Ansoft Maxwell 3D圆柱永磁体受力仿真——Harris
- 格式:doc
- 大小:364.00 KB
- 文档页数:10
问题分析:两个圆柱形永磁铁,磁化方向为轴向,分析小圆柱磁铁在竖直方向不同位置受到的磁力。
仿真步骤:一、打开Maxwell软件,点击三维建模,保存文件及分析项目二、点击,设置SolutionType静磁场Magnetostatic求解器类型三、设置永磁材料复制永磁材料改参数:下图中的X/Y/Z Component后面有1/-1就表示该向正/反方向就是充磁方向双击添加的材料自动加载到项目材料中四、建模添加材料使用建大小两个圆柱,先选中大圆柱,按住Ctrl再选小圆柱,点击中的Boolean运算中的Subtract做减运算,得到空心圆柱模型小圆柱的Z向高度参数化:选中圆柱模型上右键,选择Properties其中InnerHeight是自命名的高度参数,参数化成功。
五、添加求解域点击,在Value里输入200六、添加求解参数,即磁力选中小圆柱,右键单击/Assign/Force七、求解设定及网格划分网格采用自动划分,不用在Mesh Operations中操作(这个是手动网格划分的选项)在上点击右键/Add Solution Setup,默认点确定即可在绘图区Ctrl+A,在Analysis上单击右键/Apply Mesh Operations,自动网格划分完毕八、参数扫描求解就是InnerHeight的变化过程中ZForce的值右击/Add/Parametric设置计算结果项该界面是默认力ZForce的输出设置,设置完后点击Add Calculation;如果要对Zforce插入其他公式输出,选择进行设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择View Analysis Results,即可看到仿真结果:九、磁场分布查看:先选中求解域,在上右击/Fields/B/B_Vector(磁长的矢量分布情况)或者Mag_B(大小强弱分布情况)。
问题分析:两个圆柱形永磁铁,磁化方向为轴向,分析小圆柱磁铁在竖直方向不同位置受到的磁力。
仿真步骤:一、打开Maxwell软件,点击三维建模,保存文件及分析项目二、点击,设置SolutionType静磁场Magnetostatic求解器类型三、设置永磁材料复制永磁材料改参数:下图中的X/Y/Z Component后面有1/-1就表示该向正/反方向就是充磁方向双击添加的材料自动加载到项目材料中四、建模添加材料使用建大小两个圆柱,先选中大圆柱,按住Ctrl再选小圆柱,点击中的Boolean运算中的Subtract做减运算,得到空心圆柱模型小圆柱的Z向高度参数化:选中圆柱模型上右键,选择Properties其中InnerHeight是自命名的高度参数,参数化成功。
五、添加求解域点击,在Value里输入200六、添加求解参数,即磁力选中小圆柱,右键单击/Assign/Force七、求解设定及网格划分网格采用自动划分,不用在Mesh Operations中操作(这个是手动网格划分的选项)在上点击右键/Add Solution Setup,默认点确定即可在绘图区Ctrl+A,在Analysis上单击右键/Apply Mesh Operations,自动网格划分完毕八、参数扫描求解就是InnerHeight的变化过程中ZForce的值右击/Add/Parametric设置计算结果项该界面是默认力ZForce的输出设置,设置完后点击Add Calculation;如果要对Zforce插入其他公式输出,选择进行设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择View Analysis Results,即可看到仿真结果:九、磁场分布查看:先选中求解域,在上右击/Fields/B/B_Vector(磁长的矢量分布情况)或者Mag_B(大小强弱分布情况)。
精心整理问题分析:
两个圆柱形永磁铁,磁化方向为轴向,分析小圆柱磁铁在竖直方向不同位置受到的磁力。
仿真步骤:
一、
二、点击,设置
三、
四、
使用建大小两个圆柱,先选中大圆柱,按住
中的
选中圆柱模型上右键,选择Properties
其中InnerHeight是自命名的高度参数,参数化成功。
五、添加求解域
点击,在Value里输入200
六、添加求解参数,即磁力
选中小圆柱,右键单击/Assign/Force
七、求解设定及网格划分
在
八、
就是
右击/Add/Parametric
设置计算结果项
该界面是默认力ZForce的输出设置,设置完后点击AddCalculation;如果要对Zforce 插入其他公式输出,选择
