2014数理逻辑1.2
- 格式:ppt
- 大小:1.21 MB
- 文档页数:23
数理逻辑的一般介绍我们在中学时代就能进行一些证明了, 但并非所有的人都能回答到底什么是证明. 大概来说, 所谓的证明就是把认为某一断言是正确的理由明确地表述出来. 在这一过程中, 我们通常都需要把一些人们已接受的命题作为讨论的基础. 在此基础上, 如果我们能够把该断言推导出来, 该断言就是被认为是被证明了, 因而也就会被人们接受. 于是, 一个很自然的问题就是: 推导究竟为何物? 这个问题就属于逻辑的范畴.逻辑研究推理, 而数理逻辑则研究数学中所用的推理. 由于这种推理在计算机科学中有许多有广泛的应用, 数理逻辑也就成为计算机科学的重要基础之一.很明显, 我们不能够证明一切命题. 如上所述, 当我们证明某一断言(结论) 的时候需要一些其它的命题(前提)作为推理的基础. 我们还可以要求对这些前提进行证明. 如果一直这样要求下去, 或迟或早, 我们会遇这样的情况: 我们进行了“循环” 证明, 即把要证明的命题作为前提来使用, 或者我们无法再作任何证明, 因为没有更为明显的命题可以用来作为前提了.这样,我们就必须不用证明而接受某些命题,我们把这类命题称为“公理”; 其它由这些公理而证明的命题则被称为“定理”.所谓的命题, 直观上是关于某些概念之间的关系. 因而, 我们要求公理是那些根据概念可以明显地接受的命题. 由概念,公理和定理所组成的全体就是公理系统.以上对公理系统的描述要求我们知道公理系统的确切含义. 然而, 从推理的角度来说, 我们并不需要如此. 让我们来看下面的例子:(1).每个学生都是人,(2).王平是学生, (3).王平是人.我们可以由(1) 和(2)推导出(3), 也就是说,如果(1) 和(2)是正确的, 我们就可以断定(3)是正确的. 在这个推理过程中我们并不需要知道“王平”, “学生”, “人” 的含义如何, 把它们换成任何其它的名词, 这一推理都成立. 使(3) 成为(1) 和(2) 的逻辑推论是依据这样的事实: 如果(1)和(2)为真, 则(3)为真. 换句话说, 我们从命题的形式上就可以判断某一推理是否在逻辑上成立, 而无需考虑它的实际含义. 所以我们在研究逻辑的时候往往只需要进行形式的考察就行了, 不必考虑其含义.当我们对某一类研究对象指定了一个公理系统时, 这个公理系统所表示的含义就确定了. 但是在很多情况下, 我们会发现这个公理系统也适合于其它的一些对象. 于是当代数学建立了许多公理系统框架(如各种代数结构). 在这种公理系统框架中, 真正重要的并不是各种公理系统所表达的特定含义的不同, 而是它们的系统构造方面的区别. 这就告诉我们, 在对公理系统进行研究时, 仅对公理系统的形式进行考察是有实际意义的, 在某些情况下这种形式上的考察可以使我们的研究更具有一般性.基于如上认识以及其它的一些考虑(如从计算机科学的角度进行研究等), 我们将对公理系统的语法部分和语义部分进行分别研究. 公理系统的语义部分研究公理系统的含义, 它属于"模型论" 的研究范围, 我们将在今后作一些初步的介绍. 现在,我们对公理系统的语法部分进行粗略的描述.公理系统的语法部分称为形式系统. 它由语言, 公理和推理规则这样三个部分组成.任何推理必须在一定的语言环境中进行, 所以形式系统首先需要有它的语言. 自然语言(如英语, 中文等)具有很丰富的表达能力, 但通常会产生二义性. 例如"是" 在自然语言中可以表示“恒等” (如: 我们的英语老师是张卫国.), “属于” (如: 王小平是学生.), “包含” (如: 学生是人.) 等不同的含义. 同时, 我们还希望公理系统的语言结构能尽可能地反映它的语义并能有效地进行推理. 因而, 我们通常在形式系统中使用人工设计的形式语言.1设A 是一个任给的集合. 我们把A 称为字母表, 把A 中的元素称为符号. 我们把有穷的符号序列称为A的表达式. 一个以A 为其字母表的语言是A 的表达式集合的一个子集, 我们把这个子集中的元素称为公式. 因为我们希望这个语言能够表达我们所研究的对象, 我们要求公式能反映某些事实. 虽然理论上以A 为其字母表的语言可以是A 的表达式集合的任何子集, 我们将只讨论那些能将公式和其它表达式有效地区分开的语言. 我们将用L(F)表示公理系统F 的语言.形式系统的第二个部分是它的公理. 我们对公理的唯一要求是它们必须是该公理系统语言中的公式.最后, 为了进行推理我们需要推理规则. 每个推理规则确保某个公式(结论) 可由其它一些公式(前提) 推导出来.给定公理系统F, 我们可以把F 中的定理定义如下:1). F 的公理是F 的定理;2). 如果F 的某一推理规则的前提都是定理, 则该推理规则的结论也是定理;3). 只有1)和2)所述的是定理.这种定义方式和自然数的定义方式相类似, 称为广义递归定义. 它和通常的定义方式在形式上有所区别. 为了说明它的合理性, 我们对F的定理进行进一步的描述. 设S0 是F 的公理集. 根据1), S0 中的元素是定理. 设S1 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 中的元素. 根据2), S1 中元素是定理. 设S2 是公式集,它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 中的元素. 根据2), S2 中元素是定理. 如此下去, 我们得到S2 ,S3 ,.... 最后, 设S N 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 ,...S N中的元素. 根据2), S N 中元素是定理并且我们得到了F中的所有定理. 我们将经常使用这种定义方式. 为了书写方便, 在今后的广义递归定义中我们将不再把类似3)的条款列出.如此定义的F 中定理为我们提供了一种证明方法. 当要证明F 中的定理都具有某一性质P 时, 我们可以采用下述步骤:1). 证明F 的公理都具有性质P;2). 证明如果F 的每个推理规则的所有前提具有性质P, 则它的结论具有性质P.这种证明方法称为施归纳于F的定理. 一般说来, 如果集合C 是由广义递归定义的, 我们可用类似的方法证明C中的元素都具有性质P. 这种证明方法称为施归纳于C中的元素. 2)中的前提称为归纳假设.现在我们就可以定义什么是证明了. 所谓F 中的一个证明是一个有穷的F 的公式序列, 该序列中的每一个公式要么是公理, 要么F 的某个推理规则以该序列中前面的公式所为前提而推导出的结论. 如果A 是证明P 的最后的公式, 则称P 是A 的证明.定理公式A 是F 的定理当且仅当A 在F 中有证明.证明首先根据定理的定义可以看出任何证明中的任何公式都是定理, 所以如果A 有证明, 则A 是定理. 我们施归纳于F 的定理来证明其逆亦真. 如果A 是公理, 则A 本身就是A 的证明. 如果A 是由F 的某一推理规则以B1 ,...,B n 为前提推导而得的结论, 由归纳假设, B1 ,...,B n 都有证明. 我们把这些证明按顺序列出来即可得到A 的一个证明. 证完今后, 我们将用 F .... 表示"....是F 的定理".一阶理论2今后, 我们将主要讨论一类特殊的公理系统. 这类公理系统称为一阶理论. 一阶理论是一种逻辑推理系统, 它具有很强的表达能力和推理能力, 并且在数学, 计算机科学及许多其它的科学领域中有广泛的应用. 事实上, 目前使用的大多数计算机语言和数学理论都是一阶理论.如前所述, 一阶理论的第一个部分是它的语言. 我们把一阶理论的语言称为一阶语言. 如同其它的形式语言一样, 一阶语言应包括一个符号表和一些能使我们把公式和其它表达式区分开的语法规则.