第四章 材料力学知识99
- 格式:doc
- 大小:217.50 KB
- 文档页数:10
材料力学知识点材料力学是研究材料内部结构和材料在外力作用下的变形和破坏行为的学科。
以下是材料力学的一些重要知识点:1. 应力和应变:应力是单位面积上的力,可以分为正应力和剪应力;应变是物体长度或体积的相对变化,可以分为纵向应变和剪切应变。
应力和应变之间的关系可以用本构关系来描述。
2. 弹性力学:弹性力学研究的是材料在外力作用下的弹性变形行为。
经典弹性力学假设材料在小应变范围内具有线性弹性行为,可以通过胡克定律来描述。
3. 塑性力学:塑性力学研究的是材料在外力作用下的塑性变形行为。
塑性变形主要包括应力的塑性变形和材料内部晶体结构的塑性变形。
当应力超过材料的屈服强度时,材料会发生塑性变形。
4. 断裂力学:断裂力学研究的是材料在外力作用下发生破坏的行为。
断裂可以分为静态断裂和疲劳断裂。
静态断裂研究的是材料在静态加载下的破坏行为,疲劳断裂研究的是材料在循环加载下的破坏行为。
5. 损伤力学:损伤力学研究的是材料内部发生损伤的行为及其对材料性能的影响。
材料的损伤可能包括裂纹、孔洞、位错等。
损伤会导致材料的刚度和强度降低。
6. 微观结构与力学性能:材料的力学性能与其微观结构关系密切。
材料的晶体结构、晶界、孪晶、析出相等微观结构对材料的力学性能具有重要影响。
7. 强度理论和设计:强度理论研究的是材料的强度如何与其内部应力、应变和结构参数相联系。
强度理论为材料的设计提供了基本依据,可以用来预测材料的破坏行为和使用寿命。
8. 材料的超塑变形:超塑变形是指在高温和大应变速率条件下,材料可以表现出很高的变形能力。
超塑变形对材料的加工和成形具有重要意义。
综上所述,材料力学是工程领域中非常重要的学科,掌握材料力学的知识可以帮助我们更好地理解和应用材料的力学行为,从而设计和改进材料的性能。
第二篇材料力学第四章材料力学基本知识第一节变形固体的假设在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。
例如,储气罐主要保证强度,车床主轴主要要求具有足够的刚度,受压的细长杆应该保持其稳定性。
对某些特殊的构件还可能有相反的要求。
例如为防止超载,当载荷超过某一极限时,安全销应立即破坏。
又如为发挥缓冲作用,车辆的缓冲弹簧应有较大的变形。
研究构件的承载能力时必须了解材料在外力作用下表现出的变形和破坏等方面的性能,及材料的力学性能。
材料的力学性能由实验来测定。
经过简化得出的理论是否可信,也要由实验来验证。
此外,对于一些尚无理论结果的问题,需要借助实验方法来解决。
所以,实验分析和理论研究同是材料力学解决问题的方法。
一、变形固体的基本假设材料力学中,当分析强度、刚度和稳定性时,这些问题都与变形有关,因而即使极其微小的变形也必须加以考虑,这就必须把物体抽象为变形固体。
材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
变形固体的性质是很复杂的,在对用变形固体做成的构件进行强度、刚度和稳定性计算时,为了使计算简化,经常略去材料的次要性质,并根据其主要性质做出假设,将它们抽象为一种理想模型,作为材料力学理论分析的基础。
实验证明,在一定的荷载作用下,变形固体加载时将产生变形,卸载后能恢复原形。
变形固体的这种性质称为弹性。
卸载后消失的那一部分变形,称为弹性变形。
当外荷载超过某极限值时,卸载后除消除的一部分弹性变形外,还将存在一部分未消失的变形,称为塑性变形。
为了使问题的研究得到简化,通常对变形固体作如下假设:(一)连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。
实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学知识点材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
它是材料科学的重要组成部分,对于材料的设计、制备和应用具有重要的理论指导作用。
在材料力学中,有一些重要的知识点,下面我们将逐一介绍。
首先,弹性力学是材料力学的基础。
弹性力学研究材料在外力作用下的弹性变形规律,即材料在受力后能够恢复原状的性质。
弹性力学的重要参数包括弹性模量、泊松比等,它们描述了材料在受力时的变形特性,是材料设计和工程应用的重要参考依据。