进行设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择ViewAnalysisResults,即可看到仿真结果:
九、
在
或者(大小强弱分布情况)。
电磁场与电磁波项目训练报告仿真求解圆柱形电容器班级:通信13-2姓名:闫振宇学号:1306030222指导教师:徐维老师成绩:电子与信息工程学院信息与通信工程系项目训练一 仿真求解圆柱形电容器1. 实验目的和任务1)掌握用ANSYS Maxwell 软件仿真的方法;2)学会利用所学的场强,电容,电场的知识来解决实际现实生活中的计算问题; 3)利用ANSYS Maxwell 软件仿真圆柱形电容器。
2. 实验内容1)学习ANSYS Maxwel 有限元分析步骤; 2)学习ANSYS Maxwel 的基本仿真操作步骤;3)对圆柱体电容器计算理论值和实验的仿真值进行比较,得出结论。
3. 实验原理电容是反映电容器储存的电荷本领大小的物理量。
电容的定义:一个电容器所带的电量Q 总与其电压U 成正比,比值Q/U 叫电容器的电容。
以C 表示电容器的电容,就有公式:UQ C =电容器的电容决定于电容器的本身结构,即是导体的形状,尺寸以及两导体间电介质的种类等,而与它所带的电量无关。
首先,假设本题中圆柱体电容器的内部的外表面,和外部的内表面分别带有绝对值为Q 的电量。
两筒之间充满相对介电常数为εr的电介质。
(m F o 1012855313.8-⨯=ε)所以,在距离轴线为r 的电介质中一点的电场强度E 为:rLQ E r εεπ 2=对E 进行积分,可以得到两圆筒间的电压U 为:dr RR rL Q U r ⎰=212εεπ =R R L Q r 12ln 2εεπ就得到了圆柱形电容器的电容C 为:)ln(212RR L C r εεπ =根据以上的公式,代入R2=1mm,R1=0.6mm,得出长度为L的圆柱形电容器电容。
4.实验步骤4.1建模(Model)Project > Insert Maxwell 3D DesignFile>Save as>Cylinder Cap(工程命名为“Cylinder yuanzhuti”)选择求解器类型:Maxwell > Solution Type> Electric> Electrostatic(静电的)4.1.1 创建中心圆柱体导体Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(0.6, 0.6,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder5Assign Material > copper(设置材料为铜copper)4.1.2 创建内外导体间空心圆柱体介质Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(0.6, 0.6,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder1Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(1.0, 1.0,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder2选中Cylinder1,Cylinder2Modeler (建模)> Boolean > Sbutract(分离)Blank park:Cylinder1Tool park:Cylinder2将分离出的圆环命名为Cylinder4Assign Material > air(设置材料为空气air)4.1.3创建外空心圆柱体导体Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(1.0, 1.0,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder6Draw > Cylinder(中心圆柱体导体)圆柱中心点坐标:(X,Y,Z)>(0, 0, 0)mm坐标偏置:(dX,dY,dZ)>(1.2, 1.2,0)mm坐标偏置:(dX,dY,dZ)>(0, 0, 2)mm将圆柱体重命名为Cylinder7选中Cylinder6,Cylinder7Modeler (建模)> Boolean > Sbutract(分离)Blank park:Cylinder6Tool park:Cylinder7将分离出的圆环命名为Cylinder3Assign Material > copper(设置材料为铜copper)图4-1仿真效果图4.2设置参数4.2.1 创建设置区域(Region)Draw > RegionPadding Percentage:0%减少电场的边缘效应(fringing effect)4.2.2 设置激励电压(Assign Excitation)选择Cylinder5Maxwell 3D> Excitations > Assign>V oltage > 5V选择Cylinder3Maxwell 3D> Excitations > Assign >V oltage > 0V4.2.3设置自适应计算参数(Create Analysis Setup)Maxwell 3D > Analysis Setup > Add Solution Setup最大迭代次数:Maximum number of passes > 10误差要求:Percent Error > 1%每次迭代加密剖分单元比例:Refinement per Pass > 50%4.2.4 设置计算参数(Assign Executive Parameter)Maxwell 3D > Parameters > Assign > Matrix > V oltage1, V oltage2 4.2.5 check,计算,查看结果Maxwell 3D > Reselts > Solution data > Matrix图4-2仿真数据图5.数据取电容器长度L为:2mm,则有:电容值:C=0.2186pF表 4-1 理论及仿真的值理论计算值仿真输出值0.2179pF 0.2186pF图5-1电压分布图6.心得体会通过利用Maxwell软件制作圆柱体电容器,了解了Maxwell软件的基本操作和使用方法。
AnsoftMaxwell3D圆柱永磁体受⼒仿真——Harris 问题分析:两个圆柱形永磁铁,磁化⽅向为轴向,分析⼩圆柱磁铁在竖直⽅向不同位置受到的磁⼒。
仿真步骤:⼀、打开Maxwell软件,点击三维建模,保存⽂件及分析项⽬⼆、点击,设置Solution Type静磁场Magnetostatic求解器类型三、设置永磁材料复制永磁材料改参数:下图中的X/Y/Z Component后⾯有1/-1就表⽰该向正/反⽅向就是充磁⽅向双击添加的材料⾃动加载到项⽬材料中四、建模添加材料使⽤建⼤⼩两个圆柱,先选中⼤圆柱,按住Ctrl再选⼩圆柱,点击中的Boolean运算中的Subtract做减运算,得到空⼼圆柱模型⼩圆柱的Z向⾼度参数化:选中圆柱模型上右键,选择Properties其中InnerHeight是⾃命名的⾼度参数,参数化成功。
五、添加求解域点击,在Value⾥输⼊200六、添加求解参数,即磁⼒选中⼩圆柱,右键单击/Assign/Force七、求解设定及⽹格划分⽹格采⽤⾃动划分,不⽤在Mesh Operations中操作(这个是⼿动⽹格划分的选项)在上点击右键/Add Solution Setup,默认点确定即可在绘图区Ctrl+A,在Analysis上单击右键/Apply Mesh Operations,⾃动⽹格划分完毕⼋、参数扫描求解就是InnerHeight的变化过程中ZForce的值右击/Add/Parametric设置计算结果项该界⾯是默认⼒ZForce的输出设置,设置完后点击Add Calculation;如果要对Zforce插⼊其他公式输出,选择进⾏设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择View Analysis Results,即可看到仿真结果:九、磁场分布查看:先选中求解域,在上右击/Fields/B/B_Vector(磁长的⽮量分布情况)或者Mag_B(⼤⼩强弱分布情况)。
利用ansoft进行电磁铁的3D仿真
整理:舒伟方,记录一下自己的操作过程,存在一些不足之处望大家指点一二。
1、先用solidworks软件绘制电磁制动器数模,要是零件体,且各零件之间不要求和,是分离的体。
(且绕组与软磁材料之间流出间隙1mm左右,铁板与软磁之间流出气隙距离,在此我留了0.5mm)
1、转成STP、STEP、XT其中一种格式
2、导入Maxwell
3、设置求解器类型
4、设置零件材料
先设置零件材料库,将路算里的材料库导入,且设置为默认
设置零部件材料选中相应数模
5、设置绕组电流激励源现将零件设置成透明的
在绕组上分出施加激励的面,选中绕组
可见YX方向可将绕组对称剖开
分离面
将多余的面删除
选中面1施加电流源
根据实际情况施加电流且注意电流流向,类型选择stranded(其中电流大小为单根电流乘以匝数)
6、添加求解域
输入扩大百分比为10% 8输入求解电感及吸力
勾上
输入圈数
选中被吸的铁板
选中铁板后添加吸力求解
9、添加setup,默认便可
分析
10、查看结果选中软磁和铁块
吸力是Z方向
力为-2.1kn,方向为z负方向电感如下
