一些概率统计方面的数学家的简介
- 格式:doc
- 大小:96.50 KB
- 文档页数:7
一些有关数学家的资料数学家是在数学领域做出突出贡献的科学家。
他们通过研究和发展数学理论和方法,推动了数学的进步和应用。
本文将介绍几位著名数学家的资料,包括他们的生平、成就和影响等。
1. 欧几里得(Euclid)欧几里得是古希腊数学家,被誉为几何学之父。
他生活在公元前3世纪,著有《原理》一书,成为了欧几里得几何学的基石。
他的几何体系在数学史上具有重要地位,影响了数学的发展方向。
2. 阿基米德(Archimedes)阿基米德是古希腊数学家和物理学家,生活在公元前3世纪。
他对浮力和杠杆原理做出了重要贡献,提出了阿基米德原理,揭示了浮力的本质。
他还研究了数学中的无穷大和无穷小概念,为微积分的发展奠定了基础。
3. 牛顿(Isaac Newton)牛顿是17世纪的英国科学家,被誉为近代物理学和数学的奠基人之一。
他的三大力学定律奠定了经典力学的基础,建立了数学分析的新方法。
他还发现了万有引力定律,并提出了微积分的发展理论。
4. 莱布尼茨(Gottfried Wilhelm Leibniz)莱布尼茨是17世纪的德国数学家和哲学家,与牛顿一同被誉为微积分的创始人。
他提出了微积分的符号表示方法,为它的发展和应用奠定了基础。
他还发展了二进制系统,并对计算机科学的发展产生了重要影响。
5. 埃尔米特(Charles Hermite)埃尔米特是19世纪的法国数学家,以其对数学分析的贡献而闻名。
他研究了椭圆函数和数论,在代数学、数论和函数论等领域都取得了重要成就。
他还发展了埃尔米特函数,成为物理学和工程学中的重要工具。
6. 高斯(Carl Friedrich Gauss)高斯是19世纪德国杰出的数学家和物理学家,被认为是数学天才。
他在几何学、代数学、数论和物理学等领域都有重要贡献。
他提出了高斯消元法,解决了线性代数中的方程组问题。
他还发现了高斯曲线,成为统计学和概率论中的重要概念。
以上是一些著名数学家的简要介绍,他们的贡献为数学的发展和应用带来了重要的推动力。
论述中国概率支付爱国数学家徐宝璐的生平主要贡献许宝騄(1910-1970),数学家。
在中国开创了概率论、数理统计的教学与研究工作。
在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。
许宝騄,字闲若。
1910年出生于北京。
原籍浙江杭州,祖父曾任苏州知府,父亲曾任两浙盐运使,系名门世家。
兄弟姊妹共7人,他最幼。
其兄许宝驹、许宝骙均为专家,姊夫俞平伯是著名的文学家。
许宝騄幼年随父赴任,曾在天津、杭州等地留居,大部分时间都由父亲聘请家庭教师传授,攻读《四书》、《五经》、历史及古典文学,10岁后就学作文言文,因此他的文学修养很深,用语、写作都很精练、准确。
1925年才进中学,在北京汇文中学从高一读起,1928年汇文中学毕业后考入燕京大学理学院。
由于中学期间受表姐夫徐传元的影响,对数学颇有兴趣,入大学后了解到清华大学数学系最好,决心转学念数学。
1929年入清华大学数学系,仍从一年级读起。
当时的老师有熊庆来、孙光远、杨武之等,一起学习的有华罗庚、柯召等人。
1933年毕业获理学士学位,经考试录取赴英留学,体检时发现体重太轻不合格,未能成行。
于是下决心休养一年。
1934年任北京大学数学系助教,担任正在访问北京大学的美国哈佛大学教授W.F.奥斯古德(Osgood)的助教,前后共两年,奥斯古德在他后来出版的书中,提到了许宝騄的帮助。
奥斯古德是分析方面的专家,在这两年内许宝騄做了大量的分析方面的习题,也开始了一些研究,1935年他发表了两篇论文,其中一篇是与江泽涵合作的,都是分析方面的论文。
