第12章测试题(青岛版)
- 格式:doc
- 大小:91.00 KB
- 文档页数:4
章节测试题1.【答题】在数轴上表示-2的点离开原点的距离等于()A. 2B. -2C. ±2D. 4【答案】A【分析】本题考查了数轴上两点间距离的问题,直接运用概念就可以求解.【解答】根据数轴上两点间距离,得-2的点离开原点的距离等于2.选A.2.【答题】在数轴上和原点距离为4个单位长度的点对应的有理数是()A. 4B. -4C. 4或-4D. 无数个【答案】C【分析】本题考查的是数轴上各点到原点距离的定义,解答此题的关键是熟知数轴上到原点距离相等的点有两个,这两个数互为相反数.【解答】根据数轴上各点到原点距离的定义可知:在数轴上和原点距离为4个单位长度的点对应的有理数是±4.选C.3.【答题】在数轴上,一个点从-3开始向左移动1个单位长度,再向右移动5个单位长度后表示的数是()A. +3B. +1C. -9D. -2【答案】B【分析】本题考查了数轴,主要利用了向左平移减,向右平移加.【解答】-3-1+5=-4+5=1.选B.4.【答题】点A为数轴上的表示-2的动点,当点A沿数轴移动4个单位长度到点B 时,点B所表示的有理数为()A. 2B. -6C. 2或-6D. 不同于以上答案【答案】C【分析】注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.【解答】∵点A为数轴上的表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-2-4=-6;②当点A沿数轴向右移动4个单位长度时,点B 所表示的有理数为-2+4=2.选C.5.【答题】有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A. a<bB. a>bC. a=bD. 无法确定【答案】B【分析】本题考查的是数轴的特点及有理数的大小比较,比较简单.【解答】∵b在原点的左边,∴b<0,∵a在原点的右边,∴a>0,∴a>b.选B.6.【答题】数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A. 2002或2003B. 2003或2004C. 2004或2005D. 2005或2006【答案】C【分析】本题考查了数轴的实际应用.【解答】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数可能正好是2005个,也可能不是整数,而是有两个半数那就是2004个.由题意得:①当线段AB起点在整点时覆盖2005个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2004个数.选C.7.【答题】如图所示,点A表示______,点B表示______,点C表示______,点D表示______.【答案】1 -1 2.5 -1.5【分析】本题考查有理数在数轴上的表示.【解答】由图可知:点A表示1,点B表示-1,点C表示2.5,点D表示-1.5.8.【答题】如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是______.【答案】3【分析】本题考查数轴上的动点问题.【解答】向右移动几个单位,则表示加上几,则-1+3=2.9.【答题】在数轴上表示-4的点位于原点的______边,与原点的距离是______个单位长度.【答案】左 4【分析】本题考查了数轴的知识. 根据数轴的特点及距离的定义解答即可.【解答】在数轴上表示-4的点位于原点的左边,与原点的距离是4个单位长度.10.【答题】在数轴上,点A、B分别表示-5和2,则点A与点B的距离是______个单位长度.【答案】7【分析】本题考查了数轴,熟记数轴上两点间的距离等于两个数的差的绝对值是解题的关键.【解答】|2-(-5)|=|2+5|=7.故答案为:7.11.【答题】数轴上与原点距离是5的点有______个,表示的数是______.【答案】2,5或-5【分析】本题考查数轴上两点间的距离.【解答】数轴上与原点距离是5的点有2个,表示的数是±5.12.【答题】在数轴上与表示数-1的点的距离为3个单位长度的点所表示的数是______.【答案】2或-4【分析】本题考查数轴上两点间的距离.【解答】数轴上与−1的距离等于3个单位长度的点所表示的数为−4或2.故答案为:−4或2.13.【题文】小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?【答案】墨水盖住的整数是-12,-11,-10,-9,-8,11,12,13,14,15,16,17.【分析】本题考查有理数在数轴上的表示.判断-12.6,-7.4,10.6,17.8在数轴上的位置,数整数的个数.【解答】∵-13<-12.6<-12,-8<-7.4<-7,∴此段整数有-12,-11,-10,-9,-8共5个;同理:10<10.6<11,17<17.8<18,∴此段整数有11,12,13,14,15,16,17共7个,∴被墨迹盖住的整数共有5+7=12个.14.【题文】一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?【答案】(1)见解答;(2)6.【分析】本题考查了数轴的知识,在解题时通过画数轴来解题这样非常直观可以知道数与数轴的关系,进一步体现了数形结合的思想.(1)根据数轴上原点左边的数都小于0,右边的数都大于0解答即可;(2)把蚂蚁两次移动的单位长度相加即可.【解答】(1)∵从-3出发向左运动2个单位长度到点A处,∴A点表示的数为-3-2=-5;∴再向右运动4个单位长度到点C处,C点表示的数为:-5+4=-1;如下图:(2)∵蚂蚁第一次移动了两个单位长度,第二次移动了4个单位长度,∴这只电子蚂蚁一共运动了2+4=6个单位长度.15.【题文】已知在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.【答案】(1)3或-3;(2)5或-5;(3)A、B两点间的距离为8或2.【分析】本题考查了数轴的知识,在解题时通过画数轴来解题这样非常直观可以知道数与数轴的关系,进一步体现了数形结合的思想,熟练掌握数轴的特点是解题的关键.【解答】A表示3或-3,B表示5或-5,A、B两点间的距离为8或2,如下图:16.【题文】如图,A、B、C三点在数轴上,A表示的数为-10,B表示的数为14,点C在点A与点B之间,且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动,甲的速度是1个单位长度/s,乙的速度是2个单位长度/s,求相遇点D对应的数.【答案】(1)24;(2)2;(3)-2.【分析】本题考查了数轴,主要利用了数轴上两点间的距离的求法和相遇问题的数量关系.(1)用点B表示的数减去点A表示的数计算即可得解;(2)设点C对应的数是x,然后列出方程求解即可;(3)设相遇的时间是t秒,根据相遇问题列出方程,求解得到x的值,然后根据点A 表示的数列式计算即可得解.【解答】(1)A、B两点之间的距离为:14-(-10)=14+10=24;(2)设点C对应的点是x,则x-(-10)=14-x,解得x=2;(3)设相遇时间为t秒,则t+2t=24,解得t=8.17.【答题】在数轴上有一点A,它所对应表示的数是3,若将点A在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,此时点B所对应表示的数是()A. 3B. ﹣1C. ﹣5D. 4【答案】B【分析】本题考查数轴上的动点问题.【解答】由数轴的特点可知,将数3在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,点B=3−8+4=−1;选B.18.【答题】下列所画的数轴中正确的是()A. B.C. D.【答案】D【分析】本题考查的是数轴的三要素,解答本题的关键是熟练掌握数轴的三要素:原点、正方向、单位长度.根据数轴的三要素依次分析各项即可.【解答】A.缺少原点,B.缺少正方向,C.单位长度不对,故错误;D.符合数轴三要素,故本选项正确.19.【答题】大于﹣2.6而又不大于3的整数有()A. 7个B. 6个C. 5个D. 4个【答案】B【分析】本题考查了有理数的比较,借助数轴进行比较直观易懂,解题的关键是先把大于﹣2.6并且不大于3的数在数轴上表示出来,据此进行判断.【解答】如图所示,大于﹣2.6而又不大于3的整数是﹣2,﹣1,0,1,2,3.共有6个数,选B.20.【答题】数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B的左侧,点C在点B的左侧,点D在点B、C之间,则下列式子中,可能成立的是()A. a<b<c<dB. b<c<d<aC. c<d<a<bD. c<d<b<a【答案】C【分析】本题考查有理数在数轴上的表示以及有理数的大小比较.【解答】∵A在点B的左侧,∴a<b,∵点C在点B的左侧,∴c<b,∵点D在点B、C之间,∴c<d<b,∴可能成立的是:c<d<a<b.选C.。
