孙训方版。材料力学公式总结材料大全
- 格式:doc
- 大小:179.36 KB
- 文档页数:10
材料力学孙训方材料力学是研究物质在受力作用下产生形变和破坏的学科,是力学的一个重要分支。
材料力学主要研究的对象是材料,包括金属、塑料、陶瓷、复合材料等各种类型的材料。
材料力学研究的内容主要有拉伸、压缩、剪切、弯曲等力学性能以及材料的破坏机理等方面。
拉伸是材料中最常见的受力情况之一。
当外部力作用于材料上时,会产生拉伸力,使材料发生形变。
拉伸的目的是研究材料在正应力作用下的性能,如弹性模量、屈服强度和断裂强度等。
拉伸试验可以通过测量材料的长度和直径的变化来计算形变和应力,从而得到应力-应变曲线,从中可以推导出材料的性能指标。
压缩是材料受力的另一种情况。
当外部力作用于材料上时,会产生压缩力,使材料发生压缩形变。
压缩试验可以测量材料在正应力作用下的性能,如弹性模量和抗压强度等。
与拉伸试验类似,压缩试验也可以得到应力-应变曲线来分析材料的性能。
剪切是材料在受到平行于其截面方向的两个相对方向的力作用下发生的形变。
剪切力会使材料发生剪切变形,从而产生剪应力。
材料的剪切性能可以通过剪切试验来研究,常用的剪切试验方法有剪切强度试验和剪切模量试验。
弯曲是材料受到外力使其产生弯曲现象。
弯曲试验可以测量材料在受到弯矩作用下的性能,如抗弯强度和弹性模量等。
弯曲试验可以通过测量材料的挠度和应力来计算材料的性能参数。
材料破坏机理的研究是材料力学中的重要内容之一。
材料在受到外力作用时,可能会发生破坏,如断裂、塑性变形、蠕变等。
破坏机理的研究可以帮助我们了解材料的强度极限和在不同应力条件下的变形行为。
材料力学是工程领域中不可或缺的学科,广泛应用于材料的设计、加工和使用过程中。
通过对材料力学的研究,可以更好地理解材料的力学性能,为制造各类产品提供科学依据,提高产品的性能和可靠性。
材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
孙训方版。
材料力学公式总结大全第一篇:孙训方版。
材料力学公式总结大全材料力学重点及其公式材料力学的任务(1)强度要求;(2)刚度要求;(3)稳定性要求。
变形固体的基本假设(1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。
外力分类:表面力、体积力;静载荷、动载荷。
内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。
(3)根据平衡条件,列平衡方程,求解截面上和内力。
应力:p=lim∆P=dP正应力、切应力。
dA∆A→0∆A变形与应变:线应变、切应变。
杆件变形的基本形式(1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。
静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。
动载荷:载荷和速度随时间急剧变化的载荷为动载荷。
失效原因:脆性材料在其强度极限极限应力理想情形。
σb破坏,塑性材料在其屈服极限σs时失效。
二者统称为[σ]=σs[σ]=σb塑性材料、脆性材料的许用应力分别为:n3,nb,强度条件:σmax=⎛N⎫Nmax⎪≤[σ]≤[σ]⎝A⎭maxA,等截面杆轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:∆l=l1-l,沿轴线方向的应变和横∆bb1-bNP∆l'ε===。
横向应变为:截面上的应力分别为:ε=,σ=,横向应AAlbb 变与轴向应变的关系为:ε'=-με。
胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即σ=Eε,这就是胡克定律。
E为弹性模量。
将应力与应变的表达式带入得:∆l=Nl EA静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
dφ。
物理关系——胡克定dxdφdφdφ2=Gρ2dA圆轴扭转时律τρ=Gγρ=Gρ。
材料力学重点及其公式材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。
变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。
外力分类:表面力、体积力;静载荷、动载荷。
力:构件在外力的作用下,部相互作用力的变化量,即构件部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上力,以代替弃去部分对保留部分的作用。
(3)根据平衡条件,列平衡方程,求解截面上和力。
应力: dA dP A P p A =∆∆=→∆lim 0正应力、切应力。
变形与应变:线应变、切应变。
杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。
静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。
动载荷:载荷和速度随时间急剧变化的载荷为动载荷。
失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。
二者统称为极限应力理想情形。
塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]bbn σσ=,强度条件:[]σσ≤⎪⎭⎫⎝⎛=maxmax A N ,等截面杆 []σ≤A N max轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=∆1,沿轴线方向的应变和横截面上的应力分别为:ll ∆=ε,A PA N ==σ。
横向应变为:b b b b b -=∆=1'ε,横向应变与轴向应变的关系为:μεε-='。
胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。
E 为弹性模量。
将应力与应变的表达式带入得:EANl l =∆ 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。
圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dxd φργρ=。
物理关系——胡克定律dx d G G φργτρρ==。
力学关系dA dx d G dx d G dA T A AA ⎰⎰⎰===22ρφφρρτρ 圆轴扭转时的应力:t p W T R I T ==max τ;圆轴扭转的强度条件: ][max ττ≤=tW T,可以进行强度校核、截面设计和确定许可载荷。