那时芬布尔(Funbull)和A.C.阿蒂肯(Aitkien)合写的《标准矩阵论(Theoryofcanonicalmatrics)已出版,许宝騄熟练地掌握了矩阵的工具,尤其精通分块演算的技巧。
所以这两年内他在分析和代数两方面都打下了扎实的基础。
1936年许宝騄再次考取了赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。
中国当代著名数学家的介绍中国当代著名数学家介绍1.国际著名数学大师,沃尔夫数学奖得主,陈省身1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。
陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。
荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖.2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。
1936年,作为访问学者去英国剑桥大学工作。
1938年回国,受聘为西南联合大学教授。
1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。
1948年开始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。
还担任过多届中国数学会理事长。
此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。
概率论学者1.吉罗拉莫·卡尔达诺(1501年9月24日~1576年9月21日)意大利文艺复兴时期百科全书式的学者, 数学家、物理学家、占星家、哲学家和赌徒. 古典概率论创始人, 在他的著作《论运动、重量等的数字比例》建立了二项定理和二项系数的确定. 他一生写了200多部著作,内容涵盖医药、数学、物理、哲学、宗教和音乐。
[代数:在1545年出版的《大术》一书中,他第一个发表了三次代数方程一般解法的卡尔达诺公式,也称卡当公式(解法的思路来自塔塔利亚,两人因此结怨,争论经年)。
书中还记载了四次代数方程的一般解法(由他的学生费拉里发现)。
此外,卡尔达诺还最早使用了复数的概念。
概率论:卡尔达诺死后发表的《论赌博游戏》一书被认为是第一部概率论著作,他对现代概率论有开创之功。
他生于帕维亚,为达芬奇一位律师朋友的私生子,早年多病。
1526年获帕维亚大学医学博士学位,后成为欧洲名医,曾任英国国王爱德华六世的御医,并曾任教于帕维亚大学、博洛尼亚大学。
他的家庭生活非常不幸。
他最小也是最疼爱的儿子因为杀死不忠的妻子于1560年被判死刑。
他的女儿沦为妓女,死于梅毒。
他的另一个儿子是个赌徒,经常偷窃他的财物。
他自己因为推算耶稣的出生星位,被指控为大逆不道,于1570年入狱,并失去教职。
更为可悲的是,他的儿子参与了指控。
出狱后他移居罗马,获得了教皇格里高利十三世的年金资助,完成了自己的自传。
据说,他通过占星术推算出自己的忌辰。
2.雅各布·伯努利,1654-1705),伯努利家族代表人物之一,瑞士数学家。
被公认的概率论的先驱之一。
他是最早使用“积分”这个术语的人,也是较早使用极坐标系的数学家之一。
还较早阐明随着试验次数的增加,频率稳定在概率附近。
他还研究了悬链线,还确定了等时曲线的方程。
概率论中的伯努利试验与大数定理也是他提出来的。
雅各布对数学最重大的贡献是在概率论研究方面。
他从1685年起发表关于赌博游戏中输赢次数问题的论文,后来写成巨著《猜度术》,这本书在他死后8年,即1713年才得以出版。
