光伏离网系统研究
- 格式:ppt
- 大小:1.11 MB
- 文档页数:15
新型离网光伏发电系统方案设计
一、研究背景
随着经济发展的加快,人们对能源的依赖也不断增加,其中电能的消
耗量不断增加,光伏发电作为可再生能源之一的优势越发凸显,越来越多
的人们开始重视这种可再生能源,认识到其能源的优势。
但是,传统的光
伏发电受电网接入限制,受地形和电网规划条件限制,导致很多人无法使
用这种技术,自给自足受到困扰,电力不足。
考虑到这个问题,研究开发
出离网光伏发电系统,从而解决用户的能源问题,真正实现自主发电,自
给自足,这是本文的研究背景。
二、研究内容
离网光伏发电系统是一种能够在电网外发电的能源系统。
它采用太阳
能转换成电能,利用电池存储电能,控制器调节发电,实现自主发电,解
决用户的电力不足问题。
本文针对此研究,主要是对其方案的设计,进行
如下研究内容:
1.在分析当地的气候条件,计算出需要的光伏发电系统容量,以便确
定所需的光伏发电系统组件的总容量;
2.确定系统组件的类型,并从技术性能,可靠性等方面考虑进行选型;
3.计算系统的配置,将系统组件分配到各个分支,达到最佳的配置;
4.计算系统指标。
离网光伏发电系统项目可行性研究报告一、项目背景随着人们对环保意识的增强和对能源需求的不断增长,光伏发电系统作为一种清洁能源的利用方式受到了广泛关注。
离网光伏发电系统是一种独立发电系统,通过太阳能电池板将太阳能转化为电能进行供电,不需要与传统电网相连。
本次可行性研究报告旨在探讨离网光伏发电系统项目的可行性,为项目决策提供依据。
二、项目目标本项目旨在建设一个具备规模化、持续稳定发电能力的离网光伏发电系统,为目标区域提供足够的清洁能源,实现能源稳定供应的目标。
三、项目内容1.项目规模:根据目标区域的用电需求和太阳辐射资源情况,确定合适的光伏发电系统规模。
2.选址:选择离网光伏发电系统的建设地点,考虑太阳辐射资源、用地面积等因素。
3.设备采购:采购光伏电池板、逆变器、存储电池等设备,确保系统的正常运行。
4.建设施工:组织离网光伏发电系统的建设施工工作,包括设备安装、电缆敷设等。
5.运维管理:建立完善的离网光伏发电系统的运维管理体系,确保系统的正常运行和定期维护。
四、项目优势1.环保节能:离网光伏发电系统利用太阳能进行发电,零排放,对环境无污染,并且节约传统能源的消耗。
2.投资回报较高:离网光伏发电系统具有长期稳定盈利能力,通过售电收入可以回收设备及建设成本,并获得良好的投资回报。
3.增加能源供应安全性:离网光伏发电系统不依赖传统电网,可以为目标区域提供稳定的能源供应,减少因电网故障造成的停电风险。
五、项目可行性分析1.市场需求:目标区域的电力需求较大,市场潜力巨大,光伏发电系统的利用需求广泛存在。
2.资源条件:目标区域具备良好的太阳辐射资源,适合开展离网光伏发电项目。
3.技术可行性:光伏发电技术成熟,设备可靠性高,具备良好的运维管理体系。
4.经济可行性:项目回收期相对较短,可以获得稳定的盈利能力。
5.社会影响:项目可以减少传统能源消耗,减少大气污染,推动可持续发展。
六、项目风险分析1.天然灾害:例如台风、地震等天然灾害可能会对光伏设备造成破坏。
离网光伏发电光伏系统离网光伏发电系统是通过将太阳能板转换为电能,储存在电池组中以供家庭或企业使用。
由于光伏发电系统并不依赖于电网,因此在偏远地区或电力供应不稳定的地方特别有用。
本文介绍了离网光伏发电光伏系统的工作原理、组成和应用场景。
工作原理离网光伏发电系统由太阳能板、控制器、电池组和逆变器组成。