其次,塑性力学是材料力学中的另一个重要分支。
塑性力学研究材料在超过一定应力后发生的塑性变形规律,即材料在受力后无法完全恢复原状的性质。
塑性力学的研究对象包括屈服点、应力应变曲线、硬化规律等,它们描述了材料在受力时的塑性变形特性,对于材料加工和强度计算具有重要意义。
再次,断裂力学是材料力学中的另一重要内容。
断裂力学研究材料在受到外力作用下发生断裂的规律,即材料在受到过大应力时出现破裂的性质。
断裂力学的研究内容包括断裂韧性、断裂模式、裂纹扩展规律等,它们描述了材料在受到破坏时的性能和行为,对于材料的安全评估和损伤分析具有重要作用。
最后,疲劳力学是材料力学中的另一个重要领域。
疲劳力学研究材料在交变载荷下的疲劳破坏规律,即材料在受到交变载荷作用下出现疲劳破坏的性质。
疲劳力学的研究内容包括疲劳寿命、疲劳极限、疲劳裂纹扩展规律等,它们描述了材料在受到交变载荷时的疲劳性能和破坏行为,对于材料的寿命预测和可靠性分析具有重要意义。
综上所述,材料力学知识点涵盖了弹性力学、塑性力学、断裂力学和疲劳力学等多个方面,它们共同构成了材料力学的理论体系,对于材料的设计、制备和应用具有重要的指导作用。
在实际工程中,我们需要综合运用这些知识点,对材料的力学性能进行全面评估,从而保证材料能够在各种复杂工况下发挥良好的性能,确保工程的安全可靠。
希望通过本文的介绍,读者能够对材料力学的重要知识点有所了解,并在实际工程中加以应用。
材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。
2、可变形固体的两个基本假设:连续性假设、均匀性假设。
另外对于常用工程材料(如钢材),还有各向同性假设。
3、什么是应力、正应力、切应力、线应变、切应变。
杆件截面上的分布内力集度,称为应力。
应力的法向分量σ称为正应力,切向分量τ称为切应力。
杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。
4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。
5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。
6、强度理论及其相当应力(详见材料力学ⅠP229)。
7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。
B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。
C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。
② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。
二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。
C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。
材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。
它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。
本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。
1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。
弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。
弹性力学的基本理论包括胡克定律、泊松比等。
2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。
塑性力学主要关注材料的塑性应变、塑性流动规律等。
常见的塑性变形方式包括屈服、硬化、流变等。
3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。
破裂力学主要关注材料的断裂韧性、断口形貌等。
常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。