两个数学家的简历【简介两位数学家】数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss,1777-1855)和安德烈·魏尔斯特拉斯(Andreyevich Markov,1856-1922)分别出生于不同的时代,但他们都在数学领域取得了举世瞩目的成就。
高斯被誉为“数学王子”,而魏尔斯特拉斯则被誉为“概率论的父亲”。
【生平事迹及贡献概述】卡尔·弗里德里希·高斯出生于德国,自幼展现出数学天赋。
他在数学领域的贡献极为广泛,包括数论、统计学、微分几何、大地测量学等多个领域。
高斯的研究成果具有深远的影响,例如高斯分布、高斯积分、高斯消元法等。
安德烈·魏尔斯特拉斯出生于俄罗斯,后成为法国籍数学家。
他的研究主要集中在概率论、实分析、复分析等领域。
魏尔斯特拉斯的成果包括马尔可夫链、魏尔斯特拉斯定理等。
他的研究为概率论的发展奠定了基础。
【数学成就及影响】高斯的数学成就不胜枚举,他对数学领域的贡献长达几十年。
高斯在数论方面的研究,尤其是对素数的分布规律的探索,使他成为了数学史上的传奇人物。
此外,他在统计学领域的研究,为后来的大数据分析奠定了基础。
魏尔斯特拉斯在概率论方面的研究具有开创性意义。
他的马尔可夫链理论成为了现代概率论和统计学的基础,对后续研究产生了深远的影响。
同时,他在实分析、复分析等领域的成果也为数学发展做出了重要贡献。
【对比分析两位数学家的研究特点和方法】高斯的研究特点是对数学问题进行全面深入的探索,善于运用广泛的数学知识解决复杂问题。
他的研究方法以严谨、细致著称,往往能找到问题背后的本质规律。
与之相比,魏尔斯特拉斯的研究更注重创新和开拓。
他在概率论领域的突破,正是通过对传统观念的挑战和对新问题的探索。
魏尔斯特拉斯的方法论较为简洁,善于抓住问题的关键,为数学领域带来新的观念和方法。
【总结】卡尔·弗里德里希·高斯和安德烈·魏尔斯特拉斯分别是德国和俄罗斯的数学巨匠,他们在数学领域的成就举世闻名。
你知道创造了概率统计的人是谁吗?概率统计在现代科学中扮演着至关重要的角色,可谓是数据和信息处理中的核心技术。
然而,你是否知道这一学科的创造者是谁呢?历史上,这一学科的诞生与发展过程中有很多别致而又富有意义的故事。
1. 诞生之始——帕斯卡在17世纪的法国,生活着一个富有天赋的年轻数学家——布莱士·帕斯卡。
他对概率统计有极强的兴趣,并且通过研究“渔翁问题”和“赌局问题”等传统数学问题,深入探究了概率统计的理论基础和应用极限。
这些研究成果迅速在学术领域引起了广泛关注,帕斯卡也随之成为了概率统计领域的先驱人物。
帕斯卡的贡献在于他将概率统计问题转化为数学问题,并把简单的数学知识应用于复杂的统计分析中。
他的这种方法为概率统计的发展打下了坚实的基础。
2. 缔造美名——贝叶斯在18世纪初,一个来自英国的牧师——托马斯·贝叶斯,突破性地提出了“贝叶斯定理”,这一公式被认为是概率统计领域中的关键公式之一。
贝叶斯定理的出现使得概率统计研究能够有更丰富的应用领域,比如对社会经济、医学科学等关键领域的决策提供更加科学化的支持。
贝叶斯定理是如此重要,以至于整个概率统计领域都被以他的名字命名为“贝叶斯学派”,并厚载于概率统计教材中,后人们将他视为概率统计历史上的“缔造者”。
3. 量化细节——高斯19世纪初,另一位德国数学家——卡尔·弗里德里希·高斯,发明了正态分布理论,被引用得最多的概率统计法则之一。
卡尔·弗里德里希·高斯将概率统计的过程转化为使用数学语言汇编的分析过程。
他通过量化细节和开创性的方法,为概率统计的研究和应用提供了极大的帮助。
卡尔·弗里德里希·高斯不仅是众所周知的天才数学家,还是概率统计领域中最杰出的人物之一。
4. 发展现状——海森堡在20世纪中期,量子力学和信息理论的出现,对概率统计领域的应用产生了深远的影响。