圆轴扭转时的变形:⎰⎰==l pl p dx GI T dx GI T ϕ;等直杆:pGI Tl =ϕ 圆轴扭转时的刚度条件: p GI T dx d =='ϕϕ,][max maxϕϕ'≤='pGI T弯曲力与分布载荷q 之间的微分关系)()(x q dx x dQ =;()()x Q dxx dM =;()()()x q dx x dQ dx x M d ==22Q 、M 图与外力间的关系a )梁在某一段无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。
b )梁在某一段作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。
c )在梁的某一截面。
()()0==x Q dxx dM ,剪力等于零,弯矩有一最大值或最小值。
d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。
梁的正应力和剪应力强度条件[]σσ≤=WM maxmax ,[]ττ≤max 提高弯曲强度的措施:梁的合理受力(降低最大弯矩m ax M ,合理放置支座,合理布置载荷,合理设计截面形状塑性材料:[][]c t σσ=,上、下对称,抗弯更好,抗扭差。
脆性材料:[][]c t σσ<, 采用T 字型或上下不对称的工字型截面。
等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。
用叠加法求弯曲变形:当梁上有几个载荷共同作用时,可以分别计算梁在每个载荷单独作用时的变形,然后进行叠加,即可求得梁在几个载荷共同作用时的总变形。
简单超静定梁求解步骤: (1)判断静不定度;(2)建立基本系统(解除静不定结构的部和外部多余约束后所得到的静定结构); (3)建立相当系统(作用有原静不定梁载荷与多余约束反力的基本系统); (4)求解静不定问题。
二向应力状态分析—解析法 (1)任意斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=;ατασστα2cos 2sin 2xy yx +-=(2)极值应力 正应力:yx xytg σστα--=220, 22min max )2(2xy y x yx τσσσσσσ+-±+=⎭⎬⎫ 切应力:xyy x tg τσσα221-=, 22min max )2(xy y x τσσττ+-±=⎭⎬⎫ (3)主应力所在的平面与剪应力极值所在的平面之间的关系α与1α之间的关系为:4,2220101πααπαα+=+=,即:最大和最小剪应力所在的平面与主平面的夹角为45°扭转与弯曲的组合(1)外力向杆件截面形心简化(2)画力图确定危险截面(3)确定危险点并建立强度条件按第三强度理论,强度条件为:[]σσσ≤-31 或[]στσ≤+224,对于圆轴,W W t 2=,其强度条件为:][22σ≤+WT M 。
按第四强度理论,强度条件为:()()()[][]σσσσσσσ≤-+-+-21323222121,经化简得出:[]στσ≤+223,对于圆轴,其强度条件为:][75.022σ≤+WT M 。
欧拉公式适用围(1)大柔度压杆(欧拉公式):即当1λλ≥,其中PEσπλ21=时,22λπσE cr =(2)中等柔度压杆(经验公式):即当12λλλ≤≤,其中ba sσλ-=2时,λσb a cr -=(3)小柔度压杆(强度计算公式):即当2λλ<时,s cr AFσσ≤=。
压杆的稳定校核(1)压杆的许用压力:[]stcrn P P =,[]P 为许可压力,st n 为工作安全系数。
(2)压杆的稳定条件:[]P P ≤提高压杆稳定性的措施:选择合理的截面形状,改变压杆的约束条件,合理选择材料外力偶矩计算公式 (P 功率,n 转速)弯矩、剪力和荷载集度之间的关系式轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)纵向线应变和横向线应变泊松比胡克定律受多个力作用的杆件纵向变形计算公式承受轴向分布力或变截面的杆件,纵向变形计算公式轴向拉压杆的强度计算公式许用应力,脆性材料,塑性材料延伸率截面收缩率剪切胡克定律(切变模量G,切应变g )拉压弹性模量E、泊松比和切变模量G之间关系式圆截面对圆心的极惯性矩(a)实心圆(b)空心圆圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)圆截面周边各点处最大切应力计算公式扭转截面系数,(a)实心圆(b)空心圆薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半径)扭转切应力计算公式圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式同一材料制成的圆轴各段的扭矩不同或各段的直径不同(如阶梯轴)时或等直圆轴强度条件塑性材料;脆性材料扭转圆轴的刚度条件或受压圆筒形薄壁容器横截面和纵截面上的应力计算公式,平面应力状态下斜截面应力的一般公式,平面应力状态的三个主应力,,主平面方位的计算公式面最大切应力受扭圆轴表面某点的三个主应力,,三向应力状态最大与最小正应力 ,三向应力状态最大切应力广义胡克定律四种强度理论的相当应力一种常见的应力状态的强度条件,组合图形的形心坐标计算公式,任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式截面图形对轴z和轴y的惯性半径,平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)纯弯曲梁的正应力计算公式横力弯曲最大正应力计算公式矩形、圆形、空心圆形的弯曲截面系数,,几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)矩形截面梁最大弯曲切应力发生在中性轴处工字形截面梁腹板上的弯曲切应力近似公式轧制工字钢梁最大弯曲切应力计算公式圆形截面梁最大弯曲切应力发生在中性轴处圆环形薄壁截面梁最大弯曲切应力发生在中性轴处弯曲正应力强度条件几种常见截面梁的弯曲切应力强度条件弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,梁的挠曲线近似微分方程梁的转角方程梁的挠曲线方程轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式偏心拉伸(压缩)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为圆截面杆横截面上有两个弯矩和同时作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式剪切实用计算的强度条件挤压实用计算的强度条件等截面细长压杆在四种杆端约束情况下的临界力计算公式压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.5压杆的长细比或柔度计算公式,细长压杆临界应力的欧拉公式欧拉公式的适用围压杆稳定性计算的安全系数法压杆稳定性计算的折减系数法关系需查表求得。