首先, 我们定义一阶语言的符号表, 它由三类功能不同的符号组成. 它们是:a) 变元x,y,z,...;b) n元函数符号f,g,..., 及n元谓词符号p,q,...;c) 联结词符号和量词符号⌝,∨和∃.为了今后的方便, 我们假定一阶语言的变元是按一定顺序排列的, 并且我们把这种排列顺序称为字母顺序. 我们称0 元函数符号是常元符号. 注意: 一个任给的一阶理论并没有要求必须有函数符号: 一个一阶理论可能没有函数符号, 可能有有穷多个函数符号, 也可能有无穷多的函数符号. 我们要求任何一阶理论必须包括一个二元谓词符号, 并用"=" 来表示它. 和函数符号一样, 一个给定的一阶语言可能有有穷或无穷多个(甚至没有) 其它的谓词符号. 函数符号和除=外的谓词符号称为非逻辑符号, 而其它的符号称为逻辑符号.在定义公式之前, 我们必须先定义"项":(1.1) 定义在一阶语言中, 项是由下述广义递归方式定义的:a) 变元是项;b) 如果u1 ,...,u n 是项, f是n元函数符号, 则fu1 ...u n 是项.然后, 我们定义公式如下:(1.2) 定义在一阶语言中, 公式是由下述广义递归方式定义的:a) 如果u1 ,...,u n 是项, p是n元谓词符号, 则pu1 ...u n 是(原子) 公式,b) 如果u,v 是公式, x 是变元, 则⌝u, ∨uv 和∃xu是公式.如前所述, 相应于公式的定义, 我们有一种广义归纳的证明方法. 我们将把这种证明方法称为施归纳于长度. 有时我们还用施归纳于高度的证明方法, 而所谓的高度是公式中含有⌝,∨,和∃的数量.如果一个表达式b包括另一个表达式a, 则称第二个表达式a在第一个表达式b中出现, 即如果u,v,w 是表达式, 则v在uvw 中出现. 这里, 我们不仅要求a的符号都包括在b中, 而且要求这些符号的排列顺序和a一样并且中间不插有任何其它的符号. 我们把b包括a的次数称为a在b中出现的次数.接下来, 我们要讨论关于一阶语言的一些性质. 这种讨论不仅可以使我们加深对一阶语言的认识, 同时还能帮助我们理解其它的形式系统. 首先要考虑的是唯一可读性问题, 也就是说, 我们将要证明一阶语言中的任何公式不可能有不同的形式. 这一性质说明一阶语言在结构上是不会产生二义性的. 为了简化书写, 我们把公式和项统称为合式表达式. 于是, 根据定义可以知道所有的合式表达式都具有uv1 ...v n 的形式, 其中u 是n 元(函数或谓词) 符号, v1 ,...,v n 是合式表达式.我们说两个表达式u和v是可比较的, 如果存在一个表达式w (w 可以是空表达式) 使u=vw. 显然, 如果uv和u'v'是可比较的, 则u 和u'是可比较的; 如果uv和uv' 是可比较的, 则v 和v'是可比较的.3(1.3) 引理如果u1 ,...,u n ,u'1 ,...,u'n 是合式表达式(u1 和u'1 都不是空表达式), 而且u1 ...u n 和u'1 ...u'n 是可比较的,则对于一切i=1,...,n, u i =u'i .证明施归纳于u1 ...u n 的长度k.如果k=1, 则u1 ...u n 只有一个符号. 所以, n=1. 于是u1 ...u n =u1 且u'1 ...u'n =u'1 . 由于u1 和u'1 都是合式表达式, 它们只可能是变元或常元符号. 由于它们是可比较的, 所以u1 =u'1 .假定当k〈m时引理成立, 并设k=m.由于u1 是合式表达式, 我们可以把它写成vv1 ...v s , 其中v 是s 元符号, v1 ,...,v s 是合式表达式. 由上, u'1 和u1 是可比较的, v 也是u'1 的第一个符号. 于是, 由于u'1 是合式表达式, 它具有vv'1 ...v's 的形式. 由上所述的性质, v1 ...v s 和v'1 ...v's 是可比较的. 由于|v1 ...v s |<|u1 |≤|u1 ...u n |, 根据归纳假设, 对于一切j=1,...,s, v j =v'j , 所以, u1 =u'1 . 由此而得, u2 ...u n 和u'2 ...u'n 是可比较的, 且|u2 ...u n |<|u1 ...u n |, 所以, 由归纳假设, 对于一切i=2,...,n, u i =u'i .于是, 引理得证#(1.4) 唯一可读性定理每一个合式表达只能以唯一的方式写成uv1 ...v n 的形式, 其中, u 是n 元符号, v1 ,...,v n 是合式表达式.证明设w,w'是同一个合式表达式书写形式, 我们必须证明它们的结构是相同的. 首先, 它们必须都有相同的第一个符号,这样, u和n就唯一确定了, 从而, w=uv1...v n 且w'=uv'1...v'n, 其中v i ,v'j 是合式表达式(i,j=1,...,n). 我们还需证明对一切i=1,...,n, v i=v'i. 因为w 和w'是同一个表达式, 因而是可比较的. 于是, 根据引理(1.3), 对于一切i=1,...,n, v i=v'i #下面的定理说明如果一个合式表达式不可能由两个(或更多) 合式表达式的某些部分组成.(1.5) 引理合式表达式u中的任何符号w都是u中某一合式表达式的第一个符号.证明施归纳于u的长度k. 如果k=1, 则u是变元或常元符号. 于是任何在u中出现的符号就是u本身, 从而引理成立.假定当k<m时引理成立, 并设k=m.设u 是vv1 ...v n , 其中v是n元符号, v1 ,...,v n 是合式表达式. 如果w是v, 则它是u的第一个符号. 否则, 存在i=1,...,n, 使w 在v i 中出现. 由于|v i |<|u|, 根据归纳假设, w 是v i 中的某一合式表达式的第一个符号, 当然也是u中的某一合式表达式的第一个符号. 证完. #(1.6) 出现定理设u是n元符号, v1 ,...,v n 是合式表达式. 如果一个合式表达式v在uv1 ...v n 出现, 而且v不是整个uv1 ...v n , 则v在某一v i 出现.证明如果v的第一个符号就是定理中的u, 则v=uv'1 ...v'n , 其中v'1 ,...,v'n 是合式表达式, 且由定理条件, u和v是可比较的. 于是根据引理(1.3), 对于一切i=1,...,n, v i =v'i , 即v=uv1 ...v n . 矛盾.现假定v的第一个符号在某一v i 中出现. 根据引理(1.5), 该符号是某一合式表达式v'的第一个符号. 显然, v和v'是可比较的, 因而由引理(1.3), v=v', 即v在v i 中出现.4#为了方便起见, 我们今后将用大写字母A,B,...表示公式, 用f,g,...表示函数符号, 用p,q,...表示谓词符号, 用x,y,...表示变元, 用a,b,...表示常元符号.现在我们定义两类性质不同的变元, 即自由变元和约束变元.(1.7) 定义a) 如果x 在原子公式中出现, 则x是自由变元;b) 如果x是A 和B 中的自由变元, 且y 不是x, 则x 是⌝A, ∨AB和∃yA中的自由变元.a') x 是∃xA中的约束变元;b') 如果x是A 或B 中的约束变元, 则x 是⌝A, ∨AB和∃yA中的约束变元.注意: x可以在A 中既是自由变元又是约束变元.我们将用u[x/a]表示在表达式u 中将所有的自由变元x换成项a而得的表达式. 设A 是公式, 在很多情况下, A[x/a]关于a 所表示的含义与A 关于x所表示的含义是一样的, 但并非总是如此. 例如, 若A 是∃y=x2y, 而a 是y+1, 则A 是说x 是偶数, 但A[x/a]却不是说y+1是偶数. 这表明并非所有的代入都会保持原有的含义. 