当时德国的物理学家——维尔纳·海森堡,通过模糊数学和图像处理技术,开始了最充分的概率统计思考。
数学之星追寻数学领域的杰出人物数学作为一门严密的科学,拥有许多杰出的学者和专家,他们在数学领域做出了卓越的贡献。
这些数学之星,以其深厚的理论造诣和创新的思维方式,引领着数学的发展和进步。
本文将追寻数学领域中的杰出人物,探索他们的卓越成就和贡献。
一、莱布尼茨:微积分之父数学之星莱布尼茨,被誉为微积分之父,他在17世纪发现了微积分的基本原理,为现代数学的发展奠定了基础。
莱布尼茨用他创造性的思维和独立发现的方式,将微积分从几何学中解放出来,并建立了微积分的基本概念和符号体系。
他对微积分的研究不仅在数学领域有重大影响,还在物理、工程学以及其他领域发挥了巨大作用。
二、高斯:数学天才的代表数学之星高斯,无疑是数学领域最重要的人物之一。
高斯在数学的各个领域都取得了卓越的成就,特别是在代数、数论和概率论方面。
他发现了数论中的很多重要定理和规律,提出了高斯消元法等重要数学方法,并对概率论的基本概念进行了系统的研究。
高斯的成就不仅在于数学的严密性和深度,更在于他的创新思维和对问题的深入剖析。
三、爱因斯坦:数学与物理的结合数学之星爱因斯坦,虽然他主要是物理学家,但他在数学领域的贡献却是不可忽视的。
爱因斯坦凭借他非凡的智慧和深邃的数学思维,提出了狭义相对论和广义相对论等革命性的物理理论。
这些理论中涉及了大量的数学运算和推导,如流形、张量等数学工具成为了研究物理现象的重要基础。
爱因斯坦的数学成就展示了数学与物理之间的紧密联系。
四、图灵:计算机科学的奠基人数学之星图灵,被誉为计算机科学的奠基人,他的工作对计算机科学和人工智能产生了深远的影响。
图灵提出了图灵机的概念,定义了计算的概念和可计算性问题,并建立了计算机科学的理论基础。
他的工作不仅扩展了数学的范围,还为计算机科学的发展打下了坚实基础,并在推动现代科技革命中起到了重要作用。
五、佩雷尔曼:百年难题的解答者数学之星佩雷尔曼,是当代数学界最引人注目的人物之一。
他通过自己的研究和努力,证明。
数学方程历史人物知识点1. 艾萨克·牛顿(1643-1727):英国物理学家和数学家,他发现了微积分以及万有引力定律,提出了经典物理学的基石。
2. 勒让德(1742-1782):法国数学家,他对微积分学的发展做出了巨大贡献,特别是在变分法和拉格朗日方程中的应用。
3. 卢瑟福德·迈尔(1868-1951):德国物理化学家,他提出了最大似然估计的概念,推动了统计学的发展,并为量子力学的发展做出了贡献。
4. 伽罗瓦(1811-1832):法国数学家,他发现了伽罗瓦理论,该理论为代数方程提供了解决方法,并对数论和代数几何学的发展有重要影响。
5. 埃利奥特·门德尔逊(1884-1948):美国数学家,他在代数数论和无理数理论中做出了突出贡献,提出了著名的门德尔逊定理。
6. 赫尔曼·威尔逊(1864-1940):英国数学家,他研究了代数数论和模形式,在数论和数学物理学方面做出了重要贡献,被誉为20世纪最伟大的数学家之一。
7. 安德烈·韦伊(1906-1982):苏联/俄国数学家,他在微分几何学和拓扑学领域做出了重要贡献,特别是在李群和李代数的研究方面。
8. 皮亚诺(1858-1932):意大利数学家和逻辑学家,他在数理逻辑和数学基础上做出了杰出贡献,提出了皮亚诺公理和皮亚诺体系。
9. 卡尔·弗里德里希·高斯(1777-1855):德国数学家,他在数论、统计学、微分几何学和电磁学等领域做出了重要贡献,被誉为现代数学之父。
10. 利奥波德·克朗克(1847-1912):瑞士数学家,他在代数、几何和分析等领域做出了重要贡献,特别是在群论和复变函数方面的研究。