章节测试题1.【答题】植物器官中,能够承担着生产种子,繁殖新生命任务的是()。
A.果实B.种子C.花【答案】C【分析】本题考查花的作用。
【解答】花是植物的繁殖器官,花的特殊构造使它能够承担生产种子、繁殖新生命的任务。
2.【答题】绿色开花植物的花粉都在()。
A.雌蕊的柱头上B.雄蕊的花药里C.雌蕊的子房里【答案】B【分析】本题考查花粉。
【解答】雄蕊的花药中包含花粉。
3.【答题】春暖花开时节,蜜蜂在花丛中飞来飞去,蜜蜂的行为有助于植物()A.开花B.受精C.传粉【答案】C【分析】本题考查花粉的传播。
【解答】植物中的花粉一般依靠蜜蜂或者其他昆虫在花丛中飞舞、爬行时来传播花粉。
4.【答题】水蜜桃是人们爱吃的一种水果,它是由()发育来的。
A.胚珠B.受精卵C.子房【答案】C【分析】本题考查果实的形成。
【解答】水蜜桃属于果实,是由子房发育而来。
5.【答题】植物利用______或者其他昆虫来传播花粉。
【答案】蜜蜂【分析】本题考查花粉的传播。
【解答】植物中的花粉一般依靠蜜蜂或者其他昆虫在花丛中飞舞、爬行时来传播花粉。
6.【答题】雄蕊分为______和花药两部分,花药里面含有很多______。
【答案】花丝花粉【分析】本题考查雄蕊的结构。
【解答】雄蕊分为花丝和花药,而花粉就被包含在花药中。
7.【答题】雌蕊可以分为______、______和柱头三部分。
用手指轻触柱头,发现柱头上有______。
【答案】花柱子房粘液【分析】本题考查雌蕊的结构。
【解答】雌蕊分为花柱、子房和柱头。
柱头上的粘液主要是为了黏住花粉。
8.【答题】植物一般是靠______来繁殖后代,但也有的植物也可靠______来繁殖。
【答案】种子枝条【分析】本题考查植物的繁殖。
【解答】大部分的植物靠种子来繁殖后代,也有的依靠枝条或者叶子来繁殖后代。
9.【答题】蜜蜂等昆虫在花丛中飞舞、爬行时,会把雄蕊产生的______传到雌蕊的______上,使雌蕊子房里的胚珠受精,受精后的胚珠发育成长形成______。
第12章知识梳理A卷知识点1平方差公式一、选择题1.平方差公式(a+b)(a-b)=a2-b2中,字母a,b表示的()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以答案:D2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)答案:C3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个答案:D4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5B.6C.-6D.-5答案:C二、填空题5.计算:(-2x+y)(-2x-y)= .答案:4x2-y26.填空:(-3x2+2y2)()=9x4-4y4.答案:-3x2-2y27.填空:(a+b-1)(a-b+1)=()2-()2.答案:a b-18.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积的差是 .答案:10三、解答题9.利用平方差公式计算:2023×1913.答案:解:原式=(20+23)×(20-23)=202-(23)2=39959.10.计算:(a+2)(a2+4)(a4+16)(a-2).答案:解:原式=(a-2)(a+2)(a2+4)(a4+16)=(a2-4)(a2+4)(a4+16)=a8-256.知识点2完全平方公式一、选择题11.若(x-5)2=x2+kx+25,则k=()A.5B.-5C.10D.-10答案:D12.计算(-a-b)2的结果为()A.a2+b2B.a2-b2C.a2+2ab+b2D.a2-2ab+b2答案:C13.下列计算中,正确的是()A.(a+b)2=a2+b2B.(a-b)2=a2-b2C.(a+b)2=a2+2ab+b2D.(a-b)2=a2+2ab+b2答案:C14.已知x2+16x+k是完全平方式,则常数k等于()A.64B.48C.32D.16答案:A15.若a2+b2=2,a+b=1,则ab的值为()A.-1B.-12C.-32D.3答案:B 二、填空题16.计算:(x+1)2-(x+2)(x-2)= .答案:2x+517.二次三项式x2-kx+36是一个完全平方式,则k的值是 . 答案:±12三、解答题18.计算.(1)(14a-13b)2;(2)(-x2+3y2)2.答案:解:(1)原式=116a2-16ab+19b2.(2)原式=x4-6x2y2+9y4.19.已知(x+y)2=49,(x-y)2=1,求下列各式的值:(1)x2+y2;(2)xy.答案:解:(x+y)2=x2+2xy+y2=49,①(x-y)2=x2-2xy+y2=1,②(1)①+②,得2(x2+y2)=50,所以x2+y2=25,(2)①-②,得4xy=48,所以xy=12.20.化简求值:(3x+4y)2+(3x+4y)(4y-3x),其中x=13,y=14.答案:.解:原式=9x2+24xy+16y2+16y2-9x2=32y2+24xy.当x=13,y=14时,原式=32×(14)2+24×13×14=4.知识点3用提公因式法进行因式分解一、选择题21.下列各式由左边到右边的变形是因式分解的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)+4C.10x2-5x=5x(2x-1)D.x2-16x+6x=(x+4)(x-4)+6x22.-9x2y+3xy2-6xyz各项的公因式是()A.3yB.3xzC.-3xyD.-3x答案:C23.观察下列各组中的两个多项式:①3x+y与x+3y;②-2m-2n与-(m+n);③2mn-4mp与-n+2p;④4x2-y2与2y+4x. 其中有公因式的是()A.①②③④B.②③④C.③④D.①③④答案:B24.将m2(a-2)+m(2-a)因式分解,正确的是()A.(a-2)(m2-m)B.m(a-2)(m+1)C.m(a-2)(m-1)D.m(2-a)(m-1)答案:C25.如果多项式-15abc+15ab2-a2bc的一个因式是-15ab,那么另一个因式是()A.c-b+5acB.c+b-5acC.c-b+15ac D.c+b-15ac答案:A二、填空题26.若ab=2,a-b=-1,则代数式a2b-ab2的值等于 . 答案:-2三、解答题27.用提公因式法分解下列多项式.(1)-28m3n2+42m2n3-14m2n;(2)(2a+b)(2a-b)+b(4a+2b).答案:解:(1)原式=-14m2n(2mn-3n2+1).(2)原式=(2a+b)(2a-b)+2b(2a+b)=(2a+b)[(2a-b)+2b]知识点4用平方差公式进行因式分解一、选择题28.下列各式中,能用平方差公式因式分解的是()A.x2+4y2B.x2-2y2+1C.-x2+4y2D.-x2-4y2答案:C29.将(a-1)2-1因式分解,结果正确的是()A.a(a-1)B.a(a-2)C.(a-2)(a-1)D.(a-2)(a+1) 答案:B二、选择题30.已知a+b=4,a-b=3,则a2-b2= .答案:1231.利用平方差公式计算:2 0162-2 0152= .答案:4031三、解答题32.把下列各式因式分解.(1)a2-144b2;(2)πR2-πr2.答案:解:(1)原式=(a+12b)(a-12b).(2)原式=π(R+r)(R-r).知识点5用完全平方公式进行因式分解一、选择题33.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+9答案:D34.若多项式x2+mx+4能用完全平方公式因式分解,则m的值可以是()A.4B.-4C.±2D.±4答案:D35.因式分解(x-1)2-2(x-1)+1的结果是()A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)2答案:D二、填空题36.利用完全平方公式计算:992+2×99+1= .答案:10000三、解答题37.把下列各式分解因式.(1)m2-12mn+36n2;(2)4x-x2-4.答案:解:(1)原式=(m-6n)2.(2)原式=-(x-2)2.。
