计算方法-牛顿求根
- 格式:ppt
- 大小:2.82 MB
- 文档页数:42
迭代法求根号
迭代法是一种数值计算方法,用于逼近函数的根。
在求解根号的迭代法中,通常采用牛顿-拉弗森方法(Newton-Raphson method)或二分法(Bisection method)。
1.牛顿-拉弗森方法:
这是一种迭代方法,通过不断更新初始猜测值来逼近函数的根。
具体来说,对于要求解的根号函数f(x),牛顿-拉弗森方法的迭代公式如下:
x n+1=x n−f(x n) f′(x n)
其中,x n是第n次迭代的猜测值,x n+1是第n+1次迭代的猜测值,f′(x n)是函数f在x n处的导数。
2.二分法:
二分法是一种简单而直观的迭代方法,通过不断缩小根所在的区间来逼近根。
具体来说,对于要求解的根号函数f(x),二分法的迭代步骤如下:
(1)首先确定一个初始区间[a, b],使得f(a) 与f(b) 异号。
(2)然后计算区间的中点c = (a + b) / 2,并计算f(c)。
如果f(c) 等于零或者满足预先设定的精度要求,则 c 就是所求根的近似值;否则,根据f(a) 与f(c) 的符号确定新的区间[a, c] 或[c, b],然后重复上述步骤。
非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。
设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。
(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。
解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。
牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。
结合着matlab 可以对其进行应用,求解方程。
牛顿迭代法(Newton ’s method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。
牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。
牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。
牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。
如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点 的横坐标1k x +作为*x 的新的近似值。
鉴于这种几何背景,牛顿法亦称为切线法。
2 牛顿迭代公式:(1)最速下降法:以负梯度方向作为极小化算法的下降方向,也称为梯度法。
设函数()f x 在k x 附近连续可微,且()0k k g f x =∇≠。
由泰勒展开式: ()()()()()Tk k k k fx f x x x f x x x ο=+-∇+- (*)可知,若记为k k x x d α-=,则满足0Tk k d g <的方向k d 是下降方向。
当α取定后,Tk k d g 的值越小,即T kk d g -的值越大,函数下降的越快。
由Cauchy-Schwartz 不等式:T k k kk d g d g ≤,故当且仅当k k d g =-时,Tk k d g 最小,从而称k g -是最速下降方向。
最速下降法的迭代格式为: 1k k k k x x g α+=-。
五. 讨论分析当初始值选取离零点较远时将导致算法无法使用,例如第三题,将初始值改为2就无法计算出结果了,显示如下例如求020sin 35=-+-x x e x 的根,其中控制精度1010-=eps ,最大迭代次数40=M ,在steffensen 加速迭代方法的程序中,我们只需改动:it_max=40; ep=1e-10, 其余不变 。
利用以上程序,我们只需输入:phi=inline('exp(5*x)-sin(x)+(x)^3-20');[x_star,index,it]=steffensen(phi,0.5)可得:x_star = 0.637246094753909index = 0it = 41观察上述结果,index = 0,it = 41表明迭代失败,所以使用以上方法估计的时候,应该尽量估计出解的范围,偏离不应过大,距离增加迭代次数增加,也有可能迭代失败六. 改进实验建议根据上述分析,我认为,应该先对函数作一个简图,方便知道解的大概位置,然后我们才将这个大概值代入Newton 法或者Steffensen 中进行求解。
当然,我们可以用其他数学软件实现Newton 迭代法,我们可以用z-z 超级画板,其操作流程为:牛顿迭代法的公式是:x n+1=x n-f(x n)/f'(x n)。
下面我们就用牛顿迭代法设计程序求方程f(x)=ln(x)+2*x-6的近似解。
(一)观察方程f(x)=0的零点位置(1)显示坐标系的坐标刻度。
