interface Center/lab.Manfred Pop The Rapid Way to PROFIBUS-DP〔M〕, 1997:167~169.[13]S7-300 Module Specifications:l-18,22~24.[14]赵庆林.用变频调速器实现过程的自动控制.石油化工自动化,2003,2:34~35.[15]王梅生.变频调速在起重机中的应用.起重运输机械,1999,(2):6~10.[16]满永奎.通用变频器及其应用.北京:机械工业出版社,1995.[17]张扬,蔡春伟,孙明健.S7-300PLC 原理与应用系统设计[M].北京:机械工业出版社,2007.指导教师(签字):2017年3月4 日注:本表可自主延伸,各专业根据需要调整。
基于PLC、变频器的桥式起重机控制系统设计要求一、桥式起重机的简述桥式起重机(又叫天车)是是一种用来起吊、放下和搬运重物,并使重物在一定距离内水平移动的起重、搬运设备,是目前工矿企业中应用十分广泛的一种起重搬运吊装设备。
桥式起重机一般分为3-4个基本机构:用于提升重物的起升机构(起升机构分为主起升和副起升结构)、用于移动重物的纵向移动机构(即桥式起重机的小车运行机构)和用于移动重物的横向移动机构(即起重机的大车运行机构)。
桥式起重机的基本结构如图1所示。
图1.1 通用桥式起重机的结构图1)桥架桥架是桥式起重机的基本构件,它由下列部件构成:主梁:用于铺设供小车运行的钢轨。
端梁:在主梁的两侧,用于和主梁连接并承受全部载荷。
走道:在主梁外侧,为安装和检修大小车运行机构而设。
主梁横跨在车间中间,主梁两端有端梁,组成箱式桥架。
两侧设有走道,一侧安装大车移行机构的传动装置,使桥架可在沿车间长度铺设的轨道上移动。
另一侧安装小车所有的电气设备。
主梁上铺有小车移动的轨道,小车可以前后移动。
2)大车运行机构用于拖动整台起重机顺着车间作“横向”运动(以驾驶室的坐向为准),由大车电动机、制动器、传动轴、万向联轴节、车轮等部分组成。
3)小车运行机构小车俗称跑车,用于拖动吊钩及重物顺着桥架作“纵向”运动,主要由小车电动机、制动器、减速装置等部分组成。
它的传动系统如图4-5所示。
小车移动机构由小车电动机6经立式减速箱7拖动小车前后移动,两端装有缓冲装置和限位保护开关。
4)起升机构用于拖动重物作上升或下降运动,由吊钩电动机、减速装置、卷筒和制动器等部分组成。
由提升电动机1经卧式减速箱2拖动卷筒3旋转,通过钢丝绳5使重物上升或下降大型起重机(超过10t)装有两个起升机构:起升机构(主钩)和副起升机构(副钩)。
10t及以下的桥式起重机,通常只装有一套提升机构--主钩;通常主钩与副钩不能同时起吊重物。
桥式起重机的起升机构是通过控制三相异步电动机的正反转,经过联轴器和减速器带动绕有钢丝绳的卷筒,使吊钩升或降。
题目:基于PLC桥式起重机控制系统基于PLC桥式起重机控制摘要本文研讨基于可编程序控制器(PLC)和变频器的桥式起重机控制系统的改进。
阐述了交流桥式起重机在实际中的应用以及PLC在改造方案中的确定,亦涉及在改造过程中设备的选型。
本文以西门子S7-200系列PLC为例,讲述了PLC在交流桥式起重机改造中的的控制方案。
与传统控制方案相比,采用PLC控制的桥式起重机可以简化繁重的设备,使控制更加安全可靠。
从经济效益与环境效益的角度分析,本设计虽然前期投入一部分资金用于购买PLC及变频器等设备,但是长期运行后的维修成本远低于原系统,并且节能可达30%左右。
设计中变频器通过PLC进行无触点控制,使设备运行更加准确,并且减轻了人员的劳动强度,提高了工作效率。
关键词桥式起重机变频器 PLC 控制系统ABSTRACTThis text discussion the improved design of bridge crane control system based on PLC and frequency converter. Introduced the application of Bridge crane, the application of PLC in reconstructive transform and choosing the device. The text takes Siemens S7-200 PLC series as an example, introduced