于是我们有下述定义:(1.8) 定义 a 被称为是在A 中可代入x的, 如果i) 如果A是原子公式,则a 是在A中可代入x 的;ii) 如果a 在B中可代入x 且对于a 中的任何变元y, ∃yB不含有自由变元x,则a 是在∃yB中可代入x 的;iii) 如果a 在A, B中可代入x, 则a 在⌝A和A∨B中是可代入x 的.今后, 当使用A[x/a] 时, 我们总是假定a是在A 中可代入x的. 类似地, 我们将用u[x1/ a1 ,...,x n/ a n ]表示在表达式u 中将所有的自由变元x1 ,...,x n 分别换成项a1 ,...,a n 而得的表达式, 同时还假定它们都是可代入的.在我们的一阶语言定义中项和公式的写法对于证明和理论分析比较方便, 但和通常的阅读方式不一致. 为了克服这一弱点, 我们引进一些定义符号:(A∨B) 定义为∨AB; (A→B) 定义为(⌝A∨B); (A&B) 定义为⌝(A→⌝B);(A↔B) 定义为((A→B)&(B→A)); ∀xA 定义为⌝∃x⌝A.注意: 定义符号只是为了方便而引进的记号, 它们不是语言中的符号. 当我们计算公式的长度时, 必须把它们换成原来的符号. 同样, 当用施归纳于长度或高度进行证明时也不能把它们作为符号来处理. 今后, 我们将在展示公式时用定义符号, 而在证明时用定义(1.1) 和(1.2).我们称:⌝A 为 A 的否定; A∨B 为 A 和B 的析取(A 或者B); A&B 为 A 和B 的合取(A并且B);A→B 为 A 蕴含B; A↔B 为A等价于B; ∃xA 为关于x的存在量词(存在x 使得A);∀xA 为关于x的全称量词(对一切x 使得A).作业:1) 施归纳于长度证明如果u是公式(项), x 是变元, a是项, 则u[x/a]是公式(项).2) 证明如果uv和vv'是合式表达式, 则v和v'中必有一个是空表达式.一阶理论的逻辑公理和规则形式系统的公理和规则可以分为两类: 逻辑公理和逻辑规则, 非逻辑公理和非逻辑规则. 逻辑公理和逻辑规则指的是那些所有形式系统都有的公理, 而非逻辑公理和非逻辑规则仅在5某些特定的形式系统中才有. 但是, 当形式系统足够丰富时,我们并不需要非逻辑规则. 假定在一个形式系统F 中有一条非逻辑规则使我们可以由B1 ,...,B n 推导出A, 只要F 有足够多的逻辑规则, 我们只需要在F 中加进一条公理B1 →...→B n →A (这里, B1 →...→B n →A表示B1 →(...→(B n →A)...).)就不再需要那条非逻辑规则了. 因此, 我们今后假定我们的形式系统中没有非逻辑规则. 今后我们将把逻辑规则简称为规则. 由于我们仅对形式系统进行一般讨论, 我们的兴趣主要是那些逻辑公理和规则.下面是逻辑公理:1) 命题公理: ⌝A∨A;2) 代入公理: A[x/a]→∃xA;3) 恒等公理: x=x;4) 等式公理: x1 =y1 →...→x n =y n →fx1 ...x n =fy1 ...y n ;或x1 =y1 →...→x n =y n →px1 ...x n →py1 ...y n .注意: 以上并不是仅有四条公理, 而是四类公理. 如命题公理并非一条公理, 而是对于任何公式A 我们有一条命题公理. 所以, 以上的公理实际上是公理模式.以下是规则:1) 扩展规则: 如果A, 则B∨A;2) 收缩规则: 如果A∨A, 则A;3) 结合规则: 如果A∨(B∨C), 则(A∨B)∨C;4) 切割规则: 如果A∨B且⌝A∨C, 则B∨C;5) ∃-引入规则: 如果A→B且x 不是B 中的自由变元, 则∃xA→B.如同上面的公理, 这些规则也不是五条规则, 而是五个规则模式.现在, 我们定义一阶理论如下:(1.9) 定义一个一阶理论T (简称理论T)是具有如下特征的形式系统:1) T 的语言L(T)是一阶语言;2) T 的公理是以上列出的四组公理和一些其它的非逻辑公理;3) T 的规则是以上列出的五组规则.由于一阶理论的逻辑符号, 逻辑公理和规则已经确定, 一阶理论之间的区别在于它们的非逻辑符号和非逻辑公理. 因此, 当我们希望讨论某一具体的一阶理论时只需要把它的非逻辑符号和非逻辑公理指明就行了.例.1) 数论NN 的非逻辑符号为: 常元0, 一元函数符号S, 二元函数符号+和*, 和二元谓词符号<. N 的非逻辑公理为:N1 Sx≠0; N2 Sx=Sy→x=y; N3 x+0=x; N4 x+Sy=S(x+y); N5 x*0=0;N6 x*Sy=(x*y)+x; N7 ⌝(x<0); N8 x<Sy↔x<y∨x=y; N9 x<y∨x=y∨y<x.2) 群GG 只有一个非逻辑符号, 即二元函数符号*. G 的非逻辑公理为:G1 (x*y)*z=x*(y*z); G2 ∃x(∀y(x*y=y)&∀y∃z(z*y=x)).根据我们在第一节所述, 一阶理论T 的定理可以定义为:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理是定理;2) 如果A 是定理, 则A∨B是定理;3) 如果A∨A是定理, 则A 是定理;64) 如果A∨(B∨C) 是定理, 则(A∨B)∨C 是定理;5) 如果A∨B和⌝A∨C是定理, 则B∨C是定理;6) 如果A→B是定理且x 不是B 中的自由变元, 则∃xA→B是定理.与此对应, 我们可以用如下广义归纳法证明一阶理论T 中的定理都具有某一性质P:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理具有性质P;2) 如果A 具有性质P, 则A∨B具有性质P;3) 如果A∨A具有性质P, 则A 具有性质P;4) 如果A∨(B∨C) 具有性质P, 则(A∨B)∨C 具有性质P;5) 如果A∨B和⌝A∨C具有性质P, 则B∨C具有性质P;6) 如果A→B具有性质P且x 不是B 中的自由变元, 则∃xA→B具有性质P.下面我们证明一阶理论的逻辑公理是相互独立的.(1.10) 定理一阶理论的逻辑公理和规则是互相独立的.证明当我们希望证明某一命题A 是独立于某个命题集Γ和规则集Δ时, 我们需要找到一个性质P 使A 不具有性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P (即如果该规则的前提具有性质P, 则其结论具有性质P); 当我们希望证明某一规则R 是独立于Γ和Δ时, 我们需要找到一个性质P 使R 不保持性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P. 这样就可以断言: 在由Γ为其公理集, Δ为其规则集的形式系统中, 每一定理都具有性质P. 由于A不具有性质P (或R 不保持性质P), 所以, A (或R)是不可能由Γ和Δ来证明的. 这样, A(或R)就独立于Γ和Δ了. 我们将根据这个思想来证明本定理.1) 对于命题公理. 定义f 如下:f(A)=T 若 A 是原子公式; f(⌝A)=F; f(A∨B)=f(B); f(∃xA)=T.可以证明: f(⌝⌝(x=x)∨⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.2) 对于代入公理. 定义f 如下:f(A)=1 若A 是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1;f(A∨B)=max{f(A),f(B)}; f(∃xA)=0.可以证明: f((x=x)→∃x(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.3) 对于恒等公理. 