(2)作出函数y=ln(x)+2*x-6的图像,如下图所示:可以观察到方程的根在区间[2,3]上,我们可以设定近似解的初始值为2。
(二)设计求方程近似解的程序(1)在程序工作区中输入:f(x){ln(x)+2*x-6;}执行后,返回结果为:>> f(x) #这表示在计算机已经完成了函数f(x)的定义。
(2)定义f(x)的导函数g(x),在程序工作区中输入:Diff(f(x),x);执行后,返回结果为:>> 2+1/x #得到了f(x)的导函数。
牛顿法牛顿法作为求解非线性方程的一种经典的迭代方法,它的收敛速度快,有内在函数可以直接使用。
结合着matlab 可以对其进行应用,求解方程。
牛顿迭代法(Newton Newton’’s s method method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,其基本思想是利用目标函数的二次Taylor 展开,并将其极小化。
牛顿法使用函数()f x 的泰勒级数的前面几项来寻找方程()0f x =的根。
牛顿法是求方程根的重要方法之一,其最大优点是在方程()0f x =的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时非线性收敛,但是可通过一些方法变成线性收敛。
收敛。
牛顿法的几何解释:牛顿法的几何解释:方程()0f x =的根*x 可解释为曲线()y f x =与x 轴的焦点的横坐标。
如下图:轴的焦点的横坐标。
如下图:设k x 是根*x 的某个近似值,过曲线()y f x =上横坐标为k x 的点k P 引切线,并将该切线与x 轴的交点轴的交点 的横坐标1k x +作为*x 的新的近似值。
鉴于这种几何背景,牛顿法亦称为切线法。
牛顿法亦称为切线法。
2 牛顿迭代公式:(1)最速下降法:x-d gk k×Gg sks×GGd 101x x x -(1)令k k G v I k G -=+,其中:,其中:0k v =,如果k G 正定;0,k v >否则。
否则。
(2)计算_k G 的Cholesky 分解,_T k k k k G L D L =。
(3)解_k k G d g =-得k d 。
(4)令1k k k x x d +=+牛顿法的优点是收敛快,缺点一是每步迭代要计算()()'k k f x f x 及,计算量较大且有时()'k fx 计算较困难,二是初始近似值0x 只在根*x附近才能保证收敛,如0x 给的不合适可能不收敛。
一、求根方法原理把非线性函数f(x)=0在x0处展开成泰勒级数取其线性部分,作为非线性方程的近似方程,则有 , 设,则其解为,再把f(x)在x1处展开为泰勒级数,取其线性部分为的近似方程,若,则得,如此继续下去,得到牛顿法的迭代公式:,通过迭代,这个式子必然在的时候收敛。
整个过程如下图:牛顿法收敛很快,而且可求复根,缺点是对重根收敛较慢,要求函数的一阶导数存在。
二、求解步骤1. 选取一个接近函数零点的自变量 x 值作为起始点。
2. 使用如下的迭代公式更新近似解。
3. 如果得出的解满足误差要求,终止迭代,所得的值即视为方根根的近似解。
三、自定的非线性方程使用牛顿迭代法近似求解如下方程在[-1, 1]之间的根:四、源程序代码clear, close allclcf = @(x) cos(x) -x.^3;f_prime = @(x) -sin(x) -3*x.^2;error = 1; %初始化误差变量iter = 0; %初始化迭代次数变量max_iter = 5000; %定义最大允许迭代次数tol = 1e-8; %定义循环终止误差x0 = 0.5; %初始值while error > tol && iter <= max_iterx = x0 - f(x0)/f_prime(x0); %更新x的值error = abs((x-x0)/x0); %计算相对误差iter = iter +1; %更新迭代次数x0 = x; %计算出的x赋值给x0,继续迭代,直到达到误差条件。
end五、上机运行结果截图六、结论1.迭代法是求解非线性方程组的一种很好的方法,它可以反复校验根的近似值,直到得出符合精度的解。
从几何角度上来解释可以解释为两个函数的无限逼近2.我们为了加快迭代的速度,引入了牛顿法,牛顿法的收敛速度很快,但是其收敛性取决于牛顿法的取值。
3.。
matlab牛顿法求根程序1、引言牛顿法求解方程的数值解是非常常用的一种方法,也是收敛速度很快的一种方法。
在Matlab中,可以使用fzero函数实现牛顿法求根。
本篇文章将介绍如何使用Matlab实现牛顿法求根。
2、牛顿法求根的原理牛顿法求根实际上是一种迭代法,迭代公式为:x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}其中,x_n 是第n次迭代的数值解,f(x_n)是方程在x_n处的函数值,f'(x_n)是方程在x_n处的导数值。
3、使用Matlab实现牛顿法求根在Matlab中,我们可以使用fzero函数实现牛顿法求根。