the control project of Bridge crane system. Compared with traditional control scheme,PLC-based Bridge Crane can Simplify the heavy equipment,and make control more safety and reliable.Analysis from economic benefits and environmental benefits,The maintenance cost is far below original system after long-term operation,and Saves about 30% of energy,beside a fond musts put into buying PLC and inverter and other equipment . In this design, Inverter non-contact programmable controller controls the equipment to run more accurate, as well as reduced labor strength, increased efficiency.Key words:bridge crane; frequency converter; PLC; control system目录第一章绪论 (1)1.1 桥式起重机的简介 (1)1.2 主要研究内容及意义 (1)第二章控制方案设计 (4)2.1系统组成 (4)2.2 大车控制系统的设计 (4)第三章系统硬件设置 (6)3.1变频调速 (7)3.1.1变频调速的基本原理 (7)3.1.2变频器的选用 (9)3.2电动机的选择 (12)3.3 常用辅助器件的选择 (14)3.4 可编程控制器 (17)3.4.1 PLC的概述 (17)3.4.2 PLC的选型——SIEMENS S7-200 (18)3.4.3 I/O端口分配 (20)3.4.4 PLC系统接线方式 (21)第四章系统软件设计 (23)4.1 主程序 (24)4.2 公用程序 (25)4.3 大车控制程序 (27)4.4 其他子程序设计 (29)第五章设计总结 (30)参考文献 (32)附录 (33)致谢 (41)第一章绪论1.1 桥式起重机的简介桥式起重机广泛应用在室内厂房、仓库、室外码头、储料场等,是很重要的起吊、搬运设备,为此要求其具有高效、灵活并且安全可靠。
中国地质大学(武汉)远程与继续教育学院本科毕业论文(设计)指导教师指导意见表学生姓名:学号:专业:电气工程及其自动化毕业设计(论文)题目:基于PLC的桥式起重机变频调速系统设计中国地质大学(武汉)远程与继续教育学院本科毕业设计(论文)评阅教师评阅意见表学生姓名:学号:专业:电气工程及其自动化毕业设计(论文)题目:基于PLC的桥式起重机变频控制系统设计论文原创性声明本人郑重声明:本人所呈交的本科毕业论文《基于PLC的桥式起重机变频系统设计》,是本人在导师的指导下独立进行研究工作所取得的成果。
论文中引用他人的文献、资料均已明确注出,论文中的结论和结果为本人独立完成,不包含他人成果及使用过的材料。
对论文的完成提供过帮助的有关人员已在文中说明并致以谢意。
本人所呈交的本科毕业论文没有违反学术道德和学术规范,没有侵权行为,并愿意承担由此而产生的法律责任和法律后果。
论文作者(签字):日期:2014 年7 月21 日摘要传统的桥式起重控制系统主要采用继电器接触器进行控制,采用交流绕线串电阻的方法进行启动和调速,这种控制系统存在可靠性差,操作复杂,故障率高。
电能浪费大,效率低等缺点。
因此对桥式起重机控制系统进行研究具有现实意义,也是国内外相关行业专家学者的一个研究课题。
本文针对桥式起重机控制系统中存在的上述问题,把可编程序控制器和变频器应用于桥式起重机控制系统上,并进行了较深入的研究。
根据桥式起重机的运行特点,桥式起重机控制系统采用起重机变频调速系统,该系统主要由上位机、下位机(PLC控制系统)、变频调速系统等组成。
PLC系统采用SEIMENS公司产品,能控制起重机大车、小车的运行方向和速度换档,吊钩的升、降方向及速度换档,同时减小了传统继电-接触式控制系统的中间环节,减少了硬件和控制线,极大提高了系统的稳定性,可靠性。
