分数的基本性质.
- 格式:docx
- 大小:16.53 KB
- 文档页数:3
《分数的基本性质》的说课稿分数的基本性质说课稿分数基本性质说课稿《分数的基本性质》说课稿《分数的基本性质》的说课稿1尊敬的各位评委,各位老师:大家好!我说课的内容是《分数的基本性质》。
这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。
它是进一步学习约分、通分的基础。
根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、(认知目标)理解和掌握分数的基本性质。
3、(能力、情感目标)培养学生观察、分析、推理的能力。
教学重点:理解和掌握分数的基本性质。
教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。
创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。
我设计的具体教学过程如下:第一环节:激趣引入,凸显信息技术的趣味性。
“成功的一半取决于良好的开始”,本课采用了学生感兴趣的电脑游戏和卡通人物作为引子,巧妙地唤起了学生的好奇心和求知欲。
在比较三个分数大小的过程中,学生们各抒己见,坚持自己的观点不动摇,形成了不同观点的矛盾冲突,激发了学生们的思考和探究欲望。
这种矛盾的存在为后续的规律发现打下了基础。
小学数学《分数的基本性质》教学设计(精选3篇)小学数学《分数的基本性质》教学设计(精选3篇)作为一名无私奉献的老师,就不得不需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。
我们应该怎么写教学设计呢?以下是小编精心整理的小学数学《分数的基本性质》教学设计(精选3篇),希望能够帮助到大家。
《分数的基本性质》教学设计1教学目标:1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好的实现知识教育与思想教育的有效结合。
教学重点:理解和掌握分数的基本性质。
教学难点:能熟练、灵活地运用分数的基本性质。
教学过程:一、创设情景师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。
同学们认真观察,你们能提出什么问题?师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授师:同学们想了很多好的方法,哪个小组愿意汇报一下?生1:我们组是用画图的方法来验证的。
我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。
通过比较我们发现,涂色部分的大小是相等的,所以生2:我们组是用折纸的方法来验证的。
我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。
通过折纸我们组也发现(学生在小组中讨论、验证)师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?(学生认真讨论)师:同学们汇报一下你们的讨论结果。
三、自主练习巩固提高课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4 题学生自做。
师巡视指导。
《分数的基本性质》教学设计2教学目的:理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
学科:数学教学内容:分数的基本性质呈现目标【知识要点归纳】 1.分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(1)根据分数与除法的关系,也可以用整数除法中商不变的性质说明分数的基本性质。
即:分数的分子和分母同时扩大或缩小相同的倍数(零除外),分数的大小不变。
(2)在分数的性质里,零除外的原因是:如果分数的分子、分母都乘以0,则分数成为00,分数的分母不能为0,所以分数、分母不能同时乘以0;又因为在除法里零不能作除数,所以,分数的分子、分母也不能同时除以0。
2.分数的基本性质的初步应用应用分数的基本性质可以把一个分数化成分母不同而大小不变的分数。
如:把21和2410化成分母是12而大小不变的分数。
21=6261⨯⨯=126 2410=224210÷÷=125名师点拨【典型范例剖析】例1 (1)一个分数,分母比分子大25,约简后是得94,原分数是多少?(2)一个分数约简后等于132,原来分子与分母的和是60。
原来的这个分数是多少?分析:(1)一个分数约简后得94,分母比分子大5,但约简前的分母比分子大25,所以把94的分子和分母同时扩大 5倍,就可以求出原分数。
(2)一个分数约简后得132,分子与分母的和是15,但约简前分子与分母的和是60,因为15×4=60,所以,把约简的分数的分子、分母同时扩大4倍,就可以求出原来的分数。