青岛版七年级数学上册单元测试题全套(含答案)青岛版七年级青岛版七年级数学上册单元测试题全套(含答案)第 1 章检测卷一 . 选择题1. 某工程队,在修建兰宁高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程() .A. 直线的公理B. 直线的公理或线段的公理C. 线段最短的公理D. 平行公理2.10 个棱长为 1 的正方体木块堆成如图所示的形状,则它的表面积是()(第 2 题图)A. 30B. 34C. 36D. 483. 延长线段 AB 到 C ,下列说法正确的是()A. 点 C 在线段 AB 上B. 点 C 在直线 AB 上C. 点 C 不在直线 AB 上D. 点 C 在直线 BA 的延长线上4. 如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()(第 4 题图)A. 创B. 教C. 强D. 市5. 如图,点 C 为线段 AB 的中点,点 D 为线段 AC 的中点、已知 AB=8 ,则 BD= ()(第 5 题图)A. 2B. 4C. 6D. 86. 如图,点 C 是线段 AB 上的点,点 D 是线段 BC 的中点, AB=10 , AC=6 ,则线段 CD 的长是()(第 6 题图)A.4B.3C.2D.17. 下面四个图形是如图的展开图的是()(第 7 题图)A. B. C. D.8. 如图,从 A 到 B 的四条路径中,最短的路线是()(第 8 题图)A. A ﹣ E ﹣ G ﹣ BB. A ﹣ E ﹣ C ﹣ BC. A ﹣ E ﹣ G ﹣ D ﹣ BD. A ﹣ E ﹣ F ﹣ B9. 下列图形中,经过折叠可围成长方体的是()10. 观察图形,下列说法正确的个数是()① 直线和直线是同一条直线;② 射线和射线是同一条射线;③ .A.1B.2C.3D.0二 . 填空题11. 笔尖在纸上快速滑动写出英文字母 C ,这说明了 ________ .12. 如图,点 E , F 分别是线段 AC , BC 的中点,若 EF=3 厘米,则线段 AB= 厘米.(第 12 题图)13. 下列图形中,是柱体的有 ________ .(填序号)14. 用 6 根火柴最多组成 ________ 个一样大的三角形,所得几何体的名称是________ .15. 将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 ____ (填序号) .(第 15 题图)16. 如图是一个长方体的表面展开图,其中四边形 ABCD 是正方形,根据图中标注的数据可求得原长方体的体积是 ________cm 3 .(第 16 题图)17. 如图,线段 AC=BD ,那么 AB=________ .(第 17 题图)18. 如图所示, C 和 D 是线段的三等分点, M 是 AC 的中点,那么 CD=________BC ,AB=________MC .(第 18 题图)3. 解答题19. 如图,各图中的阴影图形绕着直线 I 旋转 360 °,各能形成怎样的立体图形 ?(第 19 题图)20. 将长为 10 厘米的一条线段用任意方式分成 5 小段,以这 5 小段为边可以围成一个五边形.问其中最长的一段的取值范围.21. 如图,一个正五棱柱的底面边长为 2cm ,高为 4cm .( 1 )这个棱柱共有多少个面?计算它的侧面积;( 2 )这个棱柱共有多少个顶点?有多少条棱?( 3 )试用含有 n 的代数式表示 n 棱柱的顶点数、面数与棱的条数.(第 21 题图)22. 如图是由 6 个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另 5 个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).(第 22 题图)23. 如图,在无阴影的方格中选出两个画出阴影,使它们与图中 4 个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图 1 和图 2 中任选一个进行解答,只填出一种答案即可)(第 23 题图)24. 如图, A 、 B 是公路 L 两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到 A 、 B 两村的距离和最小,试在 L 上标注出点 P 的位置,并说明理由.(第 24 题图)25. 如图,已知 AD=5cm , B 是 AC 的中点, CD= AC .求 AB 、 BC 、 CD 的长.(第 25 题图)26. 已知,如图,线段 AD=10cm ,点 B , C 都是线段 AD 上的点,且 AC=7cm ,BD=4cm ,若 E , F 分别是线段 AB , CD 的中点,求 BC 与 EF 的长度.(第 26 题图)答案一 . 1.C 【解析】由题意修建兰宁高速公路时,有时需将弯曲的道路改直,修路肯定要尽量缩短两地之间的里程,从而减少成本,就用到两点间线段最短公理.故选C.2.C 【解析】第一层露出 5 个面;第二层露出 4 × 2+2 个面;第三层露出 4 ×2+3+2 × 1+2 ;底面 6 个面.所以露出的面积 =5+4 × 2+2+4 × 2+3+2 ×1+2+6=36 .故选 C.3.B 【解析】延长线段 AB 到 C ,则点 C 在直线 AB 上 . 故选 B.4.C 【解析】因为正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“强”是相对面.故选 C .5.C 【解析】因为点 C 为线段 AB 的中点, AB=8 ,则 BC=AC=4 .点 D 为线段 AC 的中点,则 AD=DC=2 .所以 BD=CD+BC=6 .故选 C .6.C 【解析】因为 AB=10 , AC=6 ,所以 BC=AB ﹣ AC=10 ﹣ 6=4 ,又因为点 D 是线段 BC 的中点,所以 CD= BC= × 4=2 .故选 C .7.A 【解析】 A 、能折叠成原正方体的形式,符合题意; B 、 C 带图案的三个面不相邻,没有一个公共顶点,不能折叠成原正方体的形式,不符合题意; D 、折叠后带圆圈的面在上面时,带三角形的面在左边与原正方体中的位置不同,不符合题意.故选 A .8.D 【解析】最短的路线是 A ﹣ E ﹣ F ﹣ B .故选 D .9.B 【解析】 A 、 C 、 D 不能折叠成长方体,只有 B 符合条件 .10.C 【解析】① 直线和直线是同一条直线,正确;② 射线和射线是同一条射线,都是以为端点,同一方向的射线,正确;③ 由“两点之间,线段最短”知,故此说法正确 . 所以共有 3 个正确的.故选 C .二 . 11. 点动成线【解析】笔尖在纸上快速滑动写出英文字母 C ,这说明了点动成线;故答案为:点动成线.12. 6 【解析】因为点 E , F 分别是线段 AC , BC 的中点,所以 CE=12AB ,BF=12BC ,所以 EF=CE ﹣ CF=12AC ﹣ 12BC=12 ( AC ﹣ BC ) =3 ,所以 AC ﹣ BC=6 ,即 AB=6 .13. ②③⑥ 【解析】①是圆锥,②是正方体,属于棱柱,③是圆柱,④是棱锥,⑤是球,⑥是三棱柱.所以是柱体的有②③⑥.14. 4 ;三棱锥或四面体【解析】要使搭的个数最多,就要搭成三棱锥,这时最多可以搭 4 个一样的三角形.图形如下:故答案为: 4 ,三棱锥或四面体.(第 14 题答图)15. 1 或 2 或 6 【解析】根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去 1 或 2 或 6 ,答案不唯一.16. 12 【解析】因为四边形 ABCD 是正方形,所以 AB=AE=4cm ,所以立方体的高为:( 6 ﹣ 4 )÷ 2=1 ( cm ),所以 EF=4 ﹣ 1=3 ( cm ),所以原长方体的体积是: 3 × 4 × 1=12( cm 3 ).(第 16 题答图)17.CD 【解析】由题意得: AB ﹣ BC=BD ﹣ BC ,故可得: AB=CD .故答案为:CD .18. ; 6 【解析】【由已知条件可知 CD= AB , BC= AB ,所以 CD= BC ;又因为 AB=3AC , MC= AC ,所以 AB=6MC .故答案为 CD= BC ; AB=6MC .三 . 19. 第一个可以得到圆柱;第二个可以得到圆锥;第三个可以得到球.20. 【解】设最长的一段 AB 的长度为 x 厘米(如图),则其余 4 段的和为( 10 ﹣x )厘米.因为它是最长的边,假定所有边相等,则此时它最小为 2 .又由线段基本性质知 x < 10 ﹣ x ,所以 x < 5 ,所以2 ≤ x < 5 .即最长的一段 AB 的长度必须大于等于 2 厘米且小于 5 厘米.(第 20 题答图)21. 【解】( 1 )侧面有 5 个,底面有 2 个,共有 5+2=7 个面;侧面积: 2 × 5 × 4=40 ( cm 2 ).( 2 )顶点共 10 个,棱共有 15 条;( 3 ) n 棱柱的顶点数 2n ;面数 n+2 ;棱的条数 3n .22. 【解】答案如下:或或等.23. 【解】只写出一种答案即可.图 1 :图 2 :24. 【解】点 P 的位置如下图所示:作法是:连接 AB 交 L 于点 P ,则 P 点为汽车站位置,理由是:两点之间,线段最短.25. 【解】设 AC=x ,有 x+ x=5 ,解得: x=3 ,即 AC=3cm ,所以 CD=2 ,又 B 是 AC 的中点, AB=BC= cm26. 