信号与系统习题解
- 格式:doc
- 大小:2.30 MB
- 文档页数:27
信号系统(第3版)习题解答《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S R S L S C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。
1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。
题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图 1-10形图。
题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。
(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。
解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。
《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。
](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S RS LS C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。
图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。
若:求直流分量大小以及基波、二次和三次谐波的有效值。
解:直流分量⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=n b)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-==)(21T n Sa T E a F n n πςτ== 基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。
解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。
1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。
注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。
如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。
1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。
第1章 信号及信号的时域分析1.1本章要点本章在时域范围内讨论信号的分类和信号的基本运算,通过本章的学习,读者应该了解信号的各种分类、定义及相关波形;了解各类常用信号及其性质,掌握几种奇异信号的特性及运算方法;了解和掌握信号的基本运算方法,深刻理解卷积与输入、输出信号和系统之间的物理关系及其性质,为后续课程打下牢固的基础。
1、信号的分类(1)连续信号与离散信号一个信号,如果在连续时间范围内(除有限个间断点外)有定义, 就称该信号在此区间内为连续时间信号,简称连续信号。
仅在离散时间点上有定义的信号称为离散时间信号,简称离散信号。
(2)确定信号与随机信号确定信号是指能够以确定的时间函数表示的信号。
即给定某一时间值,就能得到一个确定的信号值。
随机信号是时间的随机函数,即给定某一时间值,其函数值并不确定的信号。
(3)周期信号与非周期信号对于连续信号)(t f ,若存在0>T ,使得)()(t f rT t f =+,r 为整数,则称)(t f 为周期信号;对于离散信号)(n f ,若存在大于零的整数N ,使得)()(n f rN n f =+,r 为整数,则称)(n f 为周期信号。
不满足周期信号定义的信号称为非周期信号。
① 几个周期信号相加而成的信号的周期问题几个周期信号相加,所产生的信号可能是周期信号,也可能是非周期信号,这主要取决于几个周期信号的周期之间是否存在最小公倍数0T 。
以周期分别为1T 、2T (角频率分别为21,ΩΩ)的两个信号相加产生的信号()t f 为例,归一化能量为有限值,归一化功率为零的信号为能量信号,即满足∞<<W 0,0=P 。
归一化功率为有限值,归一化能量为无限大的信号为功率信号,即满足∞→W ,∞<<P 0。
一般,周期信号为功率信号。
(5)实信号与复信号 在各时刻t (或n )上的信号幅值为实数的信号为实信号,信号幅值为复数的信号称为复信号。
2、常用连续信号及其性质(1).单位阶跃信号用)(t u 表示,定义为:⎩⎨⎧<>=001)(t t t u (1-2)(2)单位冲激信号用)(t δ表示,其狄拉克(Dirac)定义为:⎪⎩⎪⎨⎧≠==⎰∞∞-0,0)(1)(t t dt t δδ (1-3)冲激信号的性质:1)筛选性)()0()()(t f t t f δδ= (1-4))()()()(000t t t f t t t f -=-δδ (1-5)2)取样性 )0()()0()()0()()(f dt t f dt t f dt t t f ===⎰⎰⎰∞∞-∞∞-∞∞-δδδ (1-6))()()()()()()(000000t f dt t t t f dt t t t f dt t t t f =-=-=-⎰⎰⎰∞∞-∞∞-∞∞-δδδ(1-7)3)尺度变换以及()at δ的n 阶导数为 4)奇偶性利用式(1-10)来分析()t δ的奇偶性是比较方便的。
令1-=a ,得()()()()()t t n n n δδ1-=- (1-11)n 为偶数时,有()()()()Λ,4,2,0==-n t t n n δδ(1-12)n 为奇数时,有()()()()Λ,5,3,1=-=-n t t n n δδ (1-13)这样,得到)()(t t δδ=- (1-14)()()t t δδ'-=-' (1-15)即()t δ是偶函数,而()t δ'是奇函数。
5) )(t δ与)(t u 互为微分与积分的关系,⎰∞-=td t u ττδ)()( (1-16)对于形如()[]t f δ的冲激信号,若()0=t f 有m 个互不相等的实根(如果()0=t f 有重根,()[]t f δ没有意义),则有(3)单位冲激偶函数 1)单位冲激偶函数的定义单位冲激偶函数可通过对矩形脉冲求一阶导数再取极限引出其定义。