定义f 如下:f(A)=0 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A)},f(B); f(∃xA)=f(A).可以证明: f((x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.4) 对于等式公理. 首先在L(T)中加进常元e1 ,e2 和e3 而得L'. 然后定义f 如下:f(e i =e j )=1 iff i≤j; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T iff 存在i 使f(A[x/e i ])=T .可以证明: f((x=y→x=z→x=x→y=z))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A[x/e i ])=1, 其中, x是A 中的自由变元.5) 对于扩展规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0, 否则, f(A)=0; f(A∨B)=1 如果f(A)=f(⌝B), 否则f(A∨B)=0; f(∃xA)=f(A).可以证明: f((x=x∨(⌝(x=x)∨x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.6) 对于收缩规则. 定义f 如下:7f(A)=T 若 A 是原子公式; f(⌝A)=f(∃xA)=F; f(A∨B)=T.可以证明: f(⌝⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.7) 对于结合规则. 定义f 如下:f(A)=0 若 A 是原子公式; f(⌝A)=1-f(A); f(A∨B)=f(A)*f(B)*(1-f(A)-f(B)); f(∃xA)=f(A).可以证明: f(⌝(⌝(x=x)∨⌝(x=x)))>0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=0.8) 对于切割规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0或A是原子公式, 否则f(⌝A)=0; f(A∨B)=max{f(A),f(B)}; f(∃xA)=f(A).可以证明: f(⌝⌝(x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.9) 对于E-引入规则. 定义f 如下:f(A)=1 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T.可以证明: f(∃y⌝(x=x)→⌝(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.结构和模型现在我们讨论一阶理论的语义部分. 为此我们先引进一些集论的记号: 集合或类是把一些我们想要研究的对象汇集在一起, 从而我们可以把它看作是一个整体. 如果A 和B 是集合, 一个由A 到B 的映射 F (记作F: A→B)是一个A 和B 之间的对应, 在这个对应中A 中的每一个元素a 都对应着一个唯一的B中元素 b (称为F在a 上的值, 记作F(b) ). 我们把n个A 中元素按一定顺序排列而得的序列称为A 的一个n 元组, 并用(a1,...,a n )表示由A 中元素a1,...,a n 按此顺序排列的n 元组. 把由A 的所有n 元组成的集合记为A n, 然后把由A n 到B的映射称为由A 到B 的n元函数. 我们把A n 的子集称为A 上的n 元谓词. 如果P是A 上的n 元谓词, 则P(a1 ,...,a n )表示(a1 ,...,a n )∈P.真值函数根据我们对公式和项的定义, 我们可以先用函数符号和谓词符号以及变元构造一些简单的公式, 然后用联结词得到比较复杂的公式, 如"A 并且B" 等等. 我们用符号"&" 表示"并且", 即若A 和B 是公式, "A&B" 表示"A 和B同时成立".于是一个很自然的问题是怎样知道A&B 的真假? 这里, A&B 的一个很重要的特征是: 只需要知道A 和B 的真假就能确定A&B 的真假, 而不必知道A 和B 的具体含义. 为了表示这一特征, 我们引进真值. 真值是两个不同的字母T 和F, 而且当公式A 为真时, 我们用T 表示其真值; 当公式A 为假时, 我们用F 表示其真值. 于是, A&B 的真值就由A 和B 的真值确定了.有了真值的概念, 我们就可以定义真值函数了. 所谓的真值函数是由真值集T,F 到真值集T,F 的函数. 由此, 我们可以把以上的讨论叙述为: 存在二元真值函数H& 使得: 若a 和b 分别是A 和B 的真值, 则H& (a,b) 是A&B 的真值. 我们定义H& 为:H& (T,T)=T, H& (T,F)=H& (F,T)=H& (F,F)=F.我们用"∨" 表示"或者", 并定义H∨如下:8H∨(F,F)=F, H∨(T,F)=H∨(F,T)=H∨(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H∨(a,b)就是A∨B的真值.我们用"→" 表示"如果...则...", 并定义H→如下:H→(T,F)=F, H→(F,F)=H→(F,T)=H→(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H→(a,b)就是A→B的真值.我们用"↔" 表示"当且仅当", 并定义H↔如下:H↔(F,T)=H↔(T,F)=F, H↔(F,F)=H↔(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H↔(a,b)就是A↔B的真值.我们用"⌝" 表示"非", 并定义H⌝如下:H⌝(F)=T, H⌝(T)=F.于是当a 是A 的真值时, H⌝(a)就是⌝A的真值.容易证明, &,→, 和↔可由⌝和∨定义. 事实上所有的真值函数都可以由⌝和∨定义.作业1. 证明: 任何真值函数f(a1 ,...,a n )都可以由H⌝和H∨定义.2. 设H d , H s 是真值函数, 其定义为:H d (a,b)=T 当且仅当a=b=F; H s (a,b)=F 当且仅当a=b=T.证明: 任何真值函数f(a1 ,...,a n )都可以由H d (或H s )定义.结构现在我们讨论一阶语言的语义部分(称为它的结构). 所谓一个语言的语义, 当然是表示该语言中所指称的对象范围和每一个词和句子所表达的含义. 一阶语言的语义也是如此. 如前定义, 一阶语言中的符号有函数符号和谓词符号, 这些都应在它的语义中有具体的含义. 把这些组合起来, 我们就可以得到如下定义:(1.11) 定义称三元组M=〈|M|,F,P〉是一个结构,如果:1) |M|是一个非空集合,它称为是L 的论域, |M| 中的元素称为是M 的个体;2) F是|M|上的函数集合;3) P是|M|上的谓词集合.定义设L是一阶语言,M是一个结构。