太阳能板通过吸收太阳能将其转化为直流电能,该电能由控制器接收并管理,以确保电池组的过充和过放电保护。
电池组可以存储电能以供以后使用。
逆变器是离网光伏发电系统中的关键组件,它将储存在电池组中的直流电能转换成家庭或企业可以使用的交流电能。
逆变器还必须确保其输出的交流电能符合当地电力网络的标准。
组成离网光伏发电系统主要由以下组成部分构成:太阳能板太阳能板是将太阳光转化为电能的关键部件。
太阳能板通常由光伏电池组成,当太阳光照到光伏电池时,光子释放出电子,电子通过电池的负载到达电池的正极,从而产生电流。
控制器控制器负责管理光伏电池吸收的电能以及电池组储存的电能。
控制器还可以保护电池组免受电流过载和过放电的影响。
电池组电池组是离网光伏发电系统的存储单元。
我们可以通过控制器对电池组进行管理,以确保其能够为家庭或企业提供足够的电能。
逆变器逆变器将储存在电池组中的直流电转换成交流电,以供我们生活、工作和娱乐中需要的设备使用。
逆变器还必须确保其输出的交流电符合当地电力网络的标准。
应用场景离网光伏发电光伏系统广泛应用于偏远地区和供电不稳定的地方。
这些系统可以为人们提供照明、手机充电、电视、空调以及其他家用电器等基本设施。
此外,一些人还使用离网光伏发电系统来降低用电成本。
由于太阳能板从阳光中吸收能量,因此阳光充裕的地区可以为家庭和企业提供可再生能源。
结论离网光伏发电光伏系统的组成、应用场景以及工作原理都非常简单。
该系统的最大优点是它可以为偏远地区和供电不稳定的地方提供直接利用太阳的能源的可能性。
离网光伏发电系统的价格在逐渐下降,它可能会在未来成为替代传统发电方法的主要能源来源之一。
光伏发电系统的并网与离网运行光伏发电是一种利用太阳能将光能转化为电能的可再生能源发电方式。
光伏发电系统不仅可以通过并网运行,将电能并入电网供给公共电力系统使用,也可以通过离网运行,独立供电。
一、光伏发电系统的并网运行光伏发电系统的并网运行是指将光伏发电装置所产生的电能与公共电力系统连接,将电能输出到公共电力系统中。
1. 并网逆变器光伏发电系统中的关键设备是并网逆变器,它负责将光伏发电装置的直流电转换为交流电,并将输出的电能与电网同步。
并网逆变器具有高效、可靠的特点,能够实现光伏发电系统的安全并网运行。
2. 电网接入与调度光伏发电系统需要与电网进行连接,接入方式包括单相接入和三相接入。
并网运行时,光伏发电系统会根据电网的需求自动调整电能的输出,实现对电网供电的支持。
3. 发电性能监测与管理光伏发电系统需具备远程监测与管理功能,及时获取光伏发电装置的工作状态和发电性能数据,以确保系统正常运行并提高发电效率。
二、光伏发电系统的离网运行光伏发电系统的离网运行是指将光伏发电装置所产生的电能用于自身独立供电,不与电网连接。
1. 储能装置光伏发电系统的离网运行需要配备适当的储能装置,如蓄电池组。
储能装置用于存储白天光伏发电装置产生的电能,以供夜间或阴雨天等无法正常发电时使用。
2. 控制与管理系统光伏发电系统的离网运行需要通过控制与管理系统对光伏发电装置、储能装置和负载进行智能管理。
控制与管理系统可实现对系统运行状态、储能和供电的监测与调节。
3. 安全保护与维护光伏发电系统的离网运行需要注意安全保护与维护工作。
定期检查光伏发电装置和储能装置的运行状态,合理设置保护装置,确保系统稳定运行和安全供电。
三、光伏发电系统的并网与离网切换光伏发电系统在并网和离网运行之间可以灵活切换,以适应不同的应用需求。
1. 自动切换装置光伏发电系统的并网与离网切换可通过自动切换装置实现。
