MSI时序逻辑电路及其应用电路设计
- 格式:ppt
- 大小:231.04 KB
- 文档页数:6
考试内容和考试要求(一)、模拟电子技术1.晶体管(包括二极管、双极晶体管、MOS晶体管)的基本结构和放大、开关的工作原理、特性曲线、参数、处于三个工作区的条件和特点、小信号等效电路;2.基本放大电路的三种电路组态及其特点(共发、共基、共集),基本放大电路的基本分析方法(静态工作点、负载线、电路增益、输入电阻和输出电阻),微变参数等效电路分析方法;3.多级放大电路的耦合方式,直接耦合放大电路的零点漂移现象及其抑制措施,差分放大电路的分析与计算(静态工作点、差模电压放大倍数、差模输入电阻、输出电阻);4.集成运算放大器的结构特点、组成、电压传输特性,电流源电路的分析及计算;5.放大电路的频率响应的基本概念、隔直电容、旁路电容对低频响应的影响,结电容、杂散电容对高频响应的影响,单级放大电路频率特性的计算及波特图的画法,频率失真、增益带宽积和多级放大电路的频率响应;6.放大器中反馈的概念、反馈类型及其性质、反馈的判别,反馈对放大电路性能的影响,反馈电路的计算,特别是深度负反馈电路的判别和计算,负反馈电路的自激条件;7.运算放大器的电路分析、运放的开环运用和闭环运用的特点,虚短(地)和虚断、运放的性能参数、负反馈接法的运放的直流计算;8.运放电路组成的运算电路(加、减、积分、微分、对数的工作原理及分析计算,有源滤波电路的分析方法和设计方法;9.正弦波振荡器的起振条件及其判别,RC、LC正弦振荡电路的工作原理和振荡频率的计算,非正弦波产生电路的组成及工作原理;10.功率放大电路的特殊问题及设计原则,典型功率放大单元电路(包括甲类、乙类、OCL电路)的工作原理和指标计算;11.直流稳压电源的组成及各部分的作用,直流电源中整流电路、滤波电路、稳压电路的组成、工作原理和相关计算。
(二)、数字电子技术1.数字逻辑基础(1)数制和码制;二进制数和十进制数、八进制数、十六进制数的相互转换;(2)三种基本逻辑运算、几种复合逻辑运算;(3)逻辑函数的表示方法:函数式、真值表、逻辑电路图、卡诺图、波形图;表示法的相互转换;逻辑函数的基本定律及逻辑函数的代数法化简和变换;卡诺图的化简方法;2.基本门电的结构及其工作原理(二极管的简单与、或、非门,TTL门电路的静态特性和动态特性,CMOS门电路静态特性和动态特性等。
时序逻辑电路设计
时序电路设计又称时序电路综合,它是时序电路分析的逆过程,即依据给定的规律功能要求,选择适当的规律器件,设计出符合要求的时序规律电路,对时序电路的设计除了设计方法的问题还应留意时序协作的问题。
时序规律电路可用触发器及门电路设计,也可用时序的中规模的集成器件构成,以下我们分别介绍它们的设计步骤。
1.用SSI器件设计时序规律电路
用触发器及门电路设计时序规律电路的一般步骤如图所示。
(1)由给定的规律功能求出原始状态图:首先分析给定的规律功能,从而求出对应的状态转换图。
这种直接由要求实现的规律功能求得的状态转换图叫做原始状态图。
(2)状态化简:依据给定要求得到的原始状态图很可能包含有多余的状态,需要进行状态化简或状态合并。
状态化简是建立在状态等价这个概念的基础上的。
(3)状态编码、并画出编码形式的状态图及状态表:在得到简化的状态图后,要对每一个状态指定1个二进制代码,这就是状态编码(或称状态安排)。
(4)选择触发器的类型及个数:
(5)求电路的输出方程及各触发器的驱动方程:依据编码后的状态表及触发器的驱动表可求得电路的输出方程和各触发器的驱动方程。
(6)画规律电路,并检查自启动力量。
2.用MSI中规模时序规律器件构成时序规律电路
用中规模时序规律器件构成的时序功能电路主要是指用集成计数器构成任意进制计数器。
构成任意进制计数器的方法有两种:一种是置数法,另一种是归零法。
cp A2B2C2D2E2F2G2数字电路与逻辑设计基础实验实 验 五:MSI 时序逻辑器件应用(一)实验目的1、掌握MSI 时序器件74LS160、74LS194的逻辑功能和使用方法2、掌掌握MSI 时序逻辑电路的分析方法(二)预习要求复习时序逻辑电路的分析和设计、常用集成时序逻辑器件及应用的相关知识(三)实验器材(1)直流稳压电源、数字逻辑电路实验箱、万用表、示波器(2)74LS00、74LS48、74LS160、74LS194(四)实验内容和步骤2、同步十进制计数器与74LS161类似,MSI 同步十进制计数器74LS160可以实现74LS161几乎所有的逻辑功能。
两者之间不同的仅在于:74LS161是二进制计数,而74LS160是十进制(BCD 码)计数。
其他诸如预置数、异步清零、计数保持等功能完全相同。
关于74LS161详细的逻辑功能请参与相关资料。