【解】由线段的和差,得 AC+BD=AC+BC+CD=AD+BC=7+4=11cm ,由 AD=10cm ,得 10+BC=11 ,解得 BC=1cm ;由线段的和差,得AB+CD=AD ﹣ BC=10 ﹣ 1=9cm ,由 E , F 分别是线段 AB , CD 的中点,得AE= AB , DF= CD .由线段得和差,得EF=AD ﹣( AE+DF ) =AD ﹣(AB+ CD ) =10 ﹣( AB+CD ) =10 ﹣= cm .第2章检测卷一.选择题1.- 的绝对值是()A. -B.C. 3D. -32.如果m表示有理数,那么|m|+m的值()A. 可能是负数;B. 不可能是负数;C. 必定是正数;D. 可能是负数也可能是正数3.下列各数中:+3、-2.1、−、9、、-(-8)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个4.2的相反数是()A. 2B.C. -2D. -5.﹣3的绝对值是()A. -3B.C.D. 36.﹣的绝对值为()A. -2B. -C.D. 17.数轴上的点A到原点的距离是4,则点A表示的数为()A. 4B. -4C. 4或﹣4D. 2或﹣28.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A. 100gB. 150gC. 300gD. 400g9.在纪念“中国人民抗日战争暨世界反法西斯战争胜利70周年”知识竞赛中,如果把加10分记为“+10分”,那么扣20分应记为()A. 10分B. ﹣20分C. ﹣10分D. +20分10.若向东走15米记为+15米,则向西走28米记为()A. ﹣28米B. +28米C. 56米D. ﹣56米二.填空题11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________(2)数轴上表示x与2的两点之间的距离可以表示为________(3)如果|x﹣2|=5,则x=________(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________ ﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.在数轴上,﹣2对应的点为A,点B与点A的距离为,则点B表示的数为________.16.如果“盈利5%”记作+5%,那么亏损3%记作________.17.用“>”“<”或“=”连接:﹣π________﹣3.14.18.数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.三.解答题19.某校对七年级男生进行定跳远测试,以能跳1.7m及以上为达标.超过1.7m的厘米数用正数表示,不足1.7m的厘米数用负数表示.第一组10名男生成绩如下(单位:cm):+2 -1 0 -5 +8 0 +4 -7 +10 -3问:第一组有百分之几的学生达标?20.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.21.随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”,记录数据如下表:时间第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8(1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km需用汽油8L,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?22.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112 , 0,﹣(﹣212),﹣(﹣1) 100 ,﹣2 2 .23.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数7 6 7 8 2售价(元)+5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?24.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?答案一. 1.B 【解析】 |- |= .故- 的绝对值是.故选B.2.B 【解析】当m>0时,原式=2m>0.当m=0时,原式=0.当m<0时,原式=0.故选B.3.B 【解析】把各式化简得:3,-2.1,- ,9,1.4,8,0,-3.-2.1为负数有限小数,- 为负数无限循环小数,-|+3|是负整数,所以是负有理数.共3个.故选B.4.C 【解析】根据相反数的含义,可得2的相反数是:﹣2.故选C.5.D 【解析】:因为﹣3的绝对值表示﹣3到原点的距离,所以|﹣3|=3.故选D.6.C 【解析】因为|﹣|= ,所以﹣的绝对值为.故选C.7.C 【解析】在数轴上,4和﹣4到原点的距离为4.所以点A所表示的数是4和﹣4.故选C.8.D 【解析】根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选D.9.B 【解析】把加10分记为“+10分”,那么扣20分应记为﹣20分.故选B.10.A 【解析】向东走15米记为+15米,则向西走28米记为﹣28米.故选A.二. 11. 1 【解析】由题意得,a﹣3+a+1=0,解得a=1.故答案为1.12. 7;|x﹣2|;7或﹣3;﹣3、﹣2、﹣1、0、1 【解析】(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)因为|x﹣2|=5,所以x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)因为|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,所以这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;13.<【解析】因为﹣|﹣34|=﹣34 ,所以两数均为负,取其相反数做商,即45÷34=1615>1.即45>34 ,所以﹣45<﹣34=﹣|﹣34|.故答案为:<.14.±3 【解析】设数轴上离开原点3个单位长的点所表示的数是x,则|x﹣0|=3,解得x=±3.故答案为:±3.15. 7 ﹣2或﹣7 ﹣2 【解析】设B点表示的数是x,因为﹣2对应的点为A,点B 与点A的距离为 7 ,所以|x+2|= 7 ,解得x= 7﹣2或x=﹣7﹣2.故答案为:7﹣2或﹣7﹣2.16.﹣3% 【解析】“盈利5%”记作+5%,那么亏损3%记作﹣3%,故答案为:﹣3%.17. <【解析】因为|﹣π|=π,|﹣3.14|=3.14,而π>3.14,所以﹣π<﹣3.14.故答案为<.18. ,【解析】当点 B 在点 A 的右侧时,点 B 所表示的实数是;当点 B 在点 A 的左侧时,点 B 表示的实数是;所以点 B 所表示的实数是或.三. 19. 【解】根据题意,得超过1.7m的用正数表示,不足的用负数表示.由表格可知这10名男生的成绩是正数的有4个,刚好为0m的有2个,所以一共有6名成绩达标,则6÷10×100%=60%.答:第一组有60%的学生达标.20. 【解】(1)根据所给图形可知A:1,B:﹣2.5 .(2)依题意得:AB之间的距离为:1+2.5=3.5 .(3)设这两点为C、D,则这两点为C:1﹣2=﹣1,D:1+2=3.21. 【解】(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米 .(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.22. 【解】:因为﹣|﹣2.5|﹣2.5,﹣(﹣212)=212=2.5,﹣(﹣1) 100 =﹣1,﹣2 2 =﹣4,所以如图所示:所以用“<”连接各数为:﹣2 2 <﹣|﹣2.5|<﹣(﹣1) 100 <0<112<﹣(﹣212).23. 【解】 7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元) .答:共赚了555元 .24. 【解】售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元).答:当它卖完这8套儿童服装后盈利36元 .第3章检测卷一.选择题1.计算:(﹣)×(﹣2)的结果等于()A. 1B. -1C. 4D. -2.计算:的结果是()A. -1B. 1C.D. -493.(﹣1) 2015 的值是()A. -1B. 1C. 2015D. -20154.形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A.-5B.-11C.5D.115.长汀冬季的某天的最高气温是8℃,最低气温是﹣1℃,则这一天的温差是()A. 9℃B. ﹣7℃C. 7℃D. ﹣9℃6.