自动切换装置能够监测电网供电情况和光伏发电装置的工作状态,实现自动切换功能,确保系统安全可靠运行。
太阳能光伏发电系统的并网与离网接入原理随着环境保护和可再生能源的重要性日益凸显,太阳能光伏发电系统逐渐成为人们关注的焦点。
太阳能光伏发电系统通过将太阳能转化为电能,为人们提供清洁、可再生的能源。
然而,对于太阳能光伏发电系统的并网与离网接入原理,很多人可能并不了解。
本文将介绍太阳能光伏发电系统的并网与离网接入原理,以增加大家对这一领域的了解。
1. 太阳能光伏发电系统的并网接入原理太阳能光伏发电系统的并网接入是指将发电系统与电网相连接,将太阳能转化的电能注入到电网中。
这样一来,太阳能光伏发电系统就可以实现对电网供电,同时也可以从电网获取电力。
在并网接入中,有几个关键的原理需要考虑。
首先,太阳能光伏发电系统需要通过逆变器将直流电转换为交流电。
逆变器是太阳能光伏发电系统中的核心设备,它可以将太阳能电池板产生的直流电转化为交流电,以适应电网的供电要求。
其次,太阳能光伏发电系统需要与电网保持同步。
为了确保发电系统与电网的稳定运行,发电系统的频率、相位和电压需要与电网保持一致。
这通常需要使用电网同步装置来实现。
最后,太阳能光伏发电系统还需要满足电网的保护要求。
在并网接入中,发电系统需要与电网进行双向通信,以确保在电网故障或发电系统故障时能够及时切断供电。
这通常需要使用保护装置来实现。
2. 太阳能光伏发电系统的离网接入原理太阳能光伏发电系统的离网接入是指将发电系统独立于电网运行,不与电网相连接。
这样一来,太阳能光伏发电系统可以自给自足地提供电力,无需依赖电网。
在离网接入中,同样有几个关键的原理需要考虑。
首先,太阳能光伏发电系统需要储能装置来存储过剩的电能。
由于太阳能光伏发电系统的发电量会受到天气等因素的影响,因此需要储能装置来存储过剩的电能,以便在夜间或低发电量时使用。
其次,太阳能光伏发电系统需要逆变器将直流电转换为交流电。
与并网接入不同的是,离网接入的逆变器需要满足系统的独立运行要求,能够稳定地将直流电转换为交流电供给用户使用。
光伏发电系统的并网与离网运行模式随着能源需求的不断增长和对环境保护的日益重视,光伏发电逐渐成为一种重要的清洁能源解决方案。
光伏发电系统可以实现将太阳能转化为电能,并将其注入到电网中供给社会使用,也可以在离网情况下直接供电。
本文将探讨光伏发电系统的并网与离网运行模式。
一、光伏发电系统的并网运行模式光伏发电系统的并网运行模式是指将光伏发电系统与电网相连接,实现太阳能发电与电网供电的互联互通。
在此模式下,光伏发电系统的电能产出将直接注入电网中,供应给用户使用。
并网运行模式可以分为以下几个关键环节:1. 电流注入电网在并网运行模式中,光伏发电系统通过逆变器将直流电转换成交流电,然后将交流电注入到电网中。
逆变器具有电流保护和电压控制的功能,以确保光伏发电系统与电网的稳定连接。
2. 电网管理光伏发电系统并网后,需要与电网相匹配,以确保稳定的供电。
电网管理系统可以监测电网负荷和光伏发电系统的输出功率,实施功率匹配和调整,以保持电网的稳定运行。
3. 回购政策在许多国家和地区,采用光伏发电系统的并网运行模式可以享受政府的回购政策。
根据此政策,电力公司将从光伏发电系统的主人购买多余电能,并将其纳入到电网供应范围内。
这种政策鼓励了更多人参与到光伏发电产业中。
二、光伏发电系统的离网运行模式光伏发电系统的离网运行模式是指将光伏发电系统独立于电网,通过储能设备将太阳能转换成电能,以满足用户的独立供电需求。
