北师大版八年级数学初二下册:因式分解小结(含答案)
- 格式:pdf
- 大小:78.88 KB
- 文档页数:8
北师大版八年级下册数学第四章因式分解含答案一、单选题(共15题,共计45分)1、把多项式x2﹣x分解因式,得到的因式是()A.只有xB.x 2和xC.x 2和﹣xD.x和x﹣12、把2x -4x分解因式,结果正确的是( )A.( x+2)( x-2)B.2 x( x-2)C.2( x -2 x)D. x(2 x-4)3、若﹣2a n﹣1﹣4a n+1的公因式是M,则M等于()A.2a n﹣1B.﹣2a nC.﹣2a n﹣1D.﹣2a n+14、下列因式分解正确的是()A. B. C.D.5、把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5aB.(x+y)2C.5(x+y)2D.5a(x+y)26、化简(﹣2)2015+22016,结果为()A.﹣2B.0C.﹣2 2015D.2 20157、多项式﹣6a2b+18a2b3x+24ab2y的公因式是()A.2abB.﹣6a 2bC.﹣6ab 2D.﹣6ab8、若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15B.15C.2D.-89、多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1B.x+1C.x 2﹣1D.(x﹣1)210、若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.-15B.15C.2D.-811、下列多项式中,能用提公因式法因式分解的是( )A.x 2-yB.x 2+2xC.x 2+y 2D.x 2-xy+y 212、因式分解:2a(x-y)+3b(y-x)正确的是( )A.(x-y)(2a-3b)B.(x+y)(2a-3b)C.(y-x)(2a+3b) D.(x+y)(2a+3b)13、多项式3x3﹣12x2的公因式是()A.xB.x 2C.3xD.3x 214、多项式12m2n﹣18mn的公因式是()A.mnB.m 2nC.6mnD.3mn15、下列因式分解正确的是()A. x2﹣2 x+1=x(x﹣2)+1B.﹣2 a2b2+4 ab2=﹣2 ab2(a+2) C.(a+ b)(a﹣b)=a2﹣b2 D.(m﹣n)﹣4 a (n﹣m)=(m﹣n)(4 a+1)二、填空题(共10题,共计30分)16、分解因式:a2b-2ab+b=________ .17、分解因式:a3﹣4a=________.18、分解因式:2m -32m5=________;19、计算的结果是________20、因式分解a﹣ab2=________ .21、分解因式:a2-4a=________。
第四章因式分解一、选择题1.下列从左到右的变形中,是分解因式的有()①(x+1)(x-2)=x2-x-2;②-x2+9=(3+x)(3-x);③ab-a+b-1=(a+1)(b-1);④a2-4+a=(a+2)(a-2)+a;).⑤(y+1)(y-3)=-(3-y)(y+1);⑥a2+1=a(a+1aA.1个B.2个C.3个D.4个答案B②③是分解因式.2.下面分解因式正确的是()A.x3-x=x(x-1)B.3xy+6y=y(3x+6)C.a2-2a-1=(a-1)2D.1-b2=(1+b)(1-b)答案D A的结果错误,B没分解彻底,C的左右两边不相等,只有D选项正确.3.下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9答案D A,C的两个平方项同号,B中两项提公因式5m后不是两式平方差的形式,只有D选项能用平方差公式.4.下列各组多项式中没有公因式的是()A.3x-2与6x2-4xB.3(a-b)2与11(b-a)3C.mx-my与ny-nxD.ab-ac与ab-bc答案 D ab-ac=a(b-c),ab-bc=b(a-c),两个多项式没有公因式.5.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( ) A.-5 B.3 C.7 D.7或-1答案 D 因为x 2+2(m-3)x+16是完全平方式,所以m-3=±4,所以m=7或-1.6.若a 2+b 2+4a-2b+5=0,则a+b a -b 的值为( ) A.3 B.13 C.-3 D.-13答案 B 由a 2+b 2+4a-2b+5=0得(a+2)2+(b-1)2=0,所以a=-2,b=1.所以a+b a -b =-2+1-2-1=13. 7.212-1可以被5~10之间的某些整数整除,它们是( ) A.7 B.9 C.6和7 D.7和9答案 D 212-1=(26+1)(26-1)=(26+1)(23+1)(23-1)=(26+1)×9×7,故有两个整数符合题意,即7和9.8.多项式x 2-4x+m 分解因式的结果是(x+3)(x-n),则m n 等于 ( ) A.3 B.-3 C.-13 D.13答案 B 由题意得x 2-4x+m=(x+3)(x-n), 即x 2-4x+m=x 2+(3-n)x-3n, 所以{3-n =-4,-3n =m,解得{n =7,m =-21,所以m n =-217=-3. 9.若xy=1,则(x+y)2-(x-y)2等于( ) A.-4 B.4 C.2 D.-2答案 B 当xy=1时,(x+y)2-(x-y)2=4xy=4,故选B. 10.