计算:﹣1﹣1的值为()A. 0B. -1C. -2D. -37.计算:1﹣1×(﹣3)=()A. 0B. 4C. -4D. 58.下列计算正确的是()A.2 3 =6B.﹣4 2 =﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣39.计算(﹣20)+16的结果是()A.4B.4C.﹣2016D.201610.马小虎做了6道题:①(﹣1) 2013 =﹣2013;②0﹣(﹣1)=1;③﹣+ =﹣;④ ÷(﹣)=﹣1;⑤2×(﹣3) 2 =36;⑥﹣3÷ ×2=﹣3.那么,他做对了()题.A. 1道B.2道C.3道D.4道二.填空题11.-6×0×10=________ .12.小芳在用计算器计算“14.9×73”时,发现计算器的小数点键坏了,你还能用这个计算器把正确的结果算出来吗?请把你想到的方法用算式表示出来:________ .13.若m<n<0,则(m+n)(m﹣n)________ 0.(填“<”、“>”或“=”)14.如图是一个计算程序,若输入的值为﹣1,则输出的结果应为________.15.为了求1+3+3 2 +3 3 +…+3 100 的值,可令M=1+3+3 2 +3 3 +…+3 100 ,则3M=3+3 2 +3 3 +…+3 101 ,因此3M﹣M=3 101 ﹣1,所以M= ,即1+3+32 +3 3 +…+3 100 = ,仿照以上推理计算:1+5+5 2 +5 3 +…+5 2016 的值是________.16.计算:﹣5÷ ×5=________,(﹣1) 2000 ﹣0 2015 +(﹣1) 2016 =___ _,(﹣2) 11 +(﹣2) 10 =________.17.规定a*b=5a+2b﹣1,则(﹣3)*7的值为________ .三.解答题18.一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位.星期一二三四五高压的变化(与前一天比较)升25单位降15单位升13单位升15单位降20单位(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了?19.你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?20.用简便方法计算:(﹣﹣+ )÷(﹣).21.小强有5张卡片写着不同的数字的卡片,他想从中取出2张卡片,使这2张卡片上数字乘积最大.(1)使数字的积最小,应如何抽?最小积是多少?(2)使数字的积最大,应如何抽?最大积是多少?22.(1)计算下列各题:①2 2 ×3 2 与(2×3) 2 ;②(﹣2) 4 ×3 4 与(﹣2×3) 4 ;③2 7 ×2与2 8 .(2)比较(1)中的结果,由此可以推断a n ×b n (a×b) n , a n+1 a n ×a.(3)试根据(2)的结论,不用计算器计算0.125 2010 ×8 2011 的值.23.已知|x|=3,y 2 =4,且x+y<0,求的值.答案一. 1.A 【解析】(﹣)×(﹣2)=1.故选A.2.C 【解析】原式=﹣1× × =﹣.故选C.3.A 【解析】(﹣1) 2015 =﹣1.故选A.4.A 【解析】根据题意,得=2×(﹣4)﹣(﹣3)×1=﹣8+3=﹣5.故选A.5.A 【解析】 8﹣(﹣1)=9(℃).故选:A.6.C 【解析】﹣1﹣1=﹣2.故选C.7.B 【解析】 1﹣1×(﹣3)=1﹣(﹣3)=4.故选:B.8.B 【解析】 A、2 3 =8≠6,错误; B、﹣4 2 =﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误.故选B.9.A 【解析】(﹣20)+16 =﹣(20﹣16)=﹣4.故选A.10.C 【解析】因为(﹣1) 2013 =﹣1,所以①不正确;因为0﹣(﹣1)=1,所以②正确;因为﹣+ =﹣,所以③正确;因为÷(﹣)=﹣1,所以④正确;因为2×(﹣3) 2 =18,所以⑤不正确;因为﹣3÷ ×2=﹣12,所以⑥不正确.综上,可得他做对了3题:②、③、④.故选C.二. 11. 0 【解析】原式=0×(-10)=0,0和任何数相乘都等于0.12. 149÷10×73 【解析】根据题意得:149÷10×73.13. >【解析】解:因为m<n<0,所以m+n<0,m﹣n<0,所以(m+n)(m﹣n)>0.故答案是>.14. 7 【解析】依题意,所求代数式为(a 2 ﹣2)×(﹣3)+4=[(﹣1) 2 ﹣2]×(﹣3)+4=[1﹣2]×(﹣3)+4=﹣1×(﹣3)+4=3+4=7.15. 【解析】设M=1+5+5 2 +5 3 +…+5 2016 ,则5M=5+5 2 +5 3 +54 …+5 2017 ,两式相减得:4M=5 2017 ﹣1,则M= .16.﹣125;2;﹣2 10 【解析】原式=﹣5×5×5=﹣125,原式=1﹣0+1=2,原式=(﹣2) 10 ×(﹣2+1)=﹣2 10 .故答案为:﹣125;2;﹣2 1017. -2 【解析】(﹣3)*7 =5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2.18. 8 【解析】因为a+8+b﹣5=8+b﹣5+c=b﹣5+c+d=﹣5+c+d+4,所以a+8+b﹣5=8+b﹣5+c①,8+b﹣5+c=b﹣5+c+d②,b﹣5+c+d=﹣5+c+d+4③,所以a﹣5=c﹣5,8+c=c+d,b﹣5=﹣5+4,所以b=4,d=8,a=c.故答案为8.三. 19. 【解】(1)因为第一天,185;第二天,170;第三天,183;第四天,198;第五天,178,所以该病人周四的血压最高,周二的血压最低低;(2)因为+25﹣15+13+15﹣20=18,所以与上周比,本周五的血压升了.20. 【解】对折一次拉出的面条根数是,2 1 =2 ;对折二次拉出的面条根数是,2 2 =4 ;对折三次拉出的面条根数是,2 3 =8 ;……对折10次拉出的面条根数是,2 10 =1024 ;所以对折10次,会拉出1024根面条.21. 【解】原式=(﹣﹣+ )×(﹣36)=16+15﹣6=25.22. 【解】(1)抽取﹣8和4,数字的积最小,﹣8×4=﹣32;(2)抽取﹣8和﹣3.5,数字的积最大,﹣8×(﹣3.5)=28.23. 【解】(1)①2 2 ×3 2 =36,(2×3) 2 =36;②(﹣2) 4 ×3 4 =1296,(﹣2×3) 4 =1296;③2 7 ×2=256,2 8 =256;(2)由(1)可以推断a n ×b n =(a×b) n , a n+1 =a n ×a;(3)0.125 2010 ×8 2011 =(18×8) 2010 ×8=8.24. 【解】因为|x|=3,y 2 =4,所以x=±3,y=±2.因为x+y<0,所以当x=﹣3时,y=2或x=﹣3,y=﹣2,所以当x=﹣3,y=2时,=﹣;当x=﹣3,y=﹣2时,= .第 4 章检测卷一 . 选择题1. 为了了解我市城区某一天的气温变化情况,应选择()A. 条形统计图B. 折线统计图C. 扇形统计图D. 以上图形均可2. 要了解一批电视机的使用寿命,从中任意抽取 40 台电视机进行试验,在这个问题中,样本是()A. 每台电视机的使用寿命B. 40 台电视机C. 40 台电视机的使用寿命D. 403. 如图的两个统计图,女生人数多的学校是()(第 3 题图)A. 甲校B. 乙校C. 甲、乙两校女生人数一样多D. 无法确定4. 八年级( 1 )班有 60 位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为 60 °,则下列说法正确的是()A. 想去动物园的学生占全班学生的 60%B. 想去动物园的学生有 36 人C. 想去动物园的学生肯定最多D. 想去动物园的学生占全班学生的5. 某市从参加数学质量检测的 4355 名学生中,随机抽取了部分学生的成绩为研究对象,结果如表所示:分数段0 ~ 60 60 ~ 72 72 ~ 84 84 ~ 96 96 ~ 108 108 ~ 120 人数(人) 5 8 35 42 15百分比20% 40%则被抽取的学生人数是()A. 70 人B. 105 人C. 175 人D. 200 人6. 下列调查中,适宜采用全面调查(普查)方式的是()A. 调查长江流域的水污染情况B. 调查重庆市民对中央电视台 2016 年春节联欢晚会的满意度C. 为保证我国首艘航母“瓦良格”的成功试航,对其零部件进行检查D. 调查一批新型节能灯泡的使用寿命7. 今天我们全区约 1500 名初二学生参加数学考试,拟从中抽取 300 名考生的数学成绩进行分析,则在该调查中,样本指的是()A. 300 名考生的数学成绩B. 300C. 1500 名考生的数学成绩D. 300 名考生8. 为直观反映某种股票的涨跌情况,选择()最合适.A. 扇形统计图B. 条形统计图C. 折线统计图D. 