在离网运行模式下,光伏发电系统可以直接为用户提供电力,并通过存储设备将多余的电能储存起来,以备不时之需。
具体的运行模式如下:1. 充电与储能在离网运行模式下,光伏发电系统需要将太阳能转化为电能,并将其存储到适当的储能设备中,如电池组或储氢设备等。
这样,当太阳能不足时或在夜晚无法发电时,储能设备可以继续为用户供电。
2. 供电与管理光伏发电系统的离网运行模式可以满足用户的基本电力需求,包括家庭用电、商业用电等。
用户可以通过管理系统监控光伏发电系统的电力输出和储能设备的电量,以便根据需求合理利用电能。
太阳能光伏发电系统的并网与离网接入原理随着能源需求的增加和环境保护的重要性日益凸显,太阳能光伏发电系统越来越受到关注。
太阳能光伏发电系统的并网与离网接入原理是实现电能的有效利用和管理的关键。
本文将介绍太阳能光伏发电系统的并网与离网接入原理,并探讨其在能源领域的应用前景。
1. 太阳能光伏发电系统的基本原理太阳能光伏发电系统是通过利用太阳能将光能转化为电能的一种可再生能源系统。
它由光伏电池组件、逆变器、电池储能系统和电网连接等部分组成。
光伏电池组件是核心部件,它能够将太阳能转化为直流电能。
逆变器则将直流电能转化为交流电能,以满足家庭或工业用电需求。
电池储能系统的作用是在夜间或阴天时储存多余的电能,以确保系统的稳定运行。
电网连接部分则实现了太阳能光伏发电系统与电网的接入。
2. 并网接入原理并网接入是指将太阳能光伏发电系统与电网连接,将太阳能发电系统产生的电能注入到电网中。
在并网接入中,逆变器起到了关键作用。
逆变器能够将直流电能转化为交流电能,并将其与电网的电能进行同步。
同时,逆变器还能够监测电网的电压和频率,并根据电网的要求调整输出电能的质量和功率因数。
通过逆变器的控制,太阳能光伏发电系统可以实现与电网的互联互通,将多余的电能注入到电网中,从而实现电能的共享和有效利用。
3. 离网接入原理离网接入是指太阳能光伏发电系统不与电网连接,独立运行的一种方式。
在一些偏远地区或无法接入电网的地方,离网接入是一种理想的选择。
离网接入需要配备电池储能系统,以储存多余的电能供夜间或阴天使用。
同时,离网接入还需要配备逆变器和控制器等设备,以确保系统的稳定运行。
离网接入的优点是能够实现自给自足的能源供应,减少对传统能源的依赖,同时也能够更好地保护环境。
4. 太阳能光伏发电系统的应用前景太阳能光伏发电系统具有广阔的应用前景。
首先,太阳能光伏发电系统可以广泛应用于家庭和工业领域,满足电能需求,减少对传统能源的依赖。
其次,太阳能光伏发电系统的并网接入可以实现电能的共享和有效利用,为电网的稳定运行提供支持。
离网(独立)-型光伏发电系统设计与简易计算方法乛、離网(独立) 型光伏发电系统(一) 前言:光伏发电系统的设计与计算涉及的影响因素较多,不仅与光伏电站所在地区的光照条件、地理位置、气侯条件、空气质量有关,也与电器负荷功率、用电时间有关,还与需要確保供电的阴雨天数有关,其它尚与光伏组件的朝向、倾角、表面清洁度、环境温度等等因素有关。
而这些因素中,例如光照条件、气候、电器用电状况等主要因素均极不稳定,因此严格地讲,離网光伏电站要十分严格地保持光伏发电量与用电量之间的始终平衡是不可能的。
離网电站的设计计算只能按统计性数据进行设计计算,而通过蓄电池电量的变化调节两者的不平衡使之在发电量与用电量之间达到统计性的平衡。