中国著名数学家简介中国著名数学家名单多不胜数,有来自古代的苏轼、魏纶、欧阳修,也有活跃于现代的杨振宁、陈省身、蔡元培等,他们凭借其超凡的数学天赋、精湛的数学技能和心灵的火炬,将中国数学发展到新的高峰,为推动世界数学的发展做出了不可磨灭的贡献。
苏轼(1037~1101年),字子瞻,号东坡居士,是宋朝著名的文学家、书法家、数学家,被尊称为“诗仙”,被称为“文学圣手”。
苏轼曾在《颜氏数书》中提出了求取一般三角形三边长的方法,有效地解决了古代数学家遇到的诸多问题,使三角函数理论发展得更透彻,并广泛应用于航海、天文和其他领域。
魏纶(10191092年),字德谟,号续山,唐朝著名的学者,著有《算经》《算学启蒙》《算学启蒙初拾》等。
魏纶在数学方面取得了巨大成就,尤其是在几何学方面,他提出了“魏氏定理”,指出了直角三角形腰边对角线的平方和是正三角形边长的平方和,奠定了“狭义相等”的概念,从而使数学关系更清晰、更完善。
欧阳修(1007~1072年),字子厚,唐朝南宋的诗人和学者,著有《古今图书钞》《搜神记》《洪武正统录》等。
欧阳修是古代数学家中的先驱,在数学方面他提出了欧氏定理”,也就是已知直角三角形的一条直角边和斜边,凭其它一边的和或差可算出另一边,这一结论被历史上称为“拉丁定理”,曾经长期成为古代数学解决直角三角形问题的基础。
杨振宁(1934~),现任美国斯坦福大学教授,被普遍认为是当今世界最伟大的理论物理学家之一,在数学统计学领域也做出了卓越成绩。
他从统计学角度深刻揭示了随机性的本质,发展了独特的几何理论,这些理论在计算机科学、人工智能、倒排索引和图灵测试中都有重大应用,为世界数学发展做出了突出贡献。
陈省身(1912~1991),现任中国科学院院士,毕业于中国上海交通大学,曾任过北京大学数学系主任,把原来落后的中国数学研究发展到一个新水平,也是现代中国数学的奠基人。
他是中国最早的近代概率论研究者,在中国引进统计学和概率论等学科,发展了中国统计数学,把统计数学的理论应用到工业生产、商业财务、农林经济等领域,加速了中国经济的发展。
一些概率统计方面的数学家的简介2008-07-29 11:51:03| 分类:统计\数学人物| 标签:|字号大中小订阅一些概率统计方面的数学家的简介转自/teacherweb/detail.phpusername=sunfujie&aid=4501&page=index下面向大家介绍一些概率统计方面的数学家的简介.好多没有,希望大家可以补充波莱尔(1871~1956)法国数学家1871年1月生于法国阿韦龙省的圣·阿弗里克,1956年2月卒于巴黎.1893年毕业于巴黎高等师范学校,在里尔大学任教.1894年获博士学位,1909年任巴黎大学理学院函数论教授第一次世界大战后改任概率及数学物理学教授.1921年当选为法国科学院院士,1928年协助建立庞加莱研究所并任所长直至去世.波莱尔把康托尔的点集论同自己的知识相结合,建立起实变函数论,他将测度从有限空间推广至更大一类点集(波莱尔可测集)上,建立起测度论的基础.20世纪初,他把概率论同测度结合起来,1909年引进可数事件的概率,填补了古典有限概率和几何概率之间的空白,同时证明了强大数律的一种特殊情形.泊松,S.D. (1902~1950)法国数学家,1781年6月生于法国皮蒂维耶,1840年4月卒于法国索镇.1798年入巴黎综合工科学校深造,其数学才能受到拉格朗日和拉普拉斯的注意,毕业时因优秀的毕业论文而被指定为讲师,1806年任该样教授.1809年任巴黎理学院力学教授.1812年当选为巴黎科学院院士.泊松的科学生涯开始于研究微分方程及其在摆的运动和声学理论中的应用.他工作的特色是应用数学方法研究各类力学和物理问题,并由此得到数学上的发现.他主张概率方法的普遍适用性,他得到了概率论中著名的泊松分布.