该函数的基本用法为:x=fzero(fun,x0,options)其中,fun是一个函数句柄,x0是初始迭代值,options是一个选项结构体,用于设置迭代精度等参数。
例如,我们想求解方程x^2-2=0在x=1附近的解,可以写出如下Matlab程序:fun=@(x)x^2-2;x0=1;options=optimset('TolX',1e-8,'Display','iter');x=fzero(fun,x0,options)其中,optimset函数可以设置迭代精度等参数,‘TolX’表示迭代停止条件,‘Display’表示是否输出迭代过程。
程序的运行结果如下:Func-count x f(x) Procedure1 1 -1 initial2 1.5000 0.2500 search3 1.4167 0.0069 search4 1.4142 0.0000 search即求得方程的解为1.4142。
4、代码实现除了使用fzero函数外,我们也可以自己实现牛顿法求根的代码。
以下是一个简单的例子:function x=newton(fun,x0,tol)while abs(fun(x0))>tolx0=x0-fun(x0)/diff(fun,x0);endx=x0;end其中,fun是函数句柄,x0是初始迭代值,tol是迭代停止条件。
牛顿迭代法的应用一、牛顿法简介牛顿迭代法(Newton's method )又称为牛顿-拉夫逊方法(Newton-Raphson method ),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。
该方法广泛用于计算机编程中。
简单迭代法是用直接的方法从原方程中隐含地解出x ,从而确定出)(x ϕ。
而牛顿迭代法是用一种间接而特殊的方法来确定)(x ϕ的。
下面具体推到牛顿迭代公式。
假设k x 是非线性方程为0)(=x f 的一个近似根,把)(x f 在k x 处作泰勒展开:+-+-+=2''')(!2)())(()()(k k k k k x x x f x x x f x f x f若取前两项来近似代替)(x f (称为)(x f 的线性化),则得近似的线性方程0))(()()('=-+≈k k k x x x f x f x f设0)('≠k x f ,令其解为1+k x ,则得)()('1k k k k x f x f x x -=+ (1)这称为0)(=x f 的牛顿迭代公式。
它对应的迭代方程为)()('x f x f x x -=显然是0)(=x f 的同解方程,故其迭代函数为)()()('k k k x f x f x x -=ϕ (0)('≠x f ) 在0)(=x f 的根α的某个邻域)|(|δα≤-x R 内,0)(≈x f1|)('||)(||)(||)(|2'''<≤•=L x f x f x f x ϕ 在α的邻域R 内,对任意初值x 0,应用由公式(1)来解方程的方法称为牛顿迭代法,它是解代数方程和超越方程的有效方法之一。
如何求解高次方程的根高次方程(或称高次多项式)是指方程中未知量的最高次幂大于等于2的多项式方程。
求解高次方程的根是一个十分基础也是十分重要的数学问题,在本文中,我们将会介绍几种常用的方法来求解高次方程的根。
1. 牛顿迭代法牛顿迭代法是一种经典的数值方法,它可以用来求解各种函数的零点,包括高次多项式方程。
对于一个一般的高次多项式 $f(x) = a_nx^n+ a_{n-1}x^{n-1} + \cdots + a_0$,我们可以通过以下步骤来使用牛顿迭代法求解其根:(1)选择一个初始点 $x_0$,通常可以选择0作为初始点。
(2)计算 $f(x_0)$ 和 $f'(x_0)$。
(3)使用牛顿迭代公式 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ 来计算下一个近似值 $x_{k+1}$。
(4)重复步骤(2)和(3),直到达到所需精度为止。
需要注意的是,牛顿迭代法并不能保证总是能够收敛到方程的根,因此在实际使用中需要对其进行适当的调整或者选择其他的求根方法。
2. 特殊多项式的求解法对于一些特殊的多项式方程,我们可以使用它们的特殊性质来化简求解过程,例如:(1)二次方程(即次数为2的多项式方程)可以直接使用公式$x_{1,2} = \frac{-b\pm \sqrt{b^2-4ac}}{2a}$ 来求解其两个根 $x_1$ 和$x_2$。
(2)三次方程(即次数为3的多项式方程)可以使用三次求根公式的方法来求解其根。
不过由于三次求根公式的形式比较复杂,因此实际使用时更常采用数值方法进行求解。
(3)四次方程(即次数为4的多项式方程)可以使用费拉里方法(也称“四次通法”)来求解其根。
费拉里方法基于一个重要的结论:任意四次方程都可以通过一次代换化为关于另一个未知量的三次方程。
3. 特殊点的分解法特殊点的分解法是一种利用多项式的对称性质和零点的关系来求解高次多项式方程的方法。