【创优导学案】2014届高考数学总复习 第一章 集合与简易逻辑 1-2课后巩固提升(含解析)新人教A 版(对应学生用书P 377 解析为教师用书独有)(时间:45分钟 满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1.命题“若x ,y 都是偶数,则x +y 也是偶数”的否命题是( ) A .若x ,y 都是偶数,则x +y 不是偶数B .若x ,y 都不是偶数,则x +y 不是偶数C .若x ,y 都不是偶数,则x +y 是偶数D .若x ,y 不都是偶数,则x +y 不是偶数解析 D “都是”的否定是“不都是”,故选D.2.已知p :x ≤1,q :1x <1,则p 是綈q 成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 B 綈q :0≤x ≤1,故选B.3.有下列四个命题:①“若b =3,则b 2=9”的逆命题; ②“全等三角形的面积相等”的否命题;③若c ≤1,则x 2+2x +c =0有实根;④“若A ∪B =A ,则A ⊆B ”的逆否命题.其中真命题的个数是( ) A .1B .2C .3D .4解析 A 在③中,当c ≤1时,4-4c ≥0,方程有实根,命题为真.其余全为假.4.已知α,β为不重合的两个平面,直线m ⊂α,那么“m ⊥β”是“α⊥β”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 A 由m ⊥β,m ⊂α⇒α⊥β;反过来,α⊥β,m ⊂α⇒/ m ⊥β,所以“m ⊥β”是“α⊥β”的充分不必要条件.5.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题解析A 可以考虑原命题的逆否命题,即a,b都小于1,则a+b<2,显然为真.原命题的逆命题,即a,b中至少有一个不小于1,则a+b≥2,为假,如a=1.2,b=0.2,则a +b<2.6.(2013·银川模拟)若a,b∈R,使|a|+|b|>1成立的一个充分不必要条件是( ) A.|a+b|≥1 B.a≥1C.|a|≥0.5,且b≥0.5 D.b<-1解析 D 当a=1,b=0时,都满足选项A,B, 但是不能得出|a|+|b|>1;当a=0.5,b=0.5时,满足选项C,但是不能得出|a|+|b|>1,故选D.二、填空题(本大题共3小题,每小题8分,共24分)7.有三个命题:(1)“若x+y=0,则x,y互为相反数”的逆命题;(2)“若a>b,则a2>b2”的逆否命题;(3)“若x≤-3,则x2+x-6>0”的否命题.其中真命题的个数为________.解析(1)真,(2)原命题假,所以逆否命题也假,(3)易判断原命题的逆命题假,则原命题的否命题也假.【答案】18.“a+c>b+d”是“a>b且c>d”的________条件.解析由于a>b且c>d可以推出a+c>b+d,而a+c>b+d不能得到a>b且c>d,所以“a +c>b+d”是“a>b且c>d”的必要不充分条件.【答案】必要不充分9.(2013·安庆模拟)若“x2>1”是“x<a”的必要不充分条件,则a的最大值为________.解析∵x2>1,∴x<-1或x>1.由已知x<a⇒x2>1,∴a≤-1,故最大值是-1.【答案】-1三、解答题(本大题共3小题,共40分)10.(12分)已知函数f(x)是(-∞,+∞)上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.解析 (1)逆命题:若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0,真命题. 用反证法证明:假设a +b <0,则a <-b ,b <-a .∵f (x )是(-∞,+∞)上的增函数,则f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设相矛盾,∴逆命题为真.(2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ),则a +b <0,真命题.∵原命题等价于它的逆否命题,∴证明原命题为真命题即可.∵a +b ≥0,∴a ≥-b ,b ≥-a .又∵f (x )是(-∞,+∞)上的增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ).∴逆否命题为真.11.(12分)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,求m 的取值范围. 解析 由题意知:13<x <12是不等式|x -m |<1成立的充分不必要条件. 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 13<x <12是{x ||x -m |<1}的真子集. 而{x ||x -m |<1}={x |-1+m <x <1+m },所以有⎩⎪⎨⎪⎧-1+m ≤13,1+m ≥12,解得-12≤m ≤43. 所以m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43. 12.(16分)若ab ≠0,试证a 3+b 3+ab -a 2-b 2=0成立的充要条件是a +b =1. 解析 必要性:∵a 3+b 3+ab -a 2-b 2=0, ∴(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=0, 即(a +b -1)(a 2-ab +b 2)=0, 又ab ≠0,∴a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+3b 24≠0, 因此a +b -1=0,即a +b =1.充分性:∵a +b =1,即a +b -1=0,∴(a+b-1)(a2-ab+b2)=0,即a3+b3+ab-a2-b2=0.。
备注:1、试卷背面为演草区(不准用自带草纸) 装 订 线课程编号: 20312019 考核方式:(开卷) 考核时间:2013年12月24日8:00-9:35 主考教师允许携带的用品:教科书、参考书、课件大连海事大学2013--2014学年第一学期硕士研究生《数理逻辑》试卷及参考答案一.(本题10分)判断下述说法是否正确,正确的在【 】中填写T ,不正确的在【 】中填写F ,不必说明理由。
1. 【T 】如果命题公式A B ∨是恒假的,则A 是恒假的并且B 是恒假的。
2. 【F 】{},,⌝∧∨是逻辑连接符的极小全功能集。
3. 【T 】如果m 和m '都是关于命题变量1n p ,,p 的极小项,则m m '=当且仅当m m m '∧⇔。
4. 【T 】任意命题公式都存在唯一的与之等值的主合取范式。
5. 【F 】在一阶逻辑中,()(),,x P x y xP x z ∀⌝⇔⌝∃。
6. 【T 】项()f a,b 对公式(),yP x y ∀中的自由变量x 是自由的。
7. 【F 】在一阶逻辑中,()()()()()xP x xQ x x P x Q x ∃∧∃⇔∃∧。
8. 【F 】任意一阶公式都与其所对应的子句集等值。
9. 【T 】形式系统L 的扩张L *如果不是相容的,那么L *必然是完全的。
10.【T 】设A 是形式系统K 的公式,A '是A 所对应的封闭公式。
则KA A '→。
二. (10分) 设A ,B ,C 是命题公式。
试回答下述问题并证明你的结论。
⑴ 如果A C B C →⇔→,是否一定有A B ⇔?(4分) ⑵ 如果A C B C ↔⇔↔,是否一定有A B ⇔?(6分)解 ⑴ 如果A C B C →⇔→,不一定有A B ⇔,事实上,只要C 是重言式,则一定有A C A C →⇔⌝→,但这时A A ⇔⌝/。
⑵ 如果A C B C ↔⇔↔,一定有A B ⇔。
数理逻辑中的谓词函数与谓词公式数理逻辑(mathematical logic)是研究形式逻辑(formal logic)的一个分支,它运用数学方法来研究逻辑的基本原理与推理规则。
在数理逻辑中,谓词函数和谓词公式是非常重要的概念。
本文将介绍谓词函数与谓词公式的概念、性质及其在数理逻辑中的应用。