他一生共发表300多篇论著,最著名的著作有《力学教程》(二卷,1811,1833)和《判断的概率研究》(1837).棣莫佛.A. (1667~1754)棣莫佛是分析三角和概率论的先驱,1667年5月生于法国维特里—勒弗朗索瓦,1954年11月卒于伦敦.原来是法国加尔文派教徒,在新旧教斗争中被投入监狱,获释后于1685年移居伦敦,在那里以担任家庭教师和保险事业顾问等终其一生.他和I.牛顿及天文学家E.哈雷友善,谙熟牛顿的流数术,1697年被选入英国皇家学会.1718年出版《机遇论》,这是早期概率论的重要著作,其中第一次定义独立事件的乘法定理.在《分析杂录》(1730)中给出的近似公式,1733年棣莫佛用的近似公式导出正态分布的频率曲线作为二项分布的近似.他是最早给出棣莫佛公式的学者之一.费马.P. (1601~1665)法国数学家1601年8月生于法国南部博蒙-德洛马涅,1665年卒于卡斯特尔.他利用公务之余钻研数学,在数论、解析几何学、概率论等方面都有重大贡献,被誉为“业余数学家之王”.费马博览群书,精通数国文字,掌握多门自然科学.虽然年近30才关注数学,但成果累累.他性情淡泊,为人谦逊,对著作无意发表,去世后他的儿子S.费马将其论述汇集成书,在图卢兹出版(1679).费马特别爱好数论,他证明或提出许多命题.最有名的就是“费马大定理”.费马较早得到了解析几何的要旨,他是微积分学的先驱之一,他还是17世纪兴起的概率论的探索者之一.费希尔,R.A. (1890~1962)英国数学家,现代数理统计学的奠基人.1890年2月生于伦敦,1962年7月逝世.他1913年毕业于剑桥大学,1933年起任伦敦大学教授.在20世纪二三十年代提出了许多重要的统计方法,开辟了一系列统计学的分支领域.他发展了正态总体下各种统计量的抽样分布,与叶茨合作创立了“试验设计”统计分支并提出相适应的方差分析方法;费希尔在假设检验分支中引进了显著性检验概念并开辟了多元统计分析的方向.在20世纪三四十年代,费希尔和他的学派在数理统计学研究方面占据着主导地位.由于他的成就,曾多次获得英国和多国的荣誉,1952年被授予爵士称号.他发表的294篇论文收集在《费希尔论文集》中,其专著有:《研究人员用的统计方法》(1925),《试验设计》(1935),《统计方法与科学推断》(1956)等冯·诺伊曼.J (1903~1957)著名数学家.1903年生于匈牙利布达佩斯,1957年2月在华盛顿因病去世.诺伊曼从小就显示出数学天才,1921年入柏林大学,1923年入瑞士苏黎世联邦工业大学学习化学,在此期间开始研究数理逻辑,1926年春在布达佩斯大学获博士学位.之后相继在柏林大学、汉堡大学和普林斯顿大学任教,1933年成为普林斯顿高等研究所教授.第二次世界大战期间,曾任研制原子弹顾问,参加研制计算机.1954年成为美国原子能委会委员.冯·诺伊曼是20世纪最重要的数学家之一,在纯粹数学和应用数学方面都有杰出的贡献.1940年以前主要是纯粹数学的研究,1940年以后转向应用数学.从1942年起,与他人合作完成的《博弈论和经济行为》一书是博弈论中的经典著作,使他成为数理经济学的奠基人之一.高斯,C.F. (1777~1855)德国数学家和物理学家.1777年4月30日生于德国布伦瑞克幼时家境贫困,聪敏异常,受一贵族资助才进学校受教育.1795~1789年在哥廷根大学学习,1799年获博士学位.1870年任哥廷根大学数学教授和哥廷根天文台台长,直到逝世.1833年和物理学家W.E.韦伯共同建立地磁观测台,组织磁学学会以联系全世界的地磁台站网.1855年2月23日在哥廷根逝世.高斯长期从事数学并将数学应用于物理学、天文学和大地测量学等领域的研究,著述丰富,成就甚多.他一生共发表323篇(种)著作,提出404项科学创见(发表178项),在各领域的主要成就有:(1)利用几何学知识研究光学系统近轴光线行为和成像,建立高斯光学.