脉宽为τ、幅度为波形如图1-1所示。
图1-1 对矩形脉冲求导的波形2)单位冲激偶函数的性质: ① 因为)(t δ'是奇函数,所以⎰∞∞-='0)(dt t δ (1-19)②⎰∞-='tt d )()(δττδ (1-20)③ )()0()()0()()(t f t f t t f δδδ'-'=' (1-21) 推广,有)()()()()()(00000t t t f t t t f t t t f -'--'=-'δδδ (1-22) ④ ⎰∞∞-'-=')0()()(f dt t t f δ (1-23)推广,有()()()⎰∞∞--=)0(1)()(n n n f dt t t f δ (1-24) ⎰∞∞-'-=-')()()(00t f dt t t t f δ (1-25) ()()()⎰∞∞--=-)(1)()(00t f dt t t t f n nn δ (1-26)(4)斜坡信号单位斜坡信号用()t r 表示,其定义为:()⎩⎨⎧≤>==00)(t t tt tu t r (1-27))(t r 与)(t u 之间的关系为:ττd u t r t⎰∞-=)()( (1-28)(5)符号函数()t sgn符号函数用()t sgn 表示,其定义为:()⎪⎩⎪⎨<-==0100sgn t t t (1-30) (6)取样信号取样信号用()t Sa 表示,其定义为:2) ()Λ,3,2,1,0±±±==k k Sa π(1-33)3、常用离散信号及其性质(1)单位序列()n δ单位序列用()n δ表示,其定义为:⎩⎨⎧≠==001)(n n n δ (1-35)单位序列性质:1) )()0()()(n f n n f δδ= (1-36) 2) )()()()(000n n n f n n n f -=-δδ (1-37) (2)单位阶跃序列()n u单位阶跃序列用()n u 表示,其定义为:⎩⎨⎧<≥=001)(n n n u (1-38)若将()n u 移位0n ,得⎩⎨<=-0000)(n n n n u (1-39)单位阶跃序列与单位序列之间的关系:)1()()(--=n u n u n δ (1-40)∑-∞==nj j n u )()(δ (1-41)或者()()∑∑∑∞=∞=-∞=-=-==)()(i i nj i n i n j n u δδδ (1-42)4、连续信号的基本运算(1)信号的相加和相乘信号的运算从数学意义上来说,就是将信号经过一定的数学运算转变为另一信号。
两个信号相加,其和信号在任意时刻的信号值等于两信号在该时刻的信号值之和。
()()()t f t f t f 21+= (1-43) 两个信号相乘,其积信号在任意时刻的信号值等于两信号在该时刻的信号值之积。
()()()t f t f t f 21⋅= (1-44) (2)信号的平移将信号沿时间轴作平移,得到一个新的信号。
对于连续信号)(t f ,若有常数00>t ,信号)(0t t f -是将原信号沿正t 轴平移0t 时间,而)(0t t f +是将原信号沿负t 轴平移0t 时间。
(3)信号的尺度变换与反转将信号)(t f 的横坐标的尺寸展宽或压缩称为信号的尺度变换。
可用变量at (a 为非零常数)替代原信号)(t f 的自变量t ,得到信号)(at f 。
如果a 为正数,当1>a 时,)(at f 是将)(t f 以原点为基准,横轴压缩到原来的a1倍;当10<<a 时,)(at f 是将)(t f 横轴展宽至原来的a1倍。
信号的反转是将信号)(t f 中的自变量t 换为t -,即将信号绕纵轴作0180反转。
把原信号)(t f 在t 时刻的值变换为t -时刻的值。
(4)信号的导数和积分 信号的导数定义为:信号的积分定义为:ττd f t y t⎰∞-=)()( (1-46)(5)信号的时域分解 1)信号的奇偶分解信号的偶分量用()t f e 表示,其定义为:()()t f t f e e -= (1-47)信号的奇分量用()t f o 表示,其定义为:()()t f t f o o --= (1-48)任意一个信号都可以表示成奇分量和偶分量之和:()()()t f t f t f o e += (1-49)图1-2 信号及信号的奇、偶分量2)信号的脉冲分解任意一个连续信号都可以用脉冲信号相叠加来近似表示,如图1-3(a) 所示。
图1-3 信号)(t f 分解成窄脉冲(a)(b)(c)(b)每个矩形脉冲可以表示为()()()()()[]t k t u t k t u t k f t f k ∆+--∆-∆=1则当0→∆t 时,τ→∆t k ,τd t →∆,则∴ ττδτd t f t f )()()(-=⎰∞∞- (1-52)这就是在时域中任意信号可以分解为无限多个冲激信号相叠加, 如图1-3(b) 所示。
式(1-52)的积分称为卷积积分。
(6)信号的卷积积分 1)卷积积分的定义一般而言,两个信号()t f 1,()t f 2的卷积积分定义为τττd t f f t f )()()(21-=⎰∞∞- (1-53)简称卷积,记作)()()(21t f t f t f *=。
2)卷积积分性质① 交换律 设有)(1t f 和)(2t f 两个信号,则)()()()(1221t f t f t f t f *=* (1-54)② 分配律 设有)(1t f 、)(2t f 和)(3t f 三个信号,则)()()()()]()([)(3121321t f t f t f t f t f t f t f *+*=+* (1-55) ③ 结合律 设有)(1t f 、)(2t f 和)(3t f 三个信号,则)()]()([)](*)([)(321321t f t f t f t f t f t f **=* (1-56)④ 卷积积分后的微分性质两个信号卷积积分后的导数等于两个信号中之一的导数与另一信号的卷积积分。
即⑤ 卷积的微积分性质 如果()()()t f t f t f 21*=,则()()()()())(21t f t f t f j i j i -*= (1-58)式中当i 或j 取正整数时表示导数的阶数,取负整数时为重积分的次数。
⑥ 卷积的平移性质两个信号平移后的卷积积分,等于两个信号卷积积分后平移,其平移量为两个信号分别平移量的和。
即如果 )()()(21t f t f t f =*则有 )()()(212211t t t f t t f t t f --=-*- (1-59)⑦ 与冲激信号或阶跃信号的卷积积分信号)(t f 与单位冲激信号)(t δ卷积积分的结果是信号)(t f 本身。