已知1-x n =(1+x 2)(1-x)(1+x),则n 的值是( )A.2B.4C.6D.8答案 B (1+x 2)(1-x)(1+x)=(1+x 2)(1-x 2)=1-x 4=1-x n ,所以n=4.二、填空题11.因式分解:x 2-36= .答案 (x+6)(x-6)解析 根据平方差公式,得x 2-36=x 2-62=(x+6)(x-6). 12.分解因式:m 3n-4mn= .答案 mn(m+2)(m-2)解析 m 3n-4mn=mn(m 2-4)=mn(m+2)(m-2).13.分解因式:-2x 2y+12xy-18y= .答案 -2y(x-3)2解析 先提取公因式,再用完全平方公式分解因式.-2x 2y+12xy-18y=-2y(x 2-6x+9)=-2y(x-3)2.14.分解因式:(a-b)2-4b 2= .答案 (a+b)(a-3b)解析 (a-b)2-4b 2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).15.已知长方形的面积为9a 2-16,若一边长为3a+4,则与它相邻的边长为 . 答案 3a-4解析 S 长方形=9a 2-16=(3a+4)(3a-4),∴所求边长为3a-4. 16.因式分解:m(x-y)+n(x-y)= .答案 (x-y)(m+n)解析 m(x-y)+n(x-y)=(x-y)(m+n).17.计算:100992+198+1= .答案 1100解析 100992+198+1=100992+2×99+1=100(99+1)2=1001002=1100. 18.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a>b),把剩下的部分剪拼成一个梯形,通过计算这两个图形阴影部分的面积,可以验证公式 .答案 a 2-b 2=(a+b)(a-b)解析 在题图中,左图:S 阴影=a 2-b 2;右图:S 阴影=(2b+2a)(a -b)2=(a+b)(a-b), ∴ a 2-b 2=(a+b)(a-b).三、解答题19.把下列各式分解因式.(1)8a3b2-12ab3c+6a3b2c;(2)5x(x-y)2+10(y-x)3;(3)(a+b)2-9(a-b)2;(4)-4ax2+8axy-4ay2;(5)(x2+2)2-22(x2+2)+121.答案(1)原式=2ab2(4a2-6bc+3a2c).(2)原式=5x(y-x)2+10(y-x)3=5(y-x)2[x+2(y-x)]=5(y-x)2(2y-x).(3)原式=[a+b+3(a-b)][a+b-3(a-b)]=(4a-2b)(-2a+4b)=4(2a-b)(2b-a).(4)原式=-4a(x2-2xy+y2)=-4a(x-y)2.(5)原式=(x2+2-11)2=(x2-9)2=(x+3)2(x-3)2.20.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程: 解:设x2-4x=y,则原式=(y+2)(y+6)+4=y2+8y+16=(y+4)2=(x 2-4x+4)2.回答下列问题: (1)该同学分解因式的结果是否彻底: (填“彻底”或“不彻底”),若不彻底,请直接写出分解因式的最后结果: ;(2)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解. 答案(1)不彻底;(x-2)4. (2)设x 2-2x=y,则(x 2-2x)(x 2-2x+2)+1=y(y+2)+1=y 2+2y+1=(y+1)2=(x 2-2x+1)2=(x-1)4. 21.(1)一个等腰三角形的两边长a,b 满足条件:9a 2-b 2=-13,3a+b=13,求这个等腰三角形的周长; (2)已知a,b,c 分别是△ABC 的三边长.①判断(a-c)2-b 2的正负; ②若a,b,c 满足a 2+c 2+2b(b-a-c)=0,判断△ABC 的形状. 答案 (1)因为9a 2-b 2=-13, 所以(3a+b)(3a-b)=-13,因为3a+b=13,所以3a-b=-1,由{3a +b =13,3a -b =-1,得{a =2,b =7.当a 为腰长时,2+2<7,不能构成三角形;当b 为腰长时,三角形的周长为7+7+2=16.综上,这个等腰三角形的周长为16.(2)①(a-c)2-b2=(a-c+b)(a-c-b).因为a,b,c分别是△ABC的三边长,所以a+b>c,b+c>a,所以a-c+b>0,a-c-b<0,所以(a-c+b)(a-c-b)<0,即(a-c)2-b2<0.②由a2+c2+2b(b-a-c)=0,得a2+c2+2b2-2ab-2bc=0,即(a2-2ab+b2)+(b2-2bc+c2)=0,即(a-b)2+(b-c)2=0,所以a=b,b=c,所以a=b=c,所以△ABC为等边三角形.22.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4、12、20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k和2k+2(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?答案(1)是.理由:28=2×14=(8-6)×(8+6)=82-62,2 012=2×1006=(504-502)×(504+502)=5042-5022,所以这两个数都是神秘数.(2)是.理由:(2k+2)2-(2k)2=4(2k+1),因此由2k+2和2k构造的神秘数是4的倍数.(3)不是.理由:由(2)知神秘数可表示为4的倍数,但一定不是8的倍数.设两个连续奇数为2k+1和2k-1(k取正整数),因为(2k+1)2-(2k-1)2=8k,8k是8的倍数,所以两个连续奇数的平方差一定不是神秘数.。