统计表9. 下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征( MERS )确诊病人同一架飞机乘客的健康情况;③为保证“神舟 9 号”成功发射,对其零部件进行检查;④调查某班 50 名同学的视力情况.A. ①B. ②C. ③D. ④10. 某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,已知该校学生共有 2560 人,被调查的学生中骑车的有21 人,则下列四种说法中,不正确的是()(第 10 题图)A. 被调查的学生有 60 人B. 被调查的学生中,步行的有 27 人C. 估计全校骑车上学的学生有 1152 人D. 扇形图中,乘车部分所对应的圆心角为 54 °二 . 填空题11. 小亮对 60 名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是________ .(第 11 题图)12. 如图是某城市 2010 年以来绿化面积变化折线图,根据图中所给信息可知,2011 年、 2012 年、 2013 年这三年中,绿化面积增加最多的是年.(第 12 题图)13. 清明期间,某校师生组成 200 个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为 2 至 5 棵,活动结束后,校方随机抽查了其中 50 个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(第 13 题图)( 1 )请把条形统计图补充完整,并算出扇形统计图中,植树量为“ 5 棵树”的圆心角是 °.( 2 )请你帮学校估算此次活动共种 ________ 棵树.14. 根据环保公布的重庆市 2014 年至 2015 年 PM2.5 的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是 ________ (观察图形填主要来源的名称).(第 14 题图)15. 调查某城市的空气质量,应选择(填抽样或全面)调查.16. 从某市不同职业的居民中抽取 200 户调查各自的年消费额,在这个问题中样本是 ________.17. 为了考察某区 3500 名毕业生的数学成绩,从中抽出 20 本试卷,每本 30 份,在这个问题中,样本容量是 ________ .18. 某市为了了解七年级学生的身体素质情况,随机抽取了 500 名七年级学生进行检测,身体素质达标率为 92% ,请你估计该市 6 万名七年级学生中,身体素质达标的大约有 ________ 万人.三 . 解答题19. 某市为了了解七年级学生的身体素质情况,随机抽取了本市七年级部分学生的身体素质测试成绩为样本,按 A (优秀)、 B (良好)、 C (合格)、 D (不合格)四个等级进行统计,并将统计结果绘制成如图的统计图表,请你结合图表所给的信息解答下列问题:等级 A (优秀) B (良好) C (合格) D (不及格)人数80 200 160 60(1)请你根据图表中的信息计算出所抽取的样本容量是多少;( 2 )请将表格中缺少的数据补充完整;( 3 )如果本市共有 50000 名七年级学生,试估计出合格以上(包括合格)的学生有多少人.(第 19 题图)20. 从 2013 年 1 月 7 日起,中国中东部大部分地区持续出现雾霾天气,某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)A 大气气压低,空气不流动80B 地面灰尘大,空气湿度低mC 汽车尾气排放nD 工厂造成污染120E 其他60请根据图表中提供的信息解答下列问题:(Ⅰ)求接受调查的总人数;(Ⅱ) m 、 n 各等于多少?扇形统计图中 E 组所占的百分比是多少?(Ⅲ)若该市人口约有 100 万人,请你估计其中持 D 组“观点”的市民人数.(第 20 题图)21. 三名同学想了解所在城市的小学生是否感觉学习压力大,他们各自提出了自己的调查设想.甲:周末去公园,随机询问 10 个小学生,就可以知道大致情况了.乙:我有个弟弟,正在上小学,成绩中等,问问他就可以了解绝大部分学生的感受了.丙:我妈妈是小学老师,向她询问就可以了.你觉得这三位同学提出的调查方式,能比较客观地反映“他们所在城市的小学生是否感觉学习压力大”吗?为什么?22. 小华在 A 班随机询问了 30 名同学,其中有 10 人患有近视,他又在同年级的 B 班询问了 2 名同学,发现其中有 1 人患有近视,于是,他认为 B 班的近视率比 A 班高,你同意他的观点吗?23. 某学生组织全体学生参加了“走出校门,服务社会”的活动,八年级一班同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据该班同学所作的两个图形解答:( 1 )八年级一班有多少名学生?( 2 )求去敬老院服务的学生人数,并补全直方图的空缺部分.( 3 )若八年级有 800 名学生,估计该年级去敬老院的人数.(第 23 题图)24. 某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为 n ,并按以下规定分为四档:当 n < 3 时,为“偏少”;当3 ≤ n < 5 时,为“一般”;当 5 ≤ n < 8 时,为“良好”;当n ≥ 8 时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数 n (本) 1 2 3 4 5 6 7 8 9 人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:( 1 )求出本次随机抽取的学生总人数;( 2 )分别求出统计表中的 x , y 的值;( 3 )估计该校九年级 400 名学生中为“优秀”档次的人数.(第 23 题图)答案一 . 1.B 【解析】天气的温度变化会随着每天的基本情况进行变化,故,只有折线统计图适合题意。
七年级数学下册第12章乘法公式与因式分解专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式因式分解正确的是( )A .()2211x x +=+B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++2、分解因式2a 2(x -y )+2b 2(y -x )的结果是( )A .(2a 2+2b 2) (x -y )B .(2a 2-2b 2) (x -y )C .2(a 2-b 2) (x -y )D .2(a -b )(a +b )(x -y ) 3、化简()()2332m n m m n +-+结果正确的是( )A .226m n +B .2212m n +C .22612m n mn +-D .2266m mn n ++ 4、下列由左至右的变形中,属于因式分解的是( )A .x 2-4x +3=x (x -4)+3B .x 2-4+3x =(x +2)(x -2)+3xC .x 2-4=(x +2)(x -2)D .(x +2)(x -2)=x 2-45、把代数式x 2﹣4x +4分解因式,下列结果中正确的是( )A .(x ﹣2)2B .(x +2)2C .x (x ﹣4)+4D .(x ﹣2)(x +2)6、下列因式分解正确的是( )A .2ab 2﹣4ab =2a (b 2﹣2b )B .a 2+b 2=(a +b )(a ﹣b )C .x 2+2xy ﹣4y 2=(x ﹣y )2D .﹣my 2+4my ﹣4m =﹣m (2﹣y )27、224﹣1可以被60和70之间某两个数整除,这两个数是( )A .64,63B .61,65C .61,67D .63,658、下列分解因式正确的是( )A .()2244x x x x -+=-+B .()2x xy x x x y ++=+C .()()()2x x y y x y x y ---=-D .()()24422x x x x -+=+-9、若()3b a +( )229b a =-,则括号内应填的代数式是( )A .3a b --B .3a b +C .3b a -+D .3b a - 10、已知22()()2022a b c b a c +=+=,且a b ,则abc 的值为( )A .2022B .-2022C .4044D .-4044 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1,将一个长为2a ,宽为2b 的长方形沿图中虚线剪开分成四个完全相同的小长方形,然后将这四个完全相同的小长方形拼成一个正方形(如图2),设图2中的大正方形面积为1S ,小正方形面积为2S ,则12S S -的结果是________(用含a ,b 的式子表示).2、分解因式:224abc a b +=_______.3、计算:2222202120202021202020214040-++⨯=_____. 