解:(1)94=5954⨯⨯=4520(2)132=41342⨯⨯=528答:(1)原分数为4520,(2)原分数为528。
例2 一个分数是2016,如果将它的分子减少12,要使这个分数的大小不变,分母应该减少多少?分析:将分数2016的分子16减少12后变成了4,分子就缩小了4倍。
根据分数的基本性质,分母也要缩小4倍,分母是20÷4=5。
原分母 20变成了5,减少了20-5=15。
解:16÷(16-12)=420÷4=5 20-5=15答:分母应该减去15,这个分数的大小才不变。
分数的基本性质、约分与通分知识梳理1、 分数的分类及基本性质(1) 分数的分类:真分数与假分数真分数:分子比分母小的分数称为真分数;例如:45 等。
假分数:分子大于或等于分母的分式称为假分数;例如:54,等。
带分数:带分数是假分数的另外一种表现形式;它由整数和真分数相加得到。
例:1+45 =145 。
(2)分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的大小不变。
2、约分(1)约分的概念:把一个分数的分子和分母同时除以它们的公因数,分数的值(大小)不变,这样的过程叫约分。
约分的依据为分数的基本性质。
如:2430 =45(2)最简分数的概念:分子、分母的公因数只有1的分数称为最简分数。
(3)最大公因数的求法 ①列举法例如:求12和18的最大公因数;12的因数有:1、2、3、4、6、12;18的因数有:1、2、3、6、12、18;12和18的公因数有:1、2、3、6;所以12和18的最大公因数是:6.② 短除法例如:求12和18的最大公因数(如下图所示):12和18的最大公因数为:2×3=6 ③分解质因数法如:12=2x2x3,18=2x3x3,公有的质因数是2,3,所以12和18的最大公因数是2x3=6(4)实际应用当所求量分别与两个(或几个)已知量的因数有关时,可以用公因数或最大公因数的知识解决。
3、通分(1)通分的概念:把分母不相同的分数化成和原来分数大小相等且分母相同的分数,这个过程叫通分。
通分的依据是分数的基本性质。
(2)最小公倍数的求法:①列举法例如:求6和8的最小公倍数。
6的倍数有:6,12,18,24,30,36,42,48,……8的倍数有:8,16,24,32,40,48,……6和8的公倍数:24,48,……其中24是6和8的最小公倍数。
②短除法例:用短除法求16和24的最小公倍数;用短除法求6、8、12的最小公倍数。
16和24的最小公倍数是:6、8和12的最小公倍数是:2×2×2×2×3=48;2×3×2×2=24③分解质因数法例如:求6和15的最小公倍数。
分数的基本性质教案(优秀9篇)《分数的基本性质》教学设计篇一第一课时课题:分数的基本性质教学目标:1、知识与技能1、能说出分数的基本性质。
2、能说出分数基本性质与商不变性质的关系2、过程与方法3、会通过操作发现分数的分子分母扩大缩小的规律,并推导出基本性质。
4、会运用分数的基本性质解决数学问题。
3、情感态度与价值观5、培养学生自主探究、合作学习、创新思维的能力。
6、让学生在学习过程中养成互相帮助,团结协作的良好品德。
7、通过知识间的内在联系,渗透辩证唯物学情分析从学生思维角度看,分数的基本性质,在日常生活中应用广泛,是以分数大小相等为基础的。
两个分数大小相等,学生容易联想到分数的分子、分母分别相等。
为此,就需要课件先通过直观动画使学生了解、两个分数的分子、分母虽然不同,但是分数大小是相等的。
接着研究分数的分子、分母是按照什么规律变化的,要学生一下子说明道理比较困难,就需要一步一步分析,最终让学生自己归纳出分数的基本性质。
重点难点:学习重点:熟悉掌握分数的基本性质及基关键词同时、同数、不为0学习难点:分数的基本性质在具体解题环境中的具体应用教具学具:多媒体课件,学具袋(内含正方形纸,线段,直尺)教法学法:讲授法,活动探究法,任务驱动法。
活动设计:通过正方形和线段的平分探究和的大小关系。
教学课时:一课时教学过程:一、精彩导入同学们,今天刘老师能在这里和在大家一起研究数学问题,感到非常的开心。
你们想看老师的魔术表演吗?(想),好,那老师就在在座的各位面前献丑了(表演)还想看吗?(想)那我就给大家表演一个数学的魔术吧!出示课件:56 =1012 =壹五18 =2024师:我能写无限多个与56相等的除法算式来,这个魔术你们会吗?那我有一个除法算式45,请你写出与它相等的除法算式(点名)教师板书:45师:哇,你真厉害!那你能给大家介绍一下,你是把被除数和除数怎么变化了,但商还是不变了?生:(引导说出)被除数和除数同时扩大或缩小相同的倍数(0除外),商不变师:是的,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
分数的基本性质说课稿分数的基本性质说课稿1教学目标(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点(一)理解和掌握分数的基本性质。
(二)归纳分数的基本性质,运用性质转化分数。