4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。
疲劳力学主要关注材料的疲劳寿命、疲劳强度等。
材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。
5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。
断裂力学主要关注材料的应力集中系数、应力集中因子等。
在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。
6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。
成形加工力学主要关注材料的流变性质、加工硬化等。
常见的成形加工方式包括挤压、拉伸、压缩等。
7.热力学力学热力学力学研究材料在高温条件下的力学行为。
热力学力学主要关注材料的热膨胀、热应力等。
材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。
通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。
在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。
因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。
材料力学知识点材料力学是工程学科中的一门重要课程,它研究物质的力学性质及其在工程中的应用。
下面我将介绍一些关键的材料力学知识点。
一、应力和应变应力和应变是材料力学中最基本的概念。
应力是单位面积上的力,可以分为正应力和剪应力。
正应力是垂直于截面的力,剪应力是平行于截面的力。
应变是物体形变程度的度量,可以分为线性应变和剪应变。
线性应变是物体的伸长或压缩相对于初始长度的比值,剪应变是物体平行于切面的相对形变。
二、弹性力学弹性力学研究材料在力的作用下发生的弹性变形。
杨氏模量和泊松比是衡量材料弹性特性的重要参数。
杨氏模量衡量了材料在受力时产生的线性应变的能力,泊松比则描述了材料在受力时在垂直方向上的形变相对于平行方向的形变的比值。
三、塑性力学塑性力学研究材料在超过其弹性极限时的变形和损伤行为。
屈服强度、抗拉强度和延伸率是评价材料塑性特性的重要指标。
屈服强度是材料在受力时产生塑性变形的临界应力值,抗拉强度是材料能够承受的最大拉伸应力值,延伸率则表示材料在断裂前可以产生的伸长量。
四、断裂力学断裂力学研究材料在受力超过其强度极限时发生破裂的过程。
断裂韧性是衡量材料抵抗断裂的能力的指标。
断裂韧性越高,材料的抗断裂能力就越强。
断裂韧性的计算可以通过测量断裂前的伸长量以及断面面积来得到。
五、疲劳力学疲劳力学研究材料在重复应力作用下的疲劳行为。
疲劳寿命和疲劳极限是评价材料抵抗疲劳破坏的重要指标。
疲劳寿命是材料在一定应力水平下能够承受的循环次数,疲劳极限是材料能够承受的最大循环应力。
这些是材料力学中的一些关键知识点,它们对于工程领域的实际应用具有重要的指导作用。
深入理解这些知识点,可以帮助工程师们更好地设计和选择材料,提高工程结构的安全性和可靠性。
除了上述提到的知识点之外,材料力学还涉及许多其他方面,如蠕变、冷却、材料的疲劳强度和弹塑性等。
这些知识点需要在实际问题中具体应用和深入研究,以更好地解决工程中的材料相关问题。
通过不断学习和实践,工程师们可以不断提升自己的材料力学水平,为工程领域的发展做出积极贡献。
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆::拉为“+”,压为“-” :使单元体顺时针转动为“+”:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ, E tg ==σα七.组合变形ε滑移线与轴线45,剪只有s ,无八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,cr <σp ,>p柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓>p ——大柔度杆:22λπσE cr=o <<p ——中柔度杆:cr=a-b<0——小柔度杆:cr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。