实验结果表明,采用该控制系统,使桥式起重机工作可靠,使用方便,同时具有动态显示的功能,节能效果好明显。
关键词:可编程序控制器、桥式起重机、变频调速、变频调速系统目录一、绪论 (7)(一)传统桥式起重机控制系统存在的问题 (7)(二)桥式起重机电气传动技术的国内外发展概况 (7)(三)本课题的研究意义及主要内容 (9)二、变频调速桥式起重机系统总体方案设计和部件选型 (11)(一)桥式起重机系统简介及起重机基本数据 (11)(二)本系统总体方案设计 (14)(三)系统的部件设计 (15)三、桥式起重机变频调速系统设计 (22)(一)变频调速的基本原理 (22)(二)交—直—交PWM变压变频器基本结构如图3-3所示 (24)(三)变频器的控制—正弦脉宽调制( SPWM )技术 (24)(四)转速开环恒压频比控制调速系统—通用变频器-异步电动机调速系统 . 27 四、可编程序控制器在桥式起重机变频控制系统中的应用 (31)(一)PLC概述及其系统组成 (31)(二)本系统中可编程序控制器的选取及其特点 (33)(三)变频调速起重机控制系统设计 (36)五、桥式起重机变频调速系统软件设计 (41)(一)S7-200PLC网络的通信协议及本系统采用的通信协议 (41)(二)PLC程序设计 (43)(三)系统抗干扰措施 (45)六、桥式起重机的工作原理 (48)(一)桥式起重机变频控制系统的组成原理 (48)(二)系统流程图 (49)(三)桥式起重机电气控制线路 (54)七、全文总结及其展望 (59)(一)全文总结 (59)(二)研究展望 (59)致谢 (61)参考文献 (62)一、绪论(一)传统桥式起重机控制系统存在的问题桥式起重机作为物料搬运机械在整个国民经济中有着十分重要的地位。
经过几十年的发展,我国桥式起重机制造厂和使用部门在设计、制造工艺、设备使用维修、管理方面,不断积累经验,不断改造,推动了桥式起重机的技术进步。
但在实际使用中,结构开裂仍时有发生。
究其原因是频繁的超负荷作业及过大的机械振动冲击所引起的机械疲劳。
因此,除了机械上改进设计外,改善交流电气传动,减少起制动冲击,也是-个很重要的方面。
由于传统桥式起重机的电控系统采用转子回路串接电阻进行有级调速,致使机械冲击频繁,振动剧烈,因此电气控制上应采用平滑的无级调速是解决问题的有效手段。
传统的起重机驱动方案-般采用:1、直接起动电动机;2、改变电动机极对数调速;3、转子串电阻调速;4、涡流制动器调速;5、晶闸管串级调速;6、直流调速。
前四种方案均属有级调速,调速范围小,无法高速运行,只能在额定速度以下调速:起动电流大,对电网冲击大:常在额定速度下进行机械制动,对起重机的机构冲击大,制动闸瓦磨损严重:功率因数低,在空载或轻载时低于0.2~0.4,即使满载也低于0.75,线路损耗大。
晶闸管串级调速虽各服了上述缺点,实现了额定速度以下的无级调速,提高了功率因数,减少了起制动冲击,价格较低,但目前串级调速产品的控制技术仍停留在模拟阶段,尚未实现控制系统具有很好的调速性能和起制动性能,很好的保护功能及系统监控功能,所以有时采用直流电动机,而直流电动机制造工艺复杂,使用维护要求高,故障率高。
(二)桥式起重机电气传动技术的国内外发展概况电气调速控制的方法很多,对直流驱动来讲60年代采用发电机-电机系统。
从控制电阻分级控制,到交磁放大控制,到晶闸管激磁控制,到主回路晶闸管即晶闸管整流供电系统。
随着电子技术的飞速发展,集成模块出现,计算机、微处理器应用,因此控制从分立组成模拟量控制发展至今天的数字量控制。
从交流驱动来讲:常规的常采用绕线式电动机转子串电阻调速,为满足重物下放时的低速,-般依靠能耗制动、反接制动,后来还采用涡流制动,还有靠转子反馈控制制动、反接制动、单相制动器抱闸松劲的所谓软制动,随着电子技术的发展,国内外开发研制变频调速,PLC可编程序控制器的应用控制系统的性能更加完美。
目前国内外几种常用调速系统配置及其性能:1.DC-300直流驱动调速系统:GE公司DC-300、DC-2000是微处理器数字量控制的直流驱动调速系统,其控制功率从300HP到40O0HP,并采用PLC对整机驱动系统实施故障诊断、检测、报警及控制。
该驱动系统实施主回路晶体管整流,其控制是给定模拟量通过数模转换成数字量,通过速度环、电流环到SCR移现触发的逻辑无环流的调速系统。