可见线圈1自感54mH,线圈12互感2.56mH,线圈2自感54.42mH 再根据两个电感是串联还是并联计算总电感
公式如下。
1. 静电场问题实例:平板电容器电容计算仿真平板电容器模型描述:上下两极板尺寸:25mm×25mm×2mm,材料:pec(理想导体)介质尺寸:25mm×25mm×1mm,材料:mica(云母介质)激励:电压源,上极板电压:5V,下极板电压:0V。
要求计算该电容器的电容值1.建模(Model)Project > Insert Maxwell 3D DesignFile>Save as>Planar Cap(工程命名为“Planar Cap”)选择求解器类型:Maxwell > Solution Type> Electric> Electrostatic创建下极板六面体Draw > Box(创建下极板六面体)下极板起点:(X,Y,Z)>(0, 0, 0)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为DownPlateAssign Material > pec(设置材料为理想导体perfect conductor)创建上极板六面体Draw > Box(创建下极板六面体)上极板起点:(X,Y,Z)>(0, 0, 3)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 2)将六面体重命名为UpPlateAssign Material > pec(设置材料为理想导体perfect conductor)创建中间的介质六面体Draw > Box(创建下极板六面体)介质板起点:(X,Y,Z)>(0, 0, 2)坐标偏置:(dX,dY,dZ)>(25, 25,0)坐标偏置:(dX,dY,dZ)>(0, 0, 1)将六面体重命名为mediumAssign Material > mica(设置材料为云母mica,也可以根据实际情况设置新材料)创建计算区域(Region)Padding Percentage:0%忽略电场的边缘效应(fringing effect)电容器中电场分布的边缘效应2.设置激励(Assign Excitation)选中上极板UpPlate,Maxwell 3D> Excitations > Assign >Voltage > 5V选中下极板DownPlate,Maxwell 3D> Excitations > Assign >Voltage > 0V3.设置计算参数(Assign Executive Parameter)Maxwell 3D > Parameters > Assign > Matrix > Voltage1, Voltage2 4.设置自适应计算参数(Create Analysis Setup)Maxwell 3D > Analysis Setup > Add Solution Setup最大迭代次数:Maximum number of passes > 10 误差要求:Percent Error > 1%每次迭代加密剖分单元比例:Refinement per Pass > 50%5. Check & Run6. 查看结果Maxwell 3D > Reselts > Solution data > Matrix电容值:31.543pF2. 恒定电场问题实例:导体中的电流仿真恒定电场:导体中,以恒定速度运动的电荷产生的电场称为恒定电场,或恒定电流场(DC conduction ) 恒定电场的源:(1)Voltage Excitation ,导体不同面上的电压 (2)Current Excitations ,施加在导体表面的电流(3)Sink (汇),一种吸收电流的设置,确保每个导体流入的电流等于流出的电流。
基于Ansoft Maxwell的目标磁异常仿真及探测研究摘要:针对二战遗留下来的地雷、炸弹等未爆炸物的探测需求,开展了铁磁性目标磁异常仿真及探测研究,基于Ansoft Maxwell三维数值有限元分析软件,建立了磁目标仿真模型,研究了磁目标的静态磁场分布,对比分析了沿地磁场方向目标磁异常情况,为磁目标探测提供理论计算依据,最后通过实际测量值与仿真计算进行对比分析。
为磁探测、磁成像等提供理论依据。
引言:地下掩埋目标(如地雷)具有良好的隐藏性,致使难以被探测。
铁磁性目标在地磁场的环境下受到磁化会使地磁场发生畸变,进而引起磁信号异常,根据磁异常现象可以对磁性物体实施探测和定位,这一研究方法被称为磁异常信号探测技术(Magnetic Anomaly Detection,MAD)。
磁异常信号探测技术具有反应速度快、可靠性髙等特点受到各军事强国的重视,得到广泛的应用。