(2)天文学和大地测量学中,如小行星轨道的计算,地球大小和形状的理论研究等.(3)结合试验数据的测算,发展了概率统计理论和误差理论,发明了最小二乘法,引入高斯误差曲线.此外,在纯数学方面,对代数、几何学等的若干基本定理作出严格证明.柯尔莫哥洛夫,A.H (1930~1987)苏联科学家,1903年4月生于俄国顿巴夫,1987年10月卒于苏联莫斯科.1920年入莫斯科大学学习,1931年任莫斯科大学教授后任该校数学所所长,1939年任苏联科学院院士,他对开创现代数学的一系列重要分支做出了重大贡献.柯尔莫哥洛夫建立了在测度论基础上的概率论公理系统,奠定了近代概率论的基础,他也是随机过程论的奠基人之一.1980年由于他在调和分析、概率论、遍历理论等方面的出色工作获沃尔夫奖.此外,他在信息论、测度论、拓朴学等领域都有重大贡献.他的工作为数学的一系列领域提供了新方法,开创了新方向,揭示了不同数学领域间的联系,并提供了它们在物、工程、计算机等学科的应用前景.他是20世纪最有影响的数学家.是美国、法国、英国等多国院士或皇家学会会员,是三次列宁勋章的获得者.拉普拉斯.P.S. (1749~1827)法国数学家、天文学家.1749年3月生于法国博蒙昂诺日,1927年3月卒于巴黎.年幼时就显露出数学才能,1767年他到巴黎拜见达朗贝尔,经过周折,终于以自己对力学原理的论述受到达朗贝尔的称赞,随即被介绍到巴黎军事学校任数学教授,1875年当选为法国科学院院士.1795年后,任巴黎综合工科学校、高等师范学校教授.1816年被选为法兰西科学院院士,后任该院院长.拉普拉斯的研究领域很广,涉及天文、数学、物理、化学等多方面课题.他把数学当作解决问题的主要工具,在运用数学的同时又创造和发展了许多新的数学方法.他在微分方程、复变函数论、代数学和概率论中都有卓越的贡献.他被公认为概率论的奠基人之一.拉普拉斯的研究成果大都包括在《宇宙体系论》(1796)中.《概率的分析理论》(1812)概率论方面一部内容丰富的奠基性著作,书中首次明确给出了概率的古典定义,系统叙述了概率论的基本定理,建立了观测误差理论(包括最小二乘法),并把概率论应用于人口统计.他的《关于概率的哲学探讨》为该书第二版的序言,文中提出了关于概率论的重要见解;概率论将成为人类知识中最重要的组成部分等等.马尔可夫.A.A (1856~1922)苏联科学家,1856年6月生于梁赞,1922年7月卒于彼得堡.1874年入圣彼得大学,1878年毕业,两年后取得硕士学位并任圣彼得堡大学副教授,1884年取得物理,数学博士学位.1886年任该校教授,1896年被选为圣彼得堡科学院院士,1905年被授予功勋教授的称号.马尔可夫是彼得堡数学学派的代表人物,以数论和概率论方面的工作著称.在数论方面,他研究了连分数和二次不等式理论,解决了许多难题.在概率论中,他发展了“矩法”扩大了大数律和中心极限定理的应用范围.马尔可夫最重要的工作是在1606~1912年间提出并研究了一种能用数学分析方法研究自然过程的一般图式—马尔可夫链,同时开创了一种无后效性的随机过程(马尔可夫过程)的研究.马尔可夫过程在自然科学、工程技术和公共事业中有广泛的应用.他的主要著作有《概率演算》等.切比雪夫.П.Л (1821~1894)俄国数学家,机械学家.1821年5月生于奥卡托瓦,1894年12月卒于彼得堡.1841年毕业于莫斯科大学,1849年获博士学位,1847~1882年在彼得堡大学任教,1850年成为教授.1859年当选为彼得堡科学院院士,他还是许多国家科学院的外籍院士和学术团体成员,1890年获法国荣誉团勋章.在概率论方面切比雪夫建立了证明极限定理的新方法—矩法,用十分初等的方法证明了一般形式的大数律,研究了独立随机变量和函数收敛条件,证明了这种和函数可以按的方幂渐近展开.