大学无机化学-分子结构
- 格式:ppt
- 大小:8.56 MB
- 文档页数:120
第8章习题解答②一、是非题(1)分子轨道理论是以原子轨道理论为基础建立的。
.()解:对(2)HF分子中由H的1s轨道与F的1s轨道线性组合形成分子轨道。
.()解:错(3)任何两个原子的s原子轨道,都可组成两个分子轨道σs和σs*。
.()解:错(4)中心原子所形成的杂化轨道数等于参加杂化的原子轨道数。
()解:对(5)同一原子中能量相近的原子轨道进行杂化,是形成杂化轨道的基本条件之一。
.()解:对(6)原子轨道发生杂化后可以增强成键能力。
()解:对(7)杂化轨道具有能量相等、空间伸展方向一定的特征。
.()解:对(8)原子轨道的杂化既可以在原子成键时发生,也可以在孤立原子中发生。
()解:错(9)原子轨道的杂化只在形成化合物分子时发生。
()解:错(10)杂化轨道与原子轨道一样既可以形成σ键,也可以形成π键。
()解:错(11)一个原子有几个成单电子,就只能形成几个杂化轨道。
()解:错(12)sp3杂化是由同一原子的一个ns轨道和三个np轨道形成四个sp3杂化轨道。
()解:对(13)能形成共价分子的主族元素,其原子的内层d轨道均被电子占满,所以不可能用内层d轨道参与形成杂化轨道。
.()解:对(14)凡是中心原子采取sp3杂化轨道成键的分子,其空间构型都是正四面体。
()解:错(15)SiCl4分子中的sp3杂化轨道是由Cl原子的3s轨道和Si原子的3p轨道混合形成的。
()解:错(16)含有120︒键角的分子,其中心原子的杂化轨道方式均为sp2杂化。
()解:错(17)凡是中心原子采用sp2杂化方式形成的分子,必定是平面三角形构型。
()解:错(18)NH2-的空间几何构型为V形,则N原子的轨道杂化方式为sp2杂化。
()解:错(19)NCl3和PO43-的中心原子均采用等性sp3杂化。
.()解:错(20)SnCl2分子和H2O分子的空间构型均为V型,表明它们的中心原子采取相同方式的杂化轨道成键。
.()解:错(21)凡是配位数为4的分子,其中心原子均采用sp3杂化轨道成键。
无机化学分子结构无机化学是研究无机物质的性质、结构和反应的学科,其中分子结构是无机化学中一个非常重要的方面。
无机化学分子结构的研究是为了深入理解无机物质的性质和反应机理,并可以为无机材料的开发和应用提供基础。
在无机化学中,分子结构主要是指由原子组成的分子的三维排列方式。
分子结构的研究可以通过实验和理论计算两种方法来进行。
实验上,常用的技术包括X射线晶体学、核磁共振、质谱和红外光谱等。
其中,X射线晶体学是研究分子结构最常用的方法之一、它利用X射线通过晶体时产生的衍射图案来确定晶体的各个原子的位置。
通过分析晶体的衍射图案,可以推断出分子的空间排列方式,从而确定分子结构。
核磁共振技术可以通过原子核的共振吸收谱来获得关于分子的结构信息。
质谱则可以用来测量分子的质量和质量分布情况。
红外光谱则可以测量分子的振动谱,从而了解分子中化学键的类型和存在。
理论计算在无机化学分子结构研究中也起着重要的作用。
理论计算技术包括量子力学、分子力学和分子动力学等方法。
量子力学可以通过解方程组来计算分子的能量和几何构型等信息。
分子力学是基于经典力学原理的方法,它通过计算原子间的位能来确定分子的结构。
分子动力学则是通过模拟原子的运动轨迹来研究分子的结构和性质。
无机化学分子结构的研究不仅可以帮助理解分子的性质和反应机理,还对无机材料的开发和应用具有重要意义。
例如,在催化剂的设计和优化中,了解催化剂分子结构的变化和活性位点的位置可以帮助提高催化剂的效率和选择性。
在材料科学中,通过调控无机材料的分子结构可以实现材料的特定性能,例如控制材料的导电性和光学性能等。
此外,无机荧光材料的研究也与分子结构有直接关系,通过调节分子结构和晶格结构可以获得不同的荧光发射频率,从而应用于荧光显示、生物成像等领域。
总结起来,无机化学分子结构的研究是无机化学的重要组成部分。
通过实验和理论计算的手段,可以确定无机物质的分子结构,进一步理解其性质和反应机理。