2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。
3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、 低碳钢:含碳量在0.3%以下的碳素钢。
5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。
>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。
12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。
16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
第四章 应力应变关系前一章引进了应力和应变的概念以及应力分析和应变分析的公式。
应力分析仅用到力的平衡概念,应变分析仅用到几何关系和位移的连续性。
这些都没有涉及到所研究物体的材料性质。
本章开始将研究材料的性质。
这些性质决定了各种材料特殊的应力-应变关系,显示出材料的力学性能。
下面将着重描述低碳钢的力学性能,介绍各向同性材料的广义胡克定律。
作为选读材料,将介绍各向异性的复合材料单层板的应力-应变关系。
§4-1 低碳钢的拉伸试验在分别考虑了应力和应变后,从直觉上知道这两个量是互相关联的。
事实上,在第一章的绪论里已经提到过应力应变之间的胡克定律。
它描述了很大一类材料在小变形范围,在简单拉伸(压缩)条件下所具有的线性弹性的力学性能。
低碳钢Q235是工程上常用的金属材料。
这一节着重介绍低碳钢的力学性能,然后简单介绍其他一些材料的性能。
有关材料性能的知识来自于宏观的材料试验,以及从这些试验得出的宏观的、唯象的理论。
固体物理学家一直在从原子和分子量级上研究这些力学性能的微观基础。
力学家也已开始从细观尺度来分析材料的力学性能,并已经取得了很大进展。
材料力学作为固体力学的入门课程,将只限于材料的宏观力学性能的描述。
为了确定应力与应变关系,最常用的办法是用单向拉伸(压缩)试验来测定材料的力学性质。
这种试验通常是在常温(室温)下对试件进行缓慢而平稳加载的静载试验。
805l d =一、低碳钢拉伸试验按照我国的国家标准 “金属拉伸试验试样” (GB6397-86),将试件按规定做成标准的尺寸。
图4-1所示是一根中间直径为d 的圆杆型试件,两端的直径比中间部分大,以便于在试验机夹头上夹持。
试件中间取一段长度为l 的等直部分作为标距。
对圆截面标准试件,规定标距l 与直径d 的关系为 ,或,分别称为10倍试件和5倍试件。
试件也可制成截面为矩形的平板型,平板试件的10倍与5倍试件的标距分别为10l d==l和l =,其中A 为试件的横截面面积。
材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、基本概念1、外力:作用在物体上的力,包括载荷和约束力。
2、内力:物体内部各部分之间相互作用的力。
3、应力:单位面积上的内力。
4、应变:物体在受力时发生的相对变形。
二、轴向拉伸与压缩1、轴力:杆件沿轴线方向的内力。
轴力的计算通过截面法,即假想地将杆件沿某一截面切开,取其中一部分为研究对象,根据平衡条件求出截面处的内力。
2、拉压杆的应力正应力计算公式为:σ = N / A,其中 N 为轴力,A 为横截面面积。
应力在横截面上均匀分布。
3、拉压杆的变形纵向变形:Δl = Nl / EA,其中 E 为弹性模量,l 为杆件长度。
横向变形:Δd =μΔl,μ 为泊松比。
三、剪切与挤压1、剪切:在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。
2、剪切力:平行于横截面的内力。
3、切应力:τ = Q / A,Q 为剪切力,A 为剪切面面积。
4、挤压:连接件在接触面上相互压紧的现象。
5、挤压应力:σbs = Pbs / Abs,Pbs 为挤压力,Abs 为挤压面面积。
四、扭转1、扭矩:杆件受扭时,横截面上的内力偶矩。
扭矩的计算同样使用截面法。
2、圆轴扭转时的应力横截面上的切应力沿半径线性分布,最大切应力在圆周处,计算公式为:τmax = T / Wp,T 为扭矩,Wp 为抗扭截面系数。