(二) 设计计算依椐:光伏电站所在地理位置(緯度) 、年平均光辐射量F或年平均每日辐射量f(f=F/365) (详见表1)我国不同地区水平面上光辐射量与日照时间资料表1地区类别地区年平均光辐射量F年平均光照时间H(小时)年平均每天辐射量f(MJ/m2)年平均每天光照时间h(小时)年平均每天1kw/m2峰光照时间h1(小时) MJ/m2 .Kwh/m2一宁夏北部、甘肃北部、新疆南部、青海西部、西藏西部、6680-8401855-23333200-33018.3-23.08.7-9.0 5.0-6.3(印度、巴基斯坦北部)二河北西北部、山西北部、内蒙南部、宁夏南部、甘肃中部、青海东部、西藏东南部、新疆西部5852-6681625-18553000-32016.0-18.38.2-8.7 4.5-5.1三山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、江5016-58521393-16252200-30013.7-16.06.0-8.2 3.8-4.5苏北部、安徽北部、台湾西南部四湖南、湖北、广西、江西、淅江、福建北部、广东北部、陕西南部、江苏南部、安徽南部、黑龙江、台湾东北部4190-50161163-13931400-22011.5-13.73.8-6.0 3.2-3.8五四川、贵州3344-4190928-11631000-1409.16-11.52.7-3.8 2.5-3.2注:1)1 kwh=3.6MJ;亻2)f=F(MJ/m2 )/365天;3)h=H/365天;4) h1=F(KWh)/365(天)/1000(kw/m2 ) (小时) ;3) 5)表中所列为各地水平面上的辐射量,在倾斜光伏组件上的辐射量比水平面上辐射量多。
光伏发电系统独立型(离网型)光伏系统由电池组件PV阵列,充电控制器、逆变器、蓄电池等部件组成。
独立系统原理图离网光伏系统一般由太阳电池组件组成的光伏方阵、太阳能充放电控制器、蓄电池组、离网型逆变器、直流负载和交流负载等构成。
(1)太阳电池组件太阳电池组件是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件;太阳电池组件是将太阳光能直接转变为直流电能的阳光发电装置。
根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电阵列提供更大的电功率。
太阳电池组件具有高面积比功率,长寿命和高可靠性的特点,在20年使用期限内,输出功率下降一般不超过20%。
太阳能组件需要的电池板方阵功率计算公式为:P=W1*F/(Tm*η2*η3*L*Ka)W1:负载的消耗功率F:蓄电池放电效率的修正系数(通常取1.05)Tm:峰值日照时数,其值与辐照强度的值基本相同,这里取3.6hη2:方阵表面由于尘污遮蔽或老化引起的修正系数,通常可取0.9~0.95η3:方阵组合损失和对最大功率点偏离以及控制器效率的修正系数,通常可取0.9~0.95Ka:包括逆变器等交流回路的损失率(通常取0.7,如逆变器效率高可取0.8)(2)太阳能充放电控制器太阳能充放电控制器也称“光伏控制器”,其作用是对太阳能电池组件所发的电能进行调节和控制,最大限度地对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。
在温差较大的地方,光伏控制器应具备温度补偿的功能。
太阳能控制器通常有6个标称电压等级:12V、24V、48V、110V、220V、600V .(3)蓄电池组蓄电池组其主要任务是贮能,以便在夜间或阴雨天保证负载用电。
尽量配置1-2组蓄电池,可选用大容量的蓄电池,常见的有12V 和2V系列的蓄电池;蓄电池串并联时应遵循下列原则:同型号规格、同厂家、同批次、同时安装和使用。