一、谓词函数的定义与性质在数理逻辑中,谓词函数(Predicate Function)是一种将一组变量映射到真值的函数。
它通过变量的赋值将谓词的真值确定下来。
谓词函数的定义可以用集合和映射来描述。
1.1 谓词函数的定义设P是一个谓词,n是一个正整数,X1, X2, ..., Xn是n个变量,则称(P, n)为一个n元谓词,也称为谓词函数。
通常用P(x1, x2, ..., xn)来表示一个具体的n元谓词函数。
1.2 谓词函数的性质(1)真值集合:对于给定的变量赋值,谓词函数的结果是一个命题(proposition),即取值要么为真,要么为假。
谓词函数的真值集合可以用集合来表示。
(2)变元:谓词函数中的变量称为变元(arguments)。
变元的个数决定了谓词函数的元数(arity)。
(3)布尔函数:谓词函数可以看作是一种特殊的布尔函数,即输入是布尔值,输出也是布尔值的函数。
(4)值域:谓词函数的取值范围称为值域(range)。
值域通常是真值集合{真, 假}。
二、谓词公式的定义与性质谓词公式(Predicate Formula)是由谓词函数和逻辑连接词(如否定、合取、析取、蕴含、等价等)通过逻辑运算得到的复合命题。
谓词公式可以描述系统中的关系、属性和规则等。
2.1 谓词公式的定义谓词公式由谓词及其变元,逻辑连接词和量词(如全称量词∀、存在量词∃等)组成。
谓词公式可以使用自由变量或约束变量形式来表示。
2.2 谓词公式的性质(1)合法公式:符合数理逻辑规则的谓词公式称为合法公式,也称为良构公式。
(2)可满足性:对于合法公式,如果存在一种变量赋值使该谓词公式成为真命题,则称该谓词公式是可满足的。
2014届高考数学理科试题大冲关:1.2命题及其关系、充分条件与必要条件2014届高考数学理科试题大冲关:命题及其关系、充分条件与必要条件一、选择题1.设集合A={x∈R|x-2>0},B={x∈R|x <0},C={x∈R|x(x-2)>0},则“x∈A∪B”是“x∈C”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“若-1<x<1,则x2<1”的逆否命题是()A.若x≥1或x≤-1,则x2≥1B.若x2<1,则-1<x<1C.若x2>1,则x>1或x<-1D.若x2≥1,则x≥1或x≤-13.设a1,a2,b1,b2均不为0,则“a1a2=b1b2”是“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.“a=0”是“函数y=ln|x-a|为偶函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件5.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件二、填空题7.给出命题:已知实数a、b满足a+b=1,则ab≤14.它的逆命题、否命题、逆否命题三个命题中,真命题的个数是________.8.(2012·盐城模拟)已知直线l1:ax-y+2a +1=0和直线l2:2x-(a-1)y+2=0(a∈R),则l1⊥l2的充要条件是a=________.9.p:“向量a与向量b的夹角θ为锐角”是q:“a·b>0”的________条件.三、解答题10.已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若命题“A∩B=∅”是假命题,求实数m的取值范围.11.(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在求出p的取值范围;(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在求出p的取值范围.12.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.详解答案一、选择题1.解析:A ∪B ={x ∈R|x <0或x >2},C ={x ∈R|x <0或x >2},∵A ∪B =C ,∴x ∈A ∪B 是x ∈C 的充分必要条件.答案:C2.解析:若原命题是“若p,则q”,则逆否命题为“若綈q则綈p”,故此命题的逆否命题是“若x2≥1,则x≥1或x≤-1”.答案:D3.解析:“不等式a1x+b1>0与a2x+b2>0的解集相同”⇒“a1a 2=b1b2”,但“a1a2=b1b2”“不等式a1x+b1>0与a2x+b2>0的解集相同”,如:a1=1,b1=-1,a2=-1,b2=1.答案:C4.解析:当a=0时,函数y=ln|x|为偶函数;当函数y=ln|x-a|为偶函数时,有ln|-x-a|=ln|x-a|,∴a=0.5.解析:否命题是既否定题设又否定结论.答案:B6.解析:当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=2,a4=-2,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件.答案:A二、填空题7.解析:∵a+b=1⇒1=(a+b)2=a2+2ab +b2≥4ab⇒ab≤14.∴原命题为真,从而逆否命题为真;若ab≤1,显然得不出a+b=1,故逆命题4为假,因而否命题为假.8.解析:l1⊥l2⇔2a+(a-1)=0,解得a=13.答案:1 39.解析:若向量a与向量b的夹角θ为锐角,则cos θ=a·b|a|·|b|>0,即a·b>0;由a·b>0可得cos θ=a·b|a|·|b|>0,故θ为锐角或θ=0°,故p是q的充分不必要条件.答案:充分不必要三、解答题10.解:因为“A∩B=∅”是假命题,所以A∩B≠∅.设全集U={m|Δ=(-4m)2-4(2m+6)≥0},则U={m|m≤-1或m≥32}.假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0,⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0,⇒m ≥32. 又集合{m |m ≥32}.关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是{m |m ≤-1}.11.解:(1)当x >2或x <-1时,x 2-x -2>0,由4x +p <0得x <-p 4,故-p 4≤-1时,“x <-p 4”⇒“x <-1”⇒“x 2-x -2>0”.∴p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件.(2)不存在实数p ,使“4x +p <0”是“x 2-x-2>0”的必要条件.12.解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0,当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎨⎧ x 2-x -6≤0x 2+2x -8>0,得2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是2<x <3.(2)p 是q 的必要不充分条件,即q ⇒p 且p q ,设A ={x |p (x )},B ={x |q (x )},则A B ,又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a ).所以当a >0时,有⎩⎨⎧ a ≤2,3<3a ,解得1<a ≤2; 当a <0时,显然A ∩B =∅,不合题意.综上所述,实数a 的取值范围是1<a ≤2.。