3、圆轴扭转时的变形扭转角:φ = TL / GIp,G 为剪切模量,Ip 为极惯性矩。
五、弯曲内力1、平面弯曲:梁在垂直于轴线的平面内发生弯曲变形,且外力和外力偶都作用在该平面内。
2、剪力和弯矩剪力:梁横截面上切向分布内力的合力。
弯矩:梁横截面上法向分布内力的合力偶矩。
材料力学知识点总结材料力学是研究材料在外力作用下的力学行为的一门学科,它是材料科学和工程学中的重要基础学科。
在材料力学中,我们需要了解一些基本的知识点,这些知识点对于理解材料的性能和行为具有重要意义。
本文将对材料力学的一些重要知识点进行总结,希望能够帮助读者更好地理解材料力学的基本概念。
1. 应力和应变。
在材料力学中,应力和应变是两个基本的概念。
应力是单位面积上的力,它描述了材料受力的程度。
而应变则是材料在受力作用下的变形程度。
应力和应变之间存在着一定的关系,这种关系可以通过杨氏模量和泊松比来描述。
了解应力和应变的概念对于分析材料的力学性能非常重要。
2. 弹性模量。
弹性模量是描述材料在受力后能够恢复原状的能力的一个重要参数。
不同材料的弹性模量是不同的,它反映了材料的硬度和脆性。
了解材料的弹性模量有助于我们选择合适的材料,并且在工程设计中能够更好地预测材料的性能。
3. 屈服强度和抗拉强度。
材料在受力作用下会发生塑性变形,而屈服强度和抗拉强度则是描述材料抵抗塑性变形的能力。
屈服强度是材料开始发生塑性变形的应力值,而抗拉强度则是材料抵抗拉伸破坏的能力。
这两个参数对于材料的强度和韧性具有重要意义。
4. 疲劳强度。
在实际工程中,材料往往需要承受交变载荷,这就会导致材料的疲劳破坏。
疲劳强度是描述材料在交变载荷作用下能够承受的最大应力值,了解材料的疲劳强度有助于我们预防材料的疲劳破坏。
5. 断裂韧性。
材料在受到外力作用下会发生断裂,而断裂韧性则是描述材料抵抗断裂的能力。
了解材料的断裂韧性有助于我们预测材料的寿命,并且在工程设计中能够更好地选择合适的材料。
总结。
材料力学是材料科学和工程学中的重要学科,它对于理解材料的力学性能具有重要意义。
本文对材料力学的一些重要知识点进行了总结,希望能够帮助读者更好地理解材料力学的基本概念。
通过了解应力和应变、弹性模量、屈服强度和抗拉强度、疲劳强度以及断裂韧性等知识点,我们可以更好地选择合适的材料,并且预测材料的性能和寿命,从而更好地应用于工程实践中。
第二篇材料力学第四章材料力学基本知识第一节变形固体的假设在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。
例如,储气罐主要保证强度,车床主轴主要要求具有足够的刚度,受压的细长杆应该保持其稳定性。
对某些特殊的构件还可能有相反的要求。
例如为防止超载,当载荷超过某一极限时,安全销应立即破坏。
又如为发挥缓冲作用,车辆的缓冲弹簧应有较大的变形。
研究构件的承载能力时必须了解材料在外力作用下表现出的变形和破坏等方面的性能,及材料的力学性能。
材料的力学性能由实验来测定。
经过简化得出的理论是否可信,也要由实验来验证。
此外,对于一些尚无理论结果的问题,需要借助实验方法来解决。
所以,实验分析和理论研究同是材料力学解决问题的方法。
一、变形固体的基本假设材料力学中,当分析强度、刚度和稳定性时,这些问题都与变形有关,因而即使极其微小的变形也必须加以考虑,这就必须把物体抽象为变形固体。
材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
变形固体的性质是很复杂的,在对用变形固体做成的构件进行强度、刚度和稳定性计算时,为了使计算简化,经常略去材料的次要性质,并根据其主要性质做出假设,将它们抽象为一种理想模型,作为材料力学理论分析的基础。
实验证明,在一定的荷载作用下,变形固体加载时将产生变形,卸载后能恢复原形。
变形固体的这种性质称为弹性。
卸载后消失的那一部分变形,称为弹性变形。
当外荷载超过某极限值时,卸载后除消除的一部分弹性变形外,还将存在一部分未消失的变形,称为塑性变形。
为了使问题的研究得到简化,通常对变形固体作如下假设:(一)连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。
实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。
于是可认为固体在其整个体积内是连续的。