他的贡献使概率论的发展进入新阶段.此外,切比雪夫还创立了函数构造理论,建立了著名的切比雪夫多项式.他在数学分析中也做了大量的工作.切比雪夫去世后,先后出版了他的论文集、全集和选集.1994年苏联科学院设立了切比雪夫奖金.瓦尔德.A (1902~1950)著名统计学家.1902年10月生于罗马尼亚的克卢日,1950年12月因飞机失事遇难.1927年入维也纳大学学习数学,1931年获博士学位,后在经济学领域作研究工作.1938年到美国,在哥伦比亚大学做统计推断理论方面的工作,1944年任教授,1946年被任命为新建立的数理统计系的执行官员.瓦尔德在统计学中的贡献是多方面的,最重要的有:1939年开始发展的统计决策理论.他提出了一般的判决问题,引进了损失函数、风险函数、极大极小原则和最不利先验分布等概念,这方面的成果系统总结反映在他的专著《统计决策函数论》(1950)中另一成果是序贯分析,他在第二次世界大战期间首次提出了著名的序贯概率比检验法(SPRT),并研究了这种检验法的各种特性,如计算两类错误概率及平均样本量.他和J.沃尔弗维茨SPRT的最优性(1948)被认为是理论统计领域中最深刻的结果之一.他的专著《序贯分析》(1947)奠定了序贯分析的基础.他的重要论文被收集在《瓦尔德概率统计论文集》(1955)中.辛钦, A.Я.(1894~1959)苏联数学家与数学教育家,现代概率论的奠基者之一,在分析学、数论及概率论对统计力学的应用方面有重要贡献.辛钦1894年7月生于莫斯科,1959年11月卒于莫斯科.他1916年毕业于莫斯科大学,并先后在本校及苏联科学院捷克洛夫数学研究所工作,1927年成为教授,1939年当选为苏联科学院通讯院士.他还是俄罗斯教育科学院院士.他最早的概率论成果是贝努里实验序列的重对数律,它导源于数论,是莫斯科学派的开端.直到现在重对数律仍然是概率论的重要研究课题之一.独立随机变量序列是概率论的重要领域,他与柯尔莫哥洛夫讨论了随即变量函数的收敛性,他证明了辛钦弱大数律等,他提出并证明了严格平稳过程的一般遍历定理,首次给出了宽平稳过程的概念并建立了它的谱理论基础.他还研究了概率极限理论与统计力学基础的关系.辛钦的10本专著涉及数学分析、概率极限理论、排队论、信息等,对促进社会发展起了显著的作用.许宝禄(1910~1970)中国现代数学家,统计学家,1910年4月生于北京,1928年入燕京大学学习,1930年转入清华大学攻数学,毕业后在北京大学任助教,1936年赴英国留学,在伦敦大学读研究生,同时又在剑桥大学学习,获哲学博士和科学博士学位.1940年回国任北京大学教授,执教于西南联合大学.1945年再次出国,先后在美国泊克利加州大学、哥伦比亚大学等任访问教授.1947年回国后一直在北京大学任教授.他是中国科学院学部委员.许宝禄是中国早期从事概率论和数理统计学研究并达到世界先进水平的一位杰出学者.他在多元统计分析与统计推断方面发表了一系列出色论文,推进了矩阵论在数理统计学中的应用.他对高斯一马尔可夫模型中方差的最优估计的研究是后来关于方差分量和方差的最佳二次估计的众多研究的起点,他揭示了线性假设的似然比检验的第一个优良性质,经研究他得到了样本方差分布的渐进展开以及中心极限定理中误差大小的阶的精确估计及其他若干成果.20世纪50年代后他抱病工作,为国家培养新一代数理工作者做出很大贡献,并对马尔可夫过程转多函数的可微性、次序统计量的极限分布等多方面开展研究,并发表了有价值的论文.他的著作主要有《抽样论》、《许宝禄论文选集》等.卡尔·皮尔逊(Karl Prarson,1857-1936)英国生物学家和统计学家,旧数理学派和描述统计学派的代表人物,现代统计科学的创立者。