数理逻辑(1-2章)复习自测题14-4-22 学号姓名诚信分数______自测题Ⅰ单项选择题(22分)1由n个命题变元组成不等价的命题公式的个数为( )(1)2n; (2)2n; (3)n2; (4)2 (2) n.2设P:我将去镇上,Q:我有时间.命题“我将去镇上,仅当我有时间”符号化为( )(1)P→Q; (2) Q→P;(3)P ↔Q; (4) ┐P∨┐Q.3设P:我们划船,Q:我们跑步.命题“我们不能既划船又跑步”符号化为( )(1) ┐P∧┐Q; (2) ┐P∨┐Q;(3) ┐(P ↔ Q); (4) P ↔┐Q.4下面哪一个命题是命题“2是偶数或-3是负数”的否定( )(1)2是偶数或-3不是负数;(2)2是奇数或-3不是负数;(3)2不是偶数且-3不是负数;(4)2是奇数且-3不是负数.5设P:张三可以做这件事,Q:李四可以做这件事.命题“张三或李四可以做这件事”符号化为( )(1)P∨Q; (2)P∨┐Q;(2)┐P ↔Q; (4)┐(┐P∨┐Q).6下面语句中哪个是真命题( )(1)我正在说慌;(2)如果1+2=3,那么雪是黑的;(3)如果1+2=5,那么雪是黑的;(4)严禁吸烟.7下面哪个联结词运算不可交换( )(1)∧ (2)→; (3)∨; (4) ↔8命题公式(P∧(P→Q))→Q是( )(1)矛盾式; (2)蕴含式;(3)重言式; (4)等价式.9下面哪个命题公式是重言式( )(1)(P→Q)∧(Q→P);(3)(┐P∨Q)∧()P∧┐Q);(4)┐(P∨Q).10下面哪一组命题公式是等值的( )(1)┐P∧┐Q, P∨Q;(2)A→(B→A), ┐A→ (A→┐B);(3)Q→(P∨Q), ┐Q∧(P∨Q);(4)┐A∨(A∧B), B.11P→Q的逆否式是( )(1) Q→┐P; (2) P→┐Q;(3) Q→┐P; (4) ┐Q→┐P.12┐P→Q的逆否式是( )(1) ┐Q→┐P; (2) P→┐Q;(3) ┐Q→P; (4) P→Q.13下列命题联结词集合中,哪个是极小功能联结词集合( )(1){┐,↔}; (2){┐,∨;∧};(3){↑}; (4){∧,→}14下列命题联结词集合中,哪个不是极小功能联结词集合( )(1){┐,∧}; (2){┐, →};(3){┐,∧,∨}; (4){↑}.15已知A是B的充分条件,B是C的必要条件,D是B的必要条件,问A是D的什么条件( )(1)充分条件; (2)必要条件;(3)充要条件; (4)(1)(2)(3)都不对.〕16┐P→ Q的否命题是( )(1) Q→┐P; (2) ┐P→ Q;(3) ┐Q→P; (4) P→┐Q.17下面哪一个命题公式是重言式( )(1)P→(Q∨R);(2)(P∨R)∧(P→Q);(3)(P∨Q)(Q∨R);(4)((P→(Q→R))→((P→Q) →(P→R)).〕18下面哪一个命题公式不是重言式( )(1)Q→(P∨Q);(3)┐(┐P∧Q)∧(┐P∨Q);(4)(P→Q)↔ ( ┐P∨Q).〕19重言式的否定式是( )(1)重言式; (2)矛盾式;(3)可满足式; (4)蕴含式.〕20下面哪一个命题是假命题( )(1)如果2是偶数,那么一个公式的析取范式唯一;(2)如果2是偶数,那么一个公式的析取范式不唯一;(3)如果2是奇数,那么一个公式的析取范式唯一;(4)如果2是奇数,那么一个公式的析取范式不唯一.)21下面哪一组命题公式不是等值的;(1)┐(A→B), A∧┐B;(2)┐(A ↔ B), (A∧┐B)∨(┐A∧B);(3)A→(B∨C), ┐A∧(B∨C);(4)A→(B∨C), (A∧┐B) →C.22合式公式P→(Q↓P)是( )(1)重言式; (2)可满足式;(3)矛盾式; (4)等价式Ⅱ填空题(50分,每空2分)1若且则称X是公式A的子公式.2写出下列表中各列所定义的命题联结词P Q P Q P QT T T FT F F TF T F TF F F T3P、Q为两个命题,当且仅当时,P∧Q的真值为T;当且仅当时,P∨Q的真值为F.4由n个命题变元可组成不等值的命题公式5两个重言式的析取是 ,一个重言式与一个矛盾式的析取是 .6给定命题公式A、B,若 ,则称A和B是逻辑等值的,记为A⇔B. 7A、B为两个命题公式,A⇔B当且仅当,A⇒B当且仅当 .8将P、Q为两个命题,德摩根律可表示为,吸收律可表示为 .9公式(P∨Q)→R的只含联结词┐、∧的等价式为 .10 P、Q为两个命题,当且仅当时,P→Q的真值为F.〕11全体极大项的合取为式,全体极小项的析取式必为式.〕12公式 p ↔(q∨r) 的只含联结词┐、→的等价式为 .13命题公式┐(P→Q)的主析取范式为,主合取范式的编码表示为 .14已知公式A(P,Q,R)的主合取范式为M0∧M3∧M5,它的主析取范式为(写成编码形式) .15 命题公式┐(P↔Q)的主析取范式为,主合取式的编码表示为 .Ⅲ判断题(在括号中填写 T 或F 28分)1“王兰和王英是姐妹”是复合命题,因为该命题中出现了联合词“和”. 〔〕2凡陈述句都是命题. 〔〕3语句3x+5y=0是一个命题. 〔〕4命题“两个角相等当且仅当它们是对顶角”的值为T. 〔〕5命题“十减四等于五”是一个原子命题. 〔〕6命题“如果1+2=3,那么雪是黑的”是真命题. 〔〕7 (P∨→(Q∧R))是一个命题演算的合式公式,其中Q、Q、R是命题变元. 〔〕8 (P→(Q∧R →┐R))是一个合式公式,其中P、Q、R是命题变元. 〔〕9若A:张明和李红都是三好学生,则┐A:张明和李红都不是三好学生. 〔〕10若A:张英和王平都是运动员,则┐A:张英和王平不都是运动员. 〔〕11若P:每一个自然数都是偶数,则┐P:每一个自然数都不是偶数. 〔〕12若A:每个自然数都是偶数,则┐P:每个自然数不都是偶数. 〔〕13五个基本联结词的运算优先顺序为:┐、∨、∧、→、↔. 〔〕14 联结词“↑”是可交换的. 〔〕15 联结词“↑”满足结合律. 〔〕16 联结词“→”满足交换律. 〔〕17 “学习有如逆水行舟,不进则退”.设P:学习如逆水行舟,Q:学习进步,R:学习退步.则命题符号化为P∧(┐Q→R). 〔〕18 P、Q、R定义同上题,则“学习有如逆水行舟,不进则退”形式化为P→(┐Q→R).〔〕19 设P、Q是两个命题,当且仅当P、Q的直值均为T时,P↔Q的值为T. 〔〕20 命题公式(P∧(P→Q))→是矛盾式. 〔〕21命题公式(P∧(P→Q))→Q是重言式. 〔〕22 联结词∧与∨不是相互分配的. 〔〕23 在命题演算中,每个极小功能联结词集合至少有两个联结词. 〔〕24 命题联结词集{┐,∧}是极小功能联结词集. 〔〕25命题联结词集{┐,∧、∨}是全功能联结词集. 〔〕26命题联结词集{∧、→}是全功能联结词集. 〔〕27 命题联结词集{↑}和{↓}都是全功能联结词集. 〔〕28 任一命题公式都可以表示成与其等价的若干极小项的析取式. 〔〕[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