基于连续性假设,固体内的一些力学量(例如点的位移)既可用连续函数表示,并可采用无穷小的高等数学分析方法研究。
连续性不仅存在于变形前,同样适用于变形发生之后。
既构件变形后不出现新的空隙,也不出现重叠。
(二)均匀性假设:材料在外力作用下在强度和刚度方面所表现出的性能称为材料的力学性能。
所谓的均匀性假设指材料的力学性能在各处都是相同的,与其在固体内的位置无关。
即从固体内任意取出一部分,无论从何处取也无论取多少其性能总是一样的。
由此假设可以认为,变形固体均由同一均质材料组成,因而体内各处的力争性质都是相同的,并认为在其整个体积内毫无空隙地充满了物质。
事实上,从固体的微观结构看,各种材料都是由无数颗粒(如金属中的晶粒)组成的,颗粒之间是有一定空隙的,而且各颗粒的性质也不完全一致。
但由于材料力学是从宏观的角度去研究构件的强度、刚度和稳定性问题,这些空隙远远小于构件的尺寸,而且各颗粒是错综复杂地排列于整个体积内,因此,由统计平均值观点看,各颗粒性质的差异和空隙均可忽略不计,而认为变形固体是均匀连续的。
(三)各向同性假设:即认为材料沿各个方向的力学性质是相同的。
具有这种属性的材料称为各向同性材料。
例如钢、铜、铸铁、玻璃等,而木材、竹和轧制过的钢材等,则为各向异性材料。
但是,有些各向异性材料也可近似地看作是各向同性的。
构件在外力作用下将发生变形,当外力不超过一定限度时,绝大多数构件在外力去掉后均能恢复原状。
当外力超过某一限度时,则在外力去掉后只能部分地复原而残留一部分不能消失的变形。
外力去掉后能消失的变形称为弹性变形,不能消失而残留下来的变形称为塑性变形。
应该指出,工程实际中多数构件在正常工作条件下只产生弹性变形,而且这些变形与构件原有尺寸相比通常是很小的,所以,在材料力学中,大部分问题只限于对弹性变形的研究,并且在研究构件的平衡与运动时,变形的影响可以忽略不计。
上述假设,基本符合大多数工程材料(如钢、铜、铸铁、玻璃等)的实际情况。
但也有一些材料,如轧制钢材、木材等,其力学性质有方向性,称为各向异性材料。
根据以上假设建立的理论,用于各向异性材料时,只能得到近似的结论,但也可满足工程上所要求的精度。
综上所述,材料力学是将物体看作均匀、连续、各向同性的变形固体,并且只限于研究微小的弹性变形的情况。
第二节杆件变形的基本形式一、杆件变形的定义:杆件在外力作用下,形状和尺寸的变化。
二、杆件变形的形式(一)基本变形:轴向拉伸与压缩剪切变形扭转变形弯曲变形(二)组合变形:同时发生两种或两种以上的变形形式1、轴向拉伸或压缩变形(图4-1-1)1)受力特点:作用线与杆轴重合的外力引起的。
2)变形特点:杆轴沿外力方向伸长或缩短,主要变形是长度的改变。
2、剪切变形(图4-1-2)1)受力特点:由垂直于杆轴方向的一对大小相等、方向相反、作用线很近的横向外力引起的。
2)变形特点:二力之间的横截面产生相对错动变形。
主要变形是横截面沿外力作用方向发生相对错动。
3、扭转变形 (图4-1-3)1)受力特点:由垂直于杆轴线平面内的力偶作用引起的2)变形特点:相邻横截面绕杆轴产生相对旋转变形。
4、弯曲变形 (图4-1-4)1)受力特点:是由垂直于杆件轴线的横向力或作用在杆件的纵向平面内的力偶引起的2)变形特点:杆轴由直变弯,杆件的轴线变成曲线。
第二节 内力与应力一、内力的概念(4-1-1)轴向拉压(4-2-2)剪切(4-1-3)扭转(4-1-4)弯曲材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
构件即使不受外力作用,它的各质点之间本来就有相互作用的内力,以保持其一定的形状。
材料力学所讨论的内力,是指因外力作用使构件发生变形时,构件的各质点间的相对位置改变而引起的“附加内力”,即分子结合力的改变量。
这种内力随外力的改变而改变。
但是,它的变化是有一定限度的,不能随外力的增加而无限地增加。
当内力加大到一定限度时,构件就会破坏,因而内力与构件的强度、刚度是密切相关的。
由此可知,内力是材料力学研究的重要内容。
二、截面法截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
图4-2-1已知杆件(如图4-2-1)在外力作用下处于平衡,求m m -截面上的内力,即求m m -截面左、右两部分的相互作用力。