它是基于电磁现象的机制,由安装在移动载体上的磁探仪对磁性物体的磁场进行探测,并对磁性物体的磁信号实现对应的信号数据计算,得出被测物体的姿态、磁矩等磁特性,来完成对磁性物体的远距离探潜。
目前,随着对地磁现象和磁异常信号分析的水平不断发展和提高,磁传感器技术水平和精度的不断增强,磁异常探测技术已广泛应用于航空磁探、地质勘探、地磁导航等诸多领域,并且得到了很大的发展。
由于磁异常探测研究中,开展实物实验成本较大,国内多采用模拟仿真的方式对磁场进行计算。
有限元方法(Finte Element Method),可用于求解和分析静态磁场、动态磁场、结构稳定性等各种问题,是分析电磁场常用的一种计算方法。
有限元对研究对象的几何形状、材料性质、边界条件的适应性很强,能够计算不同材料和形状永磁体的场强。
R Engel-Herberta基于等效磁荷的方法,求得了均匀充磁的长方体永磁体空间磁场的数学解析式,并验证了解析方法和有限元分析法具有相同的建模效果。
宋浩利用Comsol软件给出了相对放置的永磁体,具有磁回路结构的磁极,环形磁体的磁场分布图,为静磁场的设计提供了理论依据。
吸力计算操作手册――ANSOFT一、分析概述本手册是说明将UG中三维模型输入到ANSOFT软件进行吸力分析的步骤。
输入文件为:从UG中导出的“*.x_t”文件。
二、操作步骤1、打开ANSOFT软件,点击新建分析。
2、导入UG模型(“*.x_t”文件),模型只需要磁路零件。
3、零件重命名(便于辨认)。
4、赋予材料属性(鼠标右键)。
5、线圈材料可从材料库调用6、铁件材料的属性需要更改。
1)在材料库材料中选择“Iron”后复制“Clone Material”,新增“Iron1”材料。
2)改属性:a、将相对导磁率“Relative Permeability”的类型“Type”改为非线性“Nonlinear”,值“V alue”改为“BH Curve”,双击“BH Curve”后选输入材料,导入“DT4E.tab”文件。
b、将导电率“Bulk Conductivity”改为2000000。
6、设定分析区域7、为便于零件选择,需要设定零件可见/不可见。
8、施加输入激励。
1)在线圈中心点处建立坐标系。
2)选中线圈后,切出一个截面,后续用于施加激励。
3)选择截面,增加激励“电流”,直接输入分析用的“安匝”值的数值。
9、建立衔铁的旋转轴,在刀口处建立坐标系,然后选择衔铁设定衔铁旋转的轴,在角度栏输入字母“angle”进行参数化。
10、分析设置,一般要求不高时,将“Maximum Number of Passe”设为10,“百分之Eroos”设为1。
11、设定参数化分析,设定参数“angle”的几个分析值。
12、在开始运算前,选择检查,确认已具备所有的分析条件。
13、检查完成后,进行运算。
14、提取分析结果。
Ansoft Maxwell电磁仿真软件的应用实验报告一Maxwell 简介Ansoft公司的Maxwell是一个功能强大、结果精确、易于使用的二维/三维电磁场有限元分析软件。
包括静电场、静磁场、时变电场、涡流场、瞬态场和温度场计算等,可以用来分析电机、传感器、变压器、永磁设备、激励器等电磁装置的静态、稳态、瞬态、正常工况和故障工况的特性。
Maxwell还可以产生高精度的等效电路模型以供Ansoft的SIMPLORER模块和其他电路分析工具调用。
三维静电场分析(3D Electrostatic Field)用于分析由静止电荷、直流电压引起的静电场。
该模块直接计算标量电位,得到电场强度(E),电位移矢量(D),电场力、电场能量、转矩、电容值等。
可用于分析直流高压绝缘问题,电容器储能问题等。
三维直流磁场分析(3D DC Magnetic)用于分析由恒定电流、永磁体及外部激磁引起的磁场。
该模块可计算磁场强度(H),电流密度(J),磁感应强度(B),磁场力、磁场能量、转矩、电感等。
可用于分析直流载流线圈磁场,永磁体产生磁场等。
涡流场分析(Eddy Current Field)用于分析受涡流、集肤效应、邻近效应影响的系统。
它求解的频率范围可以从0到数百兆赫兹,能够计算损耗、铁损、力、转矩、电感与储能。
可用于分析导体中的涡流分布。
三维正弦电磁场特性等。
瞬态场(Transient Field)用于求解某些涉及到运动和任意波形的电压、电流源激励的设备。
该模块能同时求解磁场、电路及运动等强耦合的方程,因而可轻而易举地解决上述装置的性能分析问题。
二Maxwell 仿真步骤1 选择求解器类型2 建模3 设置材料属性(电导率,介电常数,磁导率等)4 设置激励源和边界条件5 自适应网格剖分6 有限元计算7 后处理三Maxwell仿真实例题目三:静电除尘器电磁场分析要求:掌握静电除尘的工作原理,建立静电除尘器模型,观测内部电场及能量的分布情况,并对结果进行分析。