这些研究对无机材料的开发和应用具有重要意义,有助于提高催化剂的效率、设计新型功能材料,并推动材料科学和荧光材料的进一步发展。
无机化学分子结构无机化学是研究无机物质的性质、结构和化学反应的学科领域。
无机物是指不含有碳-碳键的化合物,而有机物则相反。
无机化学主要关注无机物的元素组成、原子之间的键合和化学键的类型。
无机化学研究的对象包括无机盐、无机酸、无机碱、无机氧化物、无机酸盐等。
这些化合物的分子结构对其性质和化学反应起着至关重要的作用。
分子结构是指无机物中原子之间的排列方式和连接方式。
无机化合物的分子结构可以通过多种实验方法和理论模型来确定。
其中,X射线晶体学和谱学是常用的实验方法,而分子轨道理论和电子云轨道理论则是常用的理论模型。
X射线晶体学是一种通过测量晶体中X射线被散射的方式来确定晶体的分子结构的方法。
通过将晶体放入X射线束中,然后测量散射的X射线的角度和强度,可以得到晶体中原子的位置和连接方式。
X射线晶体学可以得到非常准确的原子位置和键长,因此广泛应用于研究无机物的分子结构。
谱学是一种通过分析无机物质光谱的方式来推测其分子结构的方法。
光谱分析包括红外光谱、拉曼光谱、紫外光谱等。
这些光谱可以提供关于无机物质中原子之间的振动、旋转和电子能级等信息,从而推断出分子结构。
分子轨道理论是一种利用量子力学的方法来描述分子结构的理论模型。
分子轨道理论将分子看作是原子轨道叠加而成的新轨道,通过求解分子的薛定谔方程得到分子的波函数和能级。
分子轨道理论可以解释化学键的形成和断裂,以及无机物质的电子结构和性质。
电子云轨道理论是一种基于电子云分布来描述分子结构的理论模型。
根据电子云的几何形状和空间分布,可以推断出原子之间的键角和键长。
所谓电子云即是描述电子在空间中分布的概率密度函数,通过对电子云的分析可以得到无机物质中原子之间的键合性质。
分子结构对无机物的性质和化学反应起着重要的影响。
例如,原子之间的键长和键角决定了分子的几何形状和立体构型,从而影响物质的稳定性和化学性质。
此外,分子结构还决定了分子之间的相互作用力,如范德华力和氢键等,这些相互作用力在晶体结构中起着重要的作用。
《无机化学》化学键理论与分子结构无机化学是研究无机化合物的组成、结构、性质和反应的学科。
化学键理论与分子结构是无机化学的重要基础和核心内容,它们对于理解无机化合物的物理和化学性质具有重要意义。
化学键是指原子之间通过共享电子或电子转移而形成的力。
常见的化学键包括离子键、共价键和金属键。
离子键是电荷相反的离子之间的相互作用力。
它的形成是离子化反应过程中,金属元素失去电子变成阳离子(阳离子)和非金属元素获得电子成为阴离子(阴离子)所形成的。
离子键的特点是电负性差异较大,具有很强的极性,在固态下成为离子晶体,具有高熔点和良好的导电性。
共价键是非金属原子通过共用电子对形成的化学键。
共价键的形成依赖于原子之间电子互相吸引的作用力。
根据电子的共享程度,共价键又可分为极性共价键和非极性共价键。
极性共价键的特点是原子的电负性差异较小,共享电子不平均分布,云地带呈现部分离子性质,它的形成使得分子有极性;而非极性共价键的特点是原子的电负性差异极小,共享电子均匀分布,云地带不存在电荷分离,分子呈现非极性。
金属键是金属原子通过电子云中的自由电子形成的化学键。
金属原子的外层电子非常松散,可以自由移动,形成电子海。
金属键的特点是具有很好的导电性、热导性和延展性,而且金属键的强度也很高。
分子结构是指分子内原子的相对位置和连接关系。
分子结构的确定有助于揭示物质的物理性质和化学性质。
在无机化学中,分子结构可通过实验和理论计算等手段进行研究。
实验方法主要包括X射线衍射、中子衍射、质谱和核磁共振等。
其中,X射线衍射是最常用的手段,通过测量晶体中X射线的衍射图样,可以得到晶体结构的信息。
中子衍射则是通过测量中子与晶体相互作用过程中所发生的衍射现象,得到晶体结构的信息。
质谱和核磁共振则是通过测量分子中原子的质量和能级差等可以得到分子结构的信息。
理论计算的方法包括量子化学计算和分子力学计算。