北师大版八年级下册数学第四章因式分解含答案一、单选题(共15题,共计45分)1、已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC是()A.直角三角形B.等腰三角形C.等腰三角形或直角三角形D.等腰直角三角形2、边长为a、b的长方形周长为12,面积为10,则的值为( )A.120B.60C.80D.403、多项式12ab3c﹣8a3b的公因式是()A.4ab 2B.﹣4abcC.﹣4ab 2D.4ab4、如果257+513能被n整除,则n的值可能是()A.20B.30C.35D.405、将- a b-ab提公因式后,另一个因式是( )A. a+2 bB.- a+2 bC.- a- bD. a-2 b6、(﹣2)100+(﹣2)101的结果是()A.2 100B.﹣2 100C.﹣2D.27、已知a-b=1,a=5,则a2-ab等于()A.1B.4C.5D.68、下列各式从左到右的变形中,是因式分解的为()A. B. C.D.9、多项式12ab3+8a3b的各项公因式是()A.abB.2abC.4abD.4ab 210、多项式分解因式的结果是()A. B. C. D.11、把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m 2+m)B.(a﹣2)(m 2﹣m)C.m(a﹣2)(m﹣1) D.m(a﹣2)(m+1)12、下列多项式能进行因式分解的是()A.x 2﹣yB.x 2+1C.x 2﹣6xD.x 2+y+y 213、若实数ab=2满足a+b=3,计算:a b+ab的值是( )A.5B.6C.9D.114、分解因式-2xy2+6x3y2-10xy时,合理地提取的公因式应为()A.-2xy 2B.2xyC.-2xyD.2x 2y15、多项式3a2b2﹣15a3b3﹣12a2b2c的公因式是()A.3a 2b 2B.15a 3b 3cC. 3a 2b 2cD.﹣12a 2b 2c二、填空题(共10题,共计30分)16、因式分解:x3﹣25x________.17、若A=11×996×1005,B=1004×997×11,则B﹣A的值________.18、一元二次方程x2=x的解为________.19、因式分解:x2-4y2=________ .20、因式分解:① ________② ________21、分解因式:2x2y﹣8y=________ .22、多项式6ab2x-3a2by+12a2b2的公因式是________。
北师大版八年级下册数学第四章因式分解含答案一、单选题(共15题,共计45分)1、多项式﹣6m3n﹣3m2n2+12m2n3分解因式时应提取的公因式为()A.3mnB.﹣3m 2nC.3mn 2D.﹣3m 2n 22、把分解因式的结果为()A. B. C.D.3、把多项式a²-4a分解因式,结果正确的是()A.a (a-4)B.(a+2)(a-2)C.a(a+2)( a-2)D.(a-2 ) ²-44、将- a b-ab提公因式后,另一个因式是( )A. a+2 bB.- a+2 bC.- a- bD. a-2 b5、下列多项式中,可以提取公因式的是()A. ab+ cdB. mn+ m2C. x2- y2D. x2+2 xy+ y26、多项式-5mx3+25mx2-10mx各项的公因式是()A.5mx 2B.-5mx 3C.mxD.-5mx7、多项式12m2n﹣18mn的公因式是()A.mnB.m 2nC.6mnD.3mn8、将下列多项式分解因式,得到的结果不含因式的是().A. B. C. D.9、边长为a、b的长方形周长为12,面积为10,则的值为( )A.120B.60C.80D.4010、下列分解因式正确的是()A. B. C.D.11、将多项式2a2-4ab因式分解应提取的公因式是( )A.aB.2aC.2abD.4a 2b12、多项式m2-m与多项式2m2-4m+2的公因式是()A.m-1B.m+1C.m 2-1D.(m-1) 213、下面因式分解错误的是( )A.x 2-y 2=(x+y)(x-y)B.x 2-8x+16=(x-4) 2C.2x2-2xy= 2X(x-y) D.x 2+y 2=(x+y) 214、下列因式分解中,正确的是()A.﹣2x 3﹣3xy 3+xy=﹣xy(2x 2﹣3y 2+1)B.﹣y 2﹣x 2=﹣(y+x)(y﹣x)C.16x 2+4y 2﹣16xy=4(2x﹣y)2D.x 2y+2xy+4y=y(x+2)215、下面四个运算,计算正确的一个是()A. B. C. D.二、填空题(共10题,共计30分)16、分解因式:8-2x2=________.17、因式分解:5x2-2x=________.18、一个四边形的边长依次为a、b、c、d,且a2+b2+c2+d2﹣2ac﹣2bd=0,则这个四边形的形状是________19、因式分解:ax²-4ax+4a=________ 。
北师大版八年级数学下第四章因式分解含答案一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。