如何利用ansoft磁路法计算生成maxwell有限元电磁计算模型如何利用ansoft中磁路法计算,一键生成maxwell有限元电磁计算模型1、以一台凸极式永磁同步电机为例:打开软件,进入下图所示截面,选中RMxprt打开选择Adjust-Speed Synchronous Machine2、进入RMxprt界面,如下图所示:3、双击Machine,出现下图界面:极数:16转子位置:内转子各种损耗:可大致设置为额定功率的2%左右额定转速:790r/min线圈交流电AC及Y3星型联接4、双击stator,出现下图界面:定子外径:250定子内径:165定子轴向长度:160叠压系数:0.97定子材料:JFE_steel_50JN800定子槽数:36定子槽型:选3斜槽数:15、双击slot,如下图示:(一开始先将Auto Design后面√去除,点确认退出,再次双击slot 进入,即出现下图设置界面)3号槽型,设置数据如上图所示6、双击winding,选择winding界面线圈层数:2线圈形式:全极式绕组线圈并联之路:2每槽导体数:38(上下两层总计数)线圈跨距:4每匝线圈数:暂时空着,系统自动计算线圈漆包厚度:0.06平均线径:单击Diameter,进入设计截面,设置如下,点击OK再选择End/Insulation界面框线圈端部长:10槽绝缘厚度:0.3楔子厚度:2层绝缘厚:0.3槽满率:0.87、双击Rotor转子外径:162.5转子内径:110转子轴向长度:160转子材料:steel_1010叠压系数:1(转子为整个铸件)磁极类型:2 8、双击pole极狐系数:0.8偏移:0(即磁钢内外径同心)磁钢材料:NdFe35 磁钢厚度:4.659、shaft轴可不设置10、右键单击Analysis单击选择Add solution setup,出现下图额定功率:17 (设置时注意单位的选择)额定电压:340额定转速:790其它默认即可11、至此RMxprt设置完成,右键点击增加的Setup1,单击Analyze 进行分析12、分析完成后可右键,可右键Results,选择Solution Data查看相关结果参数13、右键Setup1,选择Create Maxwell Design(生成有限元计算模型)选择Maxwell2D Design(或者3D,根据自己需求选择)14、系统会根据槽极比生成最小有限元单元,如此处生成1/4模型,若想生成全模型,可在RMxprt模块下,选择窗口中RMxprt,单击Design Settings,选择出现窗口下User Defined Date,设置如下(Fraction 1注意大小写及字母与数字间空一格),再点击重新计算即可生成有限元全模型谢谢!。
问题分析:
两个圆柱形永磁铁,磁化方向为轴向,分析小圆柱磁铁在竖直方向不同位置受到的磁力。
仿真步骤:
一、打开Maxwell软件,点击三维建模,保存文件及分析项目
二、点击,设置Solution
Type静磁场Magnetostatic求解器类型
三、设置永磁材料
复制永磁材料改参数:
下图中的X/Y/Z Component后面有1/-1就表示该向正/反方向就是充磁方向
双击添加的材料自动加载到项目材料中
四、建模添加材料
使用建大小两个圆柱,先选中大圆柱,按住Ctrl再选小圆柱,点击
中的Boolean运算中的Subtract做减运算,得到空心圆柱模型小圆柱的Z向高度参数化:
选中圆柱模型上右键,选择Properties
其中InnerHeight是自命名的高度参数,参数化成功。
五、添加求解域
点击,在Value里输入200
六、添加求解参数,即磁力
选中小圆柱,右键单击/Assign/Force
七、求解设定及网格划分
网格采用自动划分,不用在Mesh Operations中操作(这个是手动网格划分的选项)
在上点击右键/Add Solution Setup,默认点确定即可
在绘图区Ctrl+A,在Analysis上单击右键/Apply Mesh Operations,自动网格划分完毕八、参数扫描求解
就是InnerHeight的变化过程中ZForce的值
右击/Add/Parametric
设置计算结果项
该界面是默认力ZForce的输出设置,设置完后点击Add Calculation;如果要对Zforce插入其他公式输出,选择
进行设置。
所有都设置好以后,在上单击右键,选择Analyze,等待仿真计算结束后还是上图位置处右击,选择View Analysis Results,即可看到仿真结果:
九、磁场分布查看:
先选中求解域,在上右击/Fields/B/B_Vector(磁长的矢量分布情况)或者Mag_B(大小强弱分布情况)。