4、若a ,b 都是有理数,且满足a 2+b 2+5=4a ﹣2b ,则(a +b )2021=_____.5、已知,实数a 满足(1)1a a +=,则2120211a a ++=+_______. 三、解答题(5小题,每小题10分,共计50分)1、若一个正整数a 可以表示为a =(b +1)(b -2),其中b 为大于2的正整数,则称a 为“十字数”,b 为a 的“十字点”.例如28=(6+1)×(6-2)=7×4.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b 是a 的“十字点”,且a 能被(b -1)整除,其中b 为大于2的正整数,求a .2、阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:am +bm +an +bn=(am +bm )+(an +bn )=m (a +b )+n (a +b )=(a +b )(m +n ).(1)利用分组分解法分解因式:①3m ﹣3y +am ﹣ay ;②a 2x +a 2y +b 2x +b 2y .(2)因式分解:a 2+2ab +b 2﹣1= (直接写出结果).3、先化简,再求值:()()25121x x x +-+-(),其中15x =-. 4、分解因式:2x 3﹣8x 2+8x .5、计算:2(3)(6)x x x ----参考答案-一、单选题1、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A 、不能进行因式分解,错误;B 、选项正确,是因式分解;C 、选项是整式的乘法,不是因式分解,不符合题意;D 、()22211x x x ++=+,选项因式分解错误;故选:B .【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.2、D【解析】【分析】根据提公因式法和平方差公式分解因式.【详解】解:2a 2(x -y )+2b 2(y -x )=2a 2(x -y )-2b 2(x -y )=(2a 2-2b 2)(x -y )=2(a 2-b 2)(x -y )=2(a -b )(a +b )(x -y ).故选:D .【点睛】此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.3、A【解析】【分析】根据完全平方公式及单项式乘多项式运算法则计算即可.【详解】()()22222233296366m n m m n m mn n m mn m n +-+=++--=+故选:A【点睛】本题考查整式的乘法运算,熟记完全平方公式及单项式乘多项式运算法则时解题额关键.4、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、不属于因式分解,故本选项不符合题意;B、不属于因式分解,故本选项不符合题意;C、属于因式分解,故本选项符合题意;D、不属于因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、A【解析】【分析】首末两项能写成两个数的平方的形式,中间项是这两个数的积的2倍,所以能用完全平方公式分解因式.【详解】解:代数式x2-4x+4=(x-2)2.故选:A.【点睛】本题考查了公式法分解因式,熟练掌握运算法则和完全平方公式的结构特点是解题的关键.6、D【解析】【分析】将各式计算得到结果,即可作出判断.【详解】解:A. 2ab 2﹣4ab =2ab (b ﹣2),分解不完整,故错误;B .a 2+b 2不能分解因式,而(a +b )(a ﹣b )=a2−b2,故错误;C .x 2+2xy ﹣4y 2不能分解因式,而(x −y )2=x 2−2xy +y 2,故错误;D .﹣my 2+4my ﹣4m =﹣m (2﹣y )2,故正确.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7、D【解析】【分析】利用平方差因式分解即可求解.【详解】解:241212126621(21)(21)(21)(21)(21)-=+-=++-,∵66216521=63+=-,,∴224﹣1可以被60和70之间某两个数整除,这两个数是63,65,故选:D .【点睛】本题考查了平方差公式,解题关键是熟练运用平方差公式进行计算.8、C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可,注意分解要彻底.【详解】解:A 、244x x x x ,故A 选项错误; B 、21x xy x x x y ,故B 选项错误;C 、()()()2x x y y x y x y ---=-,故C 选项正确;D 、2244(2)x x x -+=-,故D 选项错误;故选:C .【点睛】本题考查了提公因式法,公式法分解因式,注意因式分解的步骤:先提公因式,再用公式法分解,熟练掌握因式分解的方法是解题关键.9、D【解析】【分析】9b 2-a 2 可以看作(3b )2-a 2,利用平方差公式,可得出答案.【详解】解:∵(3b +a )(3b -a )=9b 2-a 2,即(3b +a )(3b -a )=(3b )2-a 2,∴括号内应填的代数式是3b-a.故选:D.【点睛】本题考查平方差公式的特征,熟记平方差公式(a+b)(a-b)=a2-b2,是解决此题的关键.10、B【解析】【分析】将a2(b+c)=b2(a+c),a≠b,变形后可得ab+ca+bc=0,进而可得结果.【详解】解:a2(b+c)=b2(a+c),a2b+a2c=b2a+b2c,a2b+a2c-(b2a+b2c)=0,a2b+a2c-b2a-b2c=0,ab(a-b)+c(a2-b2)=0,ab(a-b)+c(a+b)(a-b)=0,(a-b)(ab+ca+bc)=0,∵a≠b,∴ab+ca+bc=0,∵b2(a+c)=b(ab+bc)=b(-ac)=-abc=2022,∴abc=-2022.故选:B【点睛】本题考查了单项式乘多项式以及因式分解,解决本题的关键是掌握平方差公式以及提公因式法因式分解.二、填空题1、4ab【解析】【分析】组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.【详解】∵1S 为图2大正方形的面积;2S 为小正方形面积,∴12S S -为图1长方形面积∴12S S -=2a ×2b =4ab故答案为:4ab【点睛】本题考查列代数式在求正方形面积中的应用,找到两者之差是图1长方形面积是关键.2、2ab (c +2a )【解析】【分析】提公因式2ab ,进行因式分解即可.【详解】解:224abc a b +=2ab (c +2a )故答案为:2ab (c +2a )【点睛】本题考查了提公因式法分解因式,掌握因式分解的方法是解题的关键.3、14041【解析】【分析】把分子利用平方差公式分解,分母利用完全平方公式分解,约分计算即可得到结果.【详解】 解:原式=2(20212020)(20212020)(20212020)+⨯-+ =120212020+ =14041. 故答案为:14041. 【点睛】本题考查了用因式分解进行计算,解题关键是熟练运用公式法进行因式分解.4、1【解析】【分析】首先利用完全平方公式得出a ,b 的值,进而得出答案.【详解】解:∵a 2+b 2+5=4a ﹣2b ,∴2244210a a b b -++++= ,∴(a ﹣2)2+(b +1)2=0,∴a =2,b =﹣1,∴(a +b )2021=(2﹣1)2021=1.故答案为:1【点睛】本题主要考查了完全平方公式的应用,熟练掌握()2222a ab b a b ++=+ ,()2222a ab b a b -+=-是解题的关键.5、2022【解析】【分析】由(1)1a a +=得21a a =-,对2120211a a +++化简,将2a 用1a -多次等量替换,计算求解即可. 【详解】解:∵(1)1a a +=∴21a a =-2120211a a +++ 1120211a a =-+++ ()()11120211a a a -⨯++=++2220211a a -=++ ()2120211a a --=++ 120211a a +=++ 2022=故答案为:2022.【点睛】本题考查了平方差,代数式求值.解题的关键在于2a的等量替换.三、解答题1、 (1)40,12(2)4【解析】【分析】(1)根据定义解答即可;(2)根据b是a的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.(1)十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,∵130=(12+1)(12﹣2)=13×10,∴130的十字点为12.