量子化学计算是通过量子力学原理,计算分子的能量、电子结构和反应性等。
大学无机化学大一知识点无机化学是化学科学中的一个重要分支,主要研究无机物质的结构、性质、合成和应用等方面的知识。
作为大一学生,学习无机化学的基本知识是打好化学基础的重要一步。
下面将介绍大学无机化学大一知识点的内容。
1. 原子结构和元素周期表原子是物质最基本的单位,由电子、质子和中子组成。
电子负电,质子正电,中子中性。
元素周期表是根据元素的原子序数(质子数)排列的,分为周期和族。
周期表上左边为金属元素,右边为非金属元素,中间是过渡金属元素。
根据元素的位置可以大致判断其性质。
2. 化学键与分子结构化学键是由原子之间的相互作用形成的,常见的化学键有离子键、共价键和金属键。
离子键是通过正负电荷的相互吸引形成的,如钠和氯化成氯化钠。
共价键是通过共享电子形成的,如氢气的共价键是两个氢原子共享两个电子。
分子结构描述了分子中原子的相对位置。
3. 配位化学配位化学研究配位化合物中金属离子与配体的结合。
金属离子通常可以形成配位数不同的络合物,配位数是指与金属离子配位键的配位原子或配体的个数。
配体是能与金属形成配位键的分子或离子。
4. 元素化合物及其性质元素化合物是由相同种类的原子通过化学键相互结合形成的化合物。
元素化合物的性质取决于元素的原子结构和元素之间的化学键。
例如,氯化钠是一种晶体固体,在水中可以溶解形成电解质溶液。
5. 酸碱中和反应酸碱中和反应是指酸和碱反应生成盐和水的反应。
酸是指能产生H+离子的物质,碱是指能产生OH-离子的物质。
常见的酸碱反应有酸和碱的中和反应、酸和金属的反应以及酸和碳酸盐的反应等。
6. 化学平衡化学平衡是指化学反应在一定条件下前后反应物和生成物的浓度保持一定比例的状态。
平衡常数(Kc)是反应物浓度与生成物浓度的比值的稳定值,取决于反应物浓度的温度和压力。
7. 氧化还原反应氧化还原反应是指物质间电子的转移反应,包括氧化剂接受电子的还原和还原剂提供电子的氧化。
常见的氧化还原反应有金属的腐蚀反应、非金属的燃烧反应以及电池中的反应等。
第8章习题解答①一、是非题(1)氢氧化钠晶体中既有离子键,又有共价键。
.()解:对(2)离子晶体中的化学键都是离子键。
.()解:错(3)CO分子含有配位键。
.()解:对(4)NaCl(s)中正、负离子以离子键结合,故所有金属氯化物中都存在离子键。
.()解:错(5)非金属元素组成的化合物都不是离子化合物。
()解:错(6)在CS2、C2H2分子中,均有σ键和π键。
.()解:对(7)H2分子中的共价键具有饱和性和方向性。
.()解:错(8)所有分子的共价键都具有饱和性与方向性,而离子键没有饱和性与方向性。
()解:错(9)某原子所形成共价键的数目,等于该原子基态时未成对电子的数目。
.()解:错(10)键能越大,键越牢固,分子也越稳定。
.()解:错(11)N2分子中有叁键,氮气很不活泼;因此所有含有叁键的分子都不活泼。
()解:错(12)双原子分子键能等于该物质的生成焓。
()解:错(13)共价型分子的键能等于其键离解能。
()解:错(14)反应HCl(g)→H(g)+Cl(g)的∆r H=431kJ·mol-1,即H-Cl键能为431kJ·mol-1。
()解:对(15)乙烯加氢生成乙烷,丙烯加氢生成丙烷。
这两个反应的摩尔焓变几乎相等。
()解:对(16)共价键的键长等于成键原子共价半径之和。
.()解:错(17)相同原子间的叁键中必有一个σ键,两个π键,π键不如σ键稳定。
所以叁键键能一定小于三倍的单键键能。
()解:错(18)相同原子间双键的键能等于单键键能的两倍,叁键键能等于单键键能的三倍。
()解:错(19)烷烃分子中C-C键的键能大于炔烃分子中C C键能的三分之一。
()解:对(20)对于气相反应来说,如果反应物的摩尔键焓总和小于生成物的摩尔键焓总和,则反应的摩尔焓变为负值。
()解:对(21)氟的电负性大,原子半径小,所以F2分子的键能比Cl2、Br2、I2分子的键能大。
()解:错(22)任何共价单键的键长均大于共价双键或共价叁键的键长。