首先假想地用一截面m m -截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m m -截面上的内力n 。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m m -截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程由0X F =∑列出:0N F -=可得N F =按照材料连续性假设,m m -截面上各处都有内力作用,所以截面上应是一个分布内力系,用截面法确定的内力是该分布内力系的合成结果。
这种将杆件用截面假想地切开以显示内力,并由平衡条件建立内力和外力的关系确定内力的方法,称为截面法。
综上所述,截面法可归纳为以下三个步骤:1、截取:假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、代替:任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N 来代替。
3、平衡:对留下的部分建立平衡方程,求解内力。
三、应力的概念用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
例如,有同样材料而截面面积大小不等的两根杆件,若它们所受的外力相同,那么横截面上的内力也是相同的。
但是,从经验知道,当外力增大时,面积小的杆件一定先破坏。
这是因为截面面积小,其上内力分布的密集程度大的缘故。
内力在截面上的分布集度称为应力。
以分布在单位面积上的内力来衡量。
如图所示,在杆件横截面m m -上围绕一点K 取微小面积A ∆,并设A ∆上分布内力的合力为R F ∆。
R F ∆的大小和方向与所取K 点的位置和面积A ∆有关。
m P 代表了A ∆上应力分布的平均集中程度,为了更精确的描述应力的分布情况,应该使A ∆→0,由此得到平均应力的极限值m P ,即0lim R A F P A∆→∆=∆图4-2-2 图4-2-3将R F ∆与A ∆的比值称为微小面积A ∆上的平均应力,用m P 表示,即:lim R M F P A∆=∆ m P 称为截面m m -上一点K 处的应力。
应力m P 的方向与内力N的极限方向相同,通常,它既不与截面垂直也不与截面相切。
将应力m P 分解为垂直于截面的分量σ和相切于截面的分量τ,其中σ称为正应力,τ称为切应力。
在国际单位制中,应力单位是帕斯卡,简称帕(a P )。
工程上常用兆帕(a MP ),有时也用吉帕(a GP )。
211a N P m =33211010a a NKP P m == 66211010a a NMP P m == 99211010a a N GP P m ==杆件变形的基本形式在机器或结构物中,构件的形状是多种多样的。
如果构件的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大得多,这样的构件称为杆件。
杆是工程中最基本的构件。
如机器中的传动轴、螺杆、房屋中的梁和柱等均属于杆件。
某些构件,如齿轮的轮齿、曲轴的轴颈等,并不是典型的杆件,但在近似计算或定性分析中也简化为杆。
垂直于杆长的截面称为横截面,各横截面形心的连线称为轴线。
轴线为直线,且各横截面相等的杆件称为等截面直杆,简称为等直杆。
材料力学主要研究等直杆。
第三节 应力与应变应力的概念前面已述,下面介绍应变的概念。
应变:当单位圆柱体被拉伸的时候会产生伸长变形L ∆,那么圆柱体的长度则变为L L +∆。
这里,由伸长量L ∆和原长L 的比值所表示的伸长率(或压缩率)就叫做“应变”,记为ε。
与外力同方向的伸长(或压缩)方向上的应变称为“轴向应变”。
应变表示的是伸长率(或压缩率),属于无量纲数,没有单位。
由于量值很小(6110⨯百万分之一),通常单位用“微应变”表示,或简单地用E μ表示。
图4-3-1图4-3-1而单位圆柱体在被拉伸的状态下,变长的同时也会变细。
直径为0d 的棒产生d ∆的变形时,直径方向的应变如下式所示: 20d d ε-∆= 这种与外力成直角方向上的应变称为“横向应变”。
轴向应变与横向应变的比称为泊松比,记为υ。
每种材料都有其固定的泊松比,且大部分材料的泊松比都在0.3左右。
210.3ευε== 图4-3-1各种材料的应变与应力的关系已经通过实验进行了测定。
图4-3-1所示为一种普通钢材(软铁)的应力与应变关系图。