故答案为:40,12;(2)∵b是a的十字点,∴a=(b+1)(b﹣2)(b>2且为正整数),∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,∵a能被(b﹣1)整除,∴(b﹣1)能整除2,∴b﹣1=1或b﹣1=2,∵b>2,∴b=3,∴a=(3+1)(3﹣2)=4.【点睛】本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.2、(1)①(m−y)(3+a);②(x+y)(a2+b2)(2)(a+b+1)(a+b−1)【解析】【分析】(1)①直接将前两项和后两项组合,提取公因式,进而分解因式即可;②直接将前两项和后两项组合,提取公因式,进而分解因式即可;(2)将前三项利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.(1)解:①原式=(3m−3y)+(am−ay)=3(m−y)+a(m−y)=(m−y)(3+a);②原式=(a2x+a2y)+(b2x+b2y)=a2(x+y)+b2(x+y)=(x+y)(a2+b2);(2)a2+2ab+b2−1=(a+b)2−1=(a +b +1)(a +b −1).故答案为:(a +b +1)(a +b −1).【点睛】此题主要考查了分组分解法以及提取公因式法、公式法分解因式,正确分组再运用公式法分解因式是解题关键.3、5x 2-4,195-【解析】【分析】利用多项式乘多项式以及乘法公式对原式进行化简,再代入x 的值求原式的值.【详解】解:()()25121x x x +-+-() =x 2+5x -x -5+4x 2-4x +1=5x 2-4, 当15x =-时,原式=5×2119455⎛⎫--=- ⎪⎝⎭. 【点睛】本题考查了整式的化简求值,解题的关键是掌握乘法公式的运用.4、2x (x ﹣2)2【解析】【分析】先提取公因式2x ,在根据完全平方公式进行分解即可求得答案.【详解】原式22(44)x x x =-+22(2)x x =-,故答案为:22(2)x x -.【点睛】本题考查了提公因式法,公式法分解因式,注意分解因式的步骤,注意分解要彻底.5、9【解析】【分析】首先根据完全平方公式及单项式乘以多项式法则运算,再根据去括号法则去括号,最后合并同类项,即可求得【详解】解:2(3)(6)x x x ---2269(6)x x x x =-+--22696x x x x =-+-+9=【点睛】本题考查了完全平方公式,单项式乘以多项式法则,注意去括号时符号的变化。
青岛版数学七年级上册第一次月考测试题(一)(适用于青岛版教材七年级上册第一二章)(时间:90分钟分值:120分)一、精心选一选(每小题3分,共30分)1.-的绝对值是()A. -B.C. 3D. -32.如果m表示有理数,那么|m|+m的值()A. 可能是负数;B. 不可能是负数;C. 必定是正数;D. 可能是负数也可能是正数3.下列各数中:+3、-2.1、−、9、、-(-8)、0、-|+3|负有理数有()A. 2个B. 3个C. 4个D. 5个4.2的相反数是()A. 2B.C. -2D. -5.﹣3的绝对值是()A. -3B.C.D. 36.在八面体顶点数V、面数F、棱数E中,V+F-E=( )A.16B.6C.4D.27.如图,直线AB、CD相交于点O,在这两条直线上,与点O的距离为3cm的点有()A. 2个 B.3个 C.4个 D.5个8.如图所示,图中共有几条线段()A. 4B. 5C. 10D.159.已知AB=21cm,BC=9cm,A、B、C三点在同一条直线上,那么AC等于()A.30cmB. 15cmC. 30cm或15cmD. 30cm或12cm10.一个画家有14个边长为1cm的正方体,他在地面上把它们摆成如图所示的形状,然后他们把露出的表面都涂上颜色,那么被涂上颜色的总面积是()A.19cm2B.21cm2C.33cm2D.34cm2二、细心填一填(每小题3分,共30分)11.如果a﹣3与a+1互为相反数,那么a=________12.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是________ (2)数轴上表示x与2的两点之间的距离可以表示为________ (3)如果|x﹣2|=5,则x=________ (4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是________13.比较大小:﹣________ ﹣|﹣|.14.数轴上离开原点3个单位长的点所表示的数是________.15.如图,在正方形ABCD中,点P在对角线BD上运动,当点P运动到何处时,PA+PC最小,在图中画出此时点P的位置。
第12章测试题 (青岛版) (满分:90分 考试时间:100分钟)
一、填空题:(本大题共10小题,每小题3分,共30分) 1. 在方程25x y +=中,用x 的代数式表示y ,得_______y =. 2. 若一个二元一次方程的一个解为21
x y =⎧⎨
=-⎩,则这个方程可以是:
(只要求写出一个) 3. 下列方程: ①213
y x -
=; ②
332
x y +
=; ③2
24
x y -=;
④5()7()x y x y +=+;⑤223x =;⑥14
x y
+
=.其中是二元一次方程的
是 . 4. 若方程456m n m n
x y -+-=是二元一次方程,则____m =,____n =.
5. 方程4320x y +=的所有非负整数解为:
6. 若23x y -=-,则52____x y -+=.
7. 若2(5212)3260x y x y +-+
+-=,则24____
x y +=.
8. 有人问某男孩,有几个兄弟,几个姐妹,他回答说:“有几个兄弟就有几个姐妹.”再问他妹妹有几个兄弟,几个姐妹,她回答说:“我的兄弟是姐妹的2倍.”若设兄弟x 人,姐妹y 人,则可列出方程组: .
9. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场是0分.某队踢了14场,其中负5场,共得19分。
若设胜了x 场,平了y 场,则可列出方程组: . 10. 分析下列方程组解的情况.
①方程组12
x y x y +=⎧⎨
+=⎩的解是 ;②方程组1222
x y x y +=⎧⎨
+=⎩的解
是 .
二、选择题:(本大题共6小题,每小题3分,共18分) 11. 用代入法解方程组124
y x x y =-⎧⎨
-=⎩时,代入正确的是( )
A.24x x --= B .224x x --= C.224x x -+= D.24x x -+= 12. 已知10
x y =-⎧⎨=⎩和23
x y =⎧⎨
=⎩都是方程y a x b =+的解,则a 和b 的值是
( )
A.11a b =-⎧⎨=-⎩
B.1
1a b =⎧⎨=⎩
C.11a b =-⎧⎨=⎩ D. 1
1a b =⎧⎨=-⎩
13. 若方程组4314(1)6
x y kx k y +=⎧⎨
+-=⎩的解中x 与y 的值相等,则k 为( )
A.4 B.3 C.2 D.1
14. 已知方程组5354x y ax y +=⎧⎨+=⎩和25
51x y x by -=⎧⎨+=⎩
有相同的解,则a
,b 的值为
( )
A.1
2
a b =⎧⎨
=⎩
B.46a b =-⎧⎨=-⎩ C.6
2
a b =-⎧⎨
=⎩
D.14
2
a b =⎧⎨
=⎩
15. 已知二元一次方程30x y +=的一个解是x a y b
=⎧⎨=⎩,其中0a ≠,那么
( ) A.
b a > B.
b a
= C.
b a
< D.以上都不对
16. 如图1,宽为50 cm 的矩形图案
由10个全等的小长方形拼成,其中
一个小长方形的面积为( ) A. 400 cm 2 B. 500 cm 2 C. 600 cm 2 D. 4000 cm 2
三、解答题:(本大题共8小题,共52分) 17.(6分)解方程组356415x z x z -=⎧⎨+=-⎩ ①②
18. (6分)解方程组22314m n m n -=⎧⎨
+=⎩ ①
②
19. (6分)解方程组4(1)3(1)2
223
x y y x y
--=--⎧⎪⎨+=⎪⎩
20. (8
分)已知方程组45321x y x y +=⎧⎨-=⎩和3
1ax by ax by +=⎧⎨-=⎩有相同的解,求
图
1
22
2a ab b
-+的值.
21. (8分)上杭县某中学七年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生没车坐;如果每辆车坐60人,那么可以空出一辆车。
问共有几辆车,几个学生?
22. (8分)福建欣欣电子有限公司向工商银行申请了甲、乙两种贷款,共计68万元,每年需付出利息8.42万元.甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?
23. (10分)上杭教育服装厂要生产一批某种型号的学生服装,已知3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?。