可用测速反馈或电压反馈,对磁场弱磁,以实施恒功率控制。
2.交流调速控制系统:对于起重机械来讲,交流驱动仍是国内普遍采用的方案而且多数停留在绕线式电机转子串电阻来调速。
随着功率电子技术的发展,早在六十年代后期,国外就开始致力于晶闸管定子调压调速技术的开发研究。
目前,该技术己进入了成熟稳定的发展应用阶段。
日本安川电机制作所于1972年就正式定为VS系列,应用于起重机及轧机辅助设备的交流调速。
法国、英国、德国等大电气公司亦在这方面展开了重点研制开发。
借助电力电子技术、微电子技术的发展,由分离元件发展到大规模集成电路,从而实现控制部件的微型组件化、智能化、标准化、系列化,进而从模拟量控制发展到数字量控制。
可编程序控制器PLC引入到交流电气传动系统后,使传动系统性能发生了质的变化。
在桥式起重机实现了抓斗的自动控制和故障诊断、检测显示等,达到了新的技术高度。
3.变频调速:变频调速技术是国际上各大电气公司在70年代末80年代投入全力研制、开发,也是国际国内这几年全力研制应用的目标与方向。
这几年-些公司如德国SIEMENS,美国GE,日本三菱等推出全数字化的变频控制技术,大功率的IGBT模块的出现使变频技术在起升机械、电梯等位能负载控制成为现实。
目前,变频调速的控制方法有恒压频比控制,转差频率控制,变频控制,直接转矩控制等。
这些控制方法都得到了不同程度的应用,但其控制性能有-定的差异。
直流电动机之所以与有良好的控制性能,其根本原因是当励磁电流恒定时,控制电枢电流的大小就能无时间滞后的控制瞬时转矩的大小。
异步电动机产生瞬时转矩的原理虽然与直流电动机相同,但由于建立气隙磁场的励磁分量和电磁转矩所对应装置电流有功分量都应包含在定子电流中,无法直接将它们分开,在运行过程中,这两个分量有会互相影响。
因此要控制异步电动机的瞬时转矩十分困难。
像采用恒压频比控制、转差频率控制的变频调速系统由于是从控制电动机的平均转矩的角度出发来控制电动机的转速,因而难以获得较理想的动态性能,异步电动机在高精度调速系统和伺服系统中的应用受到限制。
而矢量控制是从根本上解决了这个问题,使交流调速系统的应用范围迅速扩大。
适用于通用的鼠笼式电动机,无速度传感器的变频调速技术的应用-该技术使变频控制装置不再配套专用电机,而且可通过软件对-般的鼠笼式电机-矢量控制装置实施参数调整,进-步降低电气电机的投资而且维护保养方便。
变频器使用PWM技术可严格地使输入电流正弦COSф即在下降过程各机械减速制动中,将动能和位能转化为电能反馈电网,达到理想的节能指标,同时确保工况正常运行,上述发展已完成了产品系列化上市,对“变频”装置在技术上以及经济上与其他驱动装置竞争将有明显的优势。
同时随着PLC系统的不断成熟与完善,以及大容量变频器在位能负载上的成功应用,变频调速系统必将成为未来调速市场的主流。
(三)本课题的研究意义及主要内容本课题中以桥式起重机作为研究实体,由上可知,传统桥式起重机的控制系统主要采用交流绕线转子串电阻的方法进行启动和调速,继电-接触器控制,这种控制系统的主要缺点有:1.桥式起重机工作环境差,工作任务重,电动机以及所串电阻烧损和断裂故障时有发生。
2.继电-接触器控制系统可靠性差,操作复杂,故障率高。
3.转子串电阻调速,机械特性软,负载变化时转速也变化,调速不理想。
所串电阻长期发热,电能浪费大,效率低。
要从根本上解决这些问题,只有彻底改变传统的控制方式。
近年来,随着计算机技术和电力电子器件的迅猛发展,同时也带动电气传动和自动控制领域的发展。
其中,具有代表性的交流变频调速装置和可编程控制器获得了广泛的应用,为PLC控制的变频调速技术在桥式起重机系统提供了有利条件。
变频技术的运用使得起重机的整体特性得到较大提高,可以解决传统桥式起重机控制系统存在诸多的问题,变频调速以其可靠性好,高品质的调速性能、节能效益显著的特性在起重运输机械行业中具有广泛的发展前景。
由于起重机行业的特殊性,变频调速系统的应用相对滞后。
采用变频调速取代传统的起重机控制系统是近几年才开始应用的新技术。
无论是在起重机老产品还是新产品设计,变频调速都是优选方案。
变频调速装置的先进性能特别适用于起重机的恶劣工况,对改善起重机的调速性能,提高工作效率和功率因数,减小起制动冲击以及增加起重机使用的安全可靠性是非常有益的。
相比较发达国家而言,我国的相关技术水平差距较大。