第2讲命题与量词、基本逻辑联结词1.由“p:8+7=16,q:π>3”构成的复合命题,下列判断正确的是()A.p∨q为真,p∧q为假, p为真B.p∨q为假,p∧q为假, p为真C.p∨q为真,p∧q为假, p为假D.p∨q为假,p∧q为真, p为真【答案】A【解析】因为p假q真,所以p∨q为真,p∧q为假, p为真.2.若p,q是两个简单命题,且“p∨q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假q真【答案】B【解析】∵“p∨q”的否定是真命题,∴“p∨q”是假命题.故p,q都为假命题.3.命题“存在x0∈Z,使2+x0+1≤0”的否定是()A.存在x0∈Z,使2+x0+1<0B.不存在x0∈Z,使2+x0+1>0C.对任意x∈Z,都有2x2+x+1≤0D.对任意x∈Z,都有2x2+x+1>0【答案】D【解析】特称命题的否定是全称命题.4.(2012·河南洛阳高三统考)若命题p:∀x∈,tan x>sin x,则命题 p为()A.∃x0∈,tan x0≥sin x0B.∃x0∈,tan x0>sin x0C.∃x0∈,tan x0≤sin x0D.∃x0∈,tan x0>sin x0【答案】C【解析】命题 p为∃x0∈,tan x0≤sin x0.5.(2012·河南郑州质检)下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3B.∃x0∈Z,5x0+1=0C.∀x∈R,x2-1=0D.∀x∈R,x2+x+2>0【答案】D【解析】由1<4x0<3,得<x0<,这样的整数x0不存在,故选项A为假命题;由5x0+1=0,x0=-∉Z,故选项B为假命题;x2-1=0,x=±1,故选项C为假命题;对任意实数x,都有x2+x+2=>0,故选D.6.已知命题p:∃a,b∈(0,+∞),当a+b=1时,=3;命题q:∀x∈R,x2-x+1≥0恒成立,则下列命题是假命题的是()A.( p)∨( q)B.( p)∧( q)C.( p)∨qD.( p)∧q【答案】B【解析】由基本不等式可得:×(a+b)=2+≥4,故命题p为假命题, p为真命题;∀x∈R,x2-x+1=>0,故命题q 为真命题, q为假命题.因此( p)∧( q)为假命题,故选B.7.(2012·山东潍坊月考)已知定义在R上的函数f(x),写出命题“若对任意实数x都有f(-x)=f(x),则f(x)为偶函数”的否定:.【答案】若存在实数x0,使得f(-x0)=f(x0),则f(x)不是偶函数【解析】所给命题是全称命题,其否定为特称命题.8.已知命题p:∃x0∈R,+2ax0+a≤0.若命题p是假命题,则实数a的取值范围是.【答案】(0,1)【解析】∵p是假命题,∴对∀x∈R,x2+2ax+a>0.∴Δ=4a2-4a<0,即4a(a-1)<0,得0<a<1.9.已知命题p:不等式|x|+|x-1|>m的解集为R,命题q:函数f(x)=-(5-2m)x是减函数.若p或q为真命题,p且q为假命题,则实数m的取值范围是.【答案】1≤m<2【解析】p:∵|x|+|x-1|的最小值为1,∴m<1.q:5-2m>1,∴m<2.∵p∨q为真,p∧q为假,∴p真q假或p假q真.∴∴1≤m<2.10.写出由下列各组命题构成的p∨q,p∧q, p形式的新命题,并判断其真假.(1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程x2+x-1=0的两实根的符号相同,q:方程x2+x-1=0的两实根的绝对值相等.【解】(1)p∨q:2是4的约数或2是6的约数,真命题;p∧q:2是4的约数且2也是6的约数,真命题;p:2不是4的约数,假命题.(2)p∨q:矩形的对角线相等或互相平分,真命题;p∧q:矩形的对角线相等且相互平分,真命题;p:矩形的对角线不一定相等,假命题.(3)p∨q:方程x2+x-1=0的两个实数根符号相同或绝对值相等,假命题;p∧q:方程x2+x-1=0的两个实数根符号相同且绝对值相等,假命题;p:方程x2+x-1=0的两实数根符号不同,真命题.11.(2012·山西四校联考)设命题p:函数f(x)=x2-2ax-1在区间(-∞,3]上单调递减;命题q:函数y=ln(x2+ax+1)的定义域是R.如果命题p或q为真命题,p且q为假命题,求a的取值范围.【解】由p为真命题,可得-≥3,即a≥3.由q为真命题可知,x2+a x+1>0在x∈R上恒成立,可得Δ=a2-4<0恒成立,即-2<a<2.由题意可知p和q有且只有一个是真命题.即当p真q假⇔⇔a≥3.当p假q真⇔⇔-2<a<2.综上所述,a的取值范围是(-2,2)∪[3,+∞).12.设命题p:函数f(x)=loga|x|在(0,+∞)上单调递增;q:关于x的方程x2+2x+loga=0的解集只有一个子集.若p∨q为真,( p)∨( q)也为真,求实数a的取值范围.【解】当命题p是真命题时,应有a>1.当命题q是真命题时,关于x的方程x2+2x+loga=0无解,所以Δ=4-4loga<0,解得1<a<.由于p∨q为真,所以p和q中至少有一个为真.又( p)∨( q)也为真,所以 p和 q中至少有一个为真,即p和q中至少有一个为假,故p和q中一真一假.p假q真时,a无解.p真q假时,a≥.综上所述,实数a的取值范围是a≥.拓展延伸13.已知m∈R,命题p:对任意x∈[0,8],不等式lo(x+1)≥m2-3m恒成立;命题q:对任意x∈R,不等式|1+sin 2x-cos 2x|≤2m恒成立.(1)若p为真命题,求m的取值范围;(2)若p且q为假,p或q为真,求m的取值范围.【解】(1)令f(x)=lo(x+1),则f(x)在(-1,+∞)上为减函数.因为x∈[0,8],所以当x=8时,f(x)min=f(8)=-2.不等式lo(x+1)≥m2-3m恒成立,等价于-2≥m2-3m,解得1≤m≤2.(2)不等式|1+sin 2x-cos 2x|≤2m,即|2sin x(sin x+cos x)|≤m|sin x+cos x|,所以m≥|sin x|.即命题q:m≥.若p且q为假,p或q为真,则p与q有且只有一个为真.若p为真,q为假,那么则1≤m<.若p为假,q为真,那么则m>2.综上所述,1≤m<或m>2.故m的取值范围是[1,)∪(2,+∞).。
数理逻辑中的模型论研究数理逻辑是研究逻辑和数学之间关系的学科,它探索符号系统内一致性和有效性的原则。
而在数理逻辑领域中,模型论被广泛应用于分析和研究形式系统的语义结构,并为逻辑学家提供了一种直观而且系统的工具来理解和解释逻辑语句的意义。
本文将介绍数理逻辑中的模型论研究,并阐述其在逻辑学和数学领域中的重要性。
一、模型论的基本概念与原理1.1 模型在数理逻辑中,模型是一种形式系统的语义解释,它通过对符号系统中的命题进行解释来赋予其意义。
模型由域、关系和函数构成。
域是模型中的论域,它包含了用来解释命题中的常量和变量的对象集合;关系是模型中的关系符号的解释,它将命题中的关系符号映射到论域中的实际关系;函数是模型中的函数符号的解释,它将命题中的函数符号映射到论域中的具体函数。
1.2 模型满足性一个模型被称为是满足一个命题的,当且仅当该命题在模型中是真的。
一个命题在模型中的真值可以通过对命题进行解释来确定。
如果一个模型满足一个形式系统中的一致性集合,那么该模型被称为是该集合的模型。
1.3 公理和定理在模型论中,公理是形式系统的基本假设,它们被认为是真实的。
通过基于公理进行推理,可以得到一系列定理,这些定理是公理推理的逻辑推论。
定理可以被看作是符号系统中的句子,在模型中被赋予了特定的意义。
二、模型论的应用领域2.1 逻辑学在逻辑学中,模型论被用来研究和理解形式系统的语义结构。
通过对形式系统中的命题进行模型化,可以确定命题的真值和意义,帮助逻辑学家分析和解释命题的推理过程,并验证命题之间的逻辑关系。
模型论的应用使得逻辑学的研究更加准确和系统化。
2.2 数学在数学领域,模型论被用来研究和分类数学结构。
模型论可以帮助数学家通过形式系统来描述各种数学概念和结构,并通过模型的相似性或差异性来研究和比较不同的数学系统。
模型论的研究成果可以应用于数学证明和问题求解中,为数学领域的发展提供有力支持。
2.3 人工智能在人工智能领域,模型论被用来构建知识表示和推理系统。