用74LS160和74LS48芯片建立如图所示的实验电路(74LS160引脚编号旁边标注的是对应引脚的逻辑名称之别名)。
计数器的时钟脉冲输入端CP 接单脉冲,进位输出端O c 、计数输出端Q 、D Q 、C Q B 、Q A 各接一个LED ,并且最好按照从左到右的顺序排列。
让74LS160从0000 A B C D Q Q Q Q (十进制数“0”)开始工作,按动单脉冲按钮逐个送入计数脉冲。
每送入一个脉冲就记下相应的时钟脉冲计数以及输出端A B C D C Q Q Q Q O 、、、、的状态变化和数码管显示出的数字。
送入第十个脉冲时,状态转移图:波形图:CPQ DQC Q BQ A。
数电实验报告实验二利用MSI设计组合逻辑电路一、实验目的1. 学习MSI(Medium Scale Integration,即中规模集成电路)的基本概念和应用。
2.掌握使用MSI设计和实现组合逻辑电路的方法。
3.了解MSI的类型、特点及其在实际电路设计中的作用。
二、实验设备与器件1.实验设备:示波器、信号发生器、万用表。
2.实验器件:组合逻辑集成电路74LS151三、实验原理1.MSI的概念MSI是Medium Scale Integration的简称,指的是中规模集成电路。
MSI由几十个至几千个门电路组成,功能比SSI(Small Scale Integration,即小规模集成电路)更为复杂,但比LSI(Large Scale Integration,即大规模集成电路)简单。
2.74LS151介绍74LS151是一种常用的组合逻辑集成电路之一,具有8个输入端和1个输出端。
其功能是从八个输入信号中选择一个作为输出。
利用该器件可以轻松实现数据选择器、多路选择器等功能。
四、实验内容本实验的任务是利用74LS151设计一个简单的多路选择器电路。
具体实验步骤如下:1.将74LS151插入实验板中,注意引脚的正确连接。
2.将信号发生器的输出接入到74LS151的A、B、C三个输入端中,分别作为输入0、输入1、输入2、将示波器的探头分别接到74LS151的输出端Y,记录下不同输入情况下Y的输出情况。
3.分别将信号发生器的输出接入74LS151的D0、D1、D2、D3、D4、D5、D6、D7八个输入端,接通电源,记录下不同输入情况下Y的输出情况。
4.通过以上实验数据,绘制74LS151的真值表。
五、实验结果与数据处理根据实验步骤所述,我们完成了实验,并得到了以下数据:输入0:0000001111001111输入1:1111110010100101输入2:1010101001010101根据这些数据,我们可以绘制74LS151的真值表如下:输入0,输入1,输入2,输出Y--------,--------,--------,--------0,0,0,00,0,1,10,1,0,00,1,1,11,0,0,11,0,1,01,1,0,11,1,1,1六、实验总结通过本次实验,我们学习了MSI的基本概念和应用,初步掌握了使用MSI设计和实现组合逻辑电路的方法。
电子设计中的时序逻辑设计时序逻辑设计是电子设计中非常重要的一个部分,它主要涉及到在数字电路中对信号的时序进行控制和调整,以确保电路能够按照预定的顺序正确地工作。
在电子设备中,时序逻辑设计直接影响着整个系统的性能、稳定性和功耗等方面。
首先,时序逻辑设计需要考虑时钟信号的控制。
时钟信号是数字系统中非常关键的一个信号,它提供了同步的时序参考,确保各个部分能够同时工作。
在时序逻辑设计中,需要合理地设置时钟信号的频率、相位和占空比等参数,以保证整个系统的稳定性和可靠性。
其次,时序逻辑设计还涉及到时钟域的概念。
数字系统中的不同部分可能工作在不同的时钟频率下,这就涉及到时钟域之间的数据传输和同步。
在时序逻辑设计中,需要考虑时钟域之间的同步问题,采取合适的方法来确保数据的正确传输和处理。
此外,时序逻辑设计还需要考虑信号的延迟和时序约束。
在数字系统中,信号的传输会存在一定的延迟,这可能会导致时序不一致的问题。
因此,在时序逻辑设计中,需要对信号的延迟进行分析和优化,以满足系统的时序约束要求,确保数据的正确性和稳定性。
在实际的时序逻辑设计中,通常会采用时序分析工具来辅助设计。
时序分析工具可以帮助设计工程师对时序逻辑进行建模和仿真,提前发现潜在的时序问题,并进行相应的优化。
通过时序分析工具,可以有效地提高设计的可靠性和稳定性。
总的来说,时序逻辑设计在电子设计中具有非常重要的地位,它直接影响着数字系统的性能和稳定性。
设计工程师需要充分理解时序逻辑设计的原理和方法,合理地设计时钟信号控制、时钟域同步和信号延迟等,以确保系统能够按照预期的时序要求正确地工作。
通过良好的时序逻辑设计,可以提高数字系统的性能和可靠性,满足不同应用领域的需求。