教学用具教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给学具:每位同学准备三张相同的长方形纸片。
教学过程设计(一)复习准备1.口答:(投影片)根据120÷30=4,不用计算直接说出结果:(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。
2.说一说依据什么可以不用计算直接得出商的?3.说出商不变的性质。
教师:分数有一条类似于除法有商不变性质的性质,即分数的.值不变。
当一个分数被化简或扩大倍数时,它的值不会改变,只是表达的方式不同而已。
这是因为分数是由分子和分母组成的,它们之间的比例关系确定了分数的值。
因此,无论分数怎样化简或扩大倍数,只要分子与分母的比例不变,分数的值就保持不变。
(二)学习新课1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:分别将这些形状平均分成2份,4份和6份,并在其中的1份,2份和3份上标记颜色或填充阴影。
然后用分数表示涂色部分。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:教师:请比较这三个分数的大小?你根据什么说这三个分数相等?学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
分数的基本性质说课稿五篇作为一无名无私奉献的教育工作者,就有可能用到说课稿,借助说课稿我们可以快速提升自己的教学能力。
快来参考说课稿是怎么写的吧!以下是收集整理的分数的基本性质说课稿5篇,欢迎大家分享。
一、说教材《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。
它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。
因此,分数的基本性质该单元的教学重点之一。
二、说学情学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。
在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。
五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。
根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
第六单元 分数的基本性质基础知识回顾1、 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
2、 最简分数:分子和分母只有公因数1,这样的分数叫做最简分数。
3、 约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
约分时,通常要约成最简分数。
4、 约分的方法:(1)逐步约分法:用分数的分子和分母的公因数(1除外)逐次去除分子和分母,直到得到一个最简分数。
(2)一次约分法:用分数的分子和分母的最大公因数去除分子和分母,就得到最简分数。
5、 通分的意义:把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。
6、 公分母:通分过程中,把异分母分数化成同分母分数,这个相同的分母叫做这几个分数的公分母。
7、 通分的方法:通分时,用原来的几个分母的公倍数作为公分母,为了计算简便,通常选用最小公倍数作为公分母,然后把名分数化成用这个最小公倍数作分母的分数。
8、 分数大小的比较方法:(1)同分母分数比较大小,分子在的分数大。
(2)同分子分数比较大小,分母小的分数大。
(3)异分母分数比较大小,可以先通分,化成同分母分数,再进行比较,或者根据分数的基本性质,变成分子相同的分数,再进行比较。
9、 最简分数的分子和分母有且只有公因数1。
练习题1一、 填空。
(21分)1. 用分数表示下面各图的阴影部分。
2. 1712 里面有( )个112 10个117是( ) ( )个15 是235 5里面有( )个133. 一堆煤平均分成20份,其中的9份是( )。
4. 8米长的铁丝,平均分成9段,每段占全长的( ),每段长( )米。
5. 1的58 与5的( )相等, 4个17等于1的( )。
6. 13 = ( )18 = ( )39 = 12( ) 3( ) = 1525 = ( )125=( )(小数表示) 7. 在35 、78 、617 、1112 、940 和427中,能化成有限小数的有( )。
分数的基本性质
2008-01-21
教学目标:1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>
4、较好实现知识教育与思想教育的有效结合。
教学重点:理解和掌握分数的基本性质。
教学难点:能熟练、灵活地运用分数的基本性质。
教具准备:“分数基本性质”课件,正方形纸片,彩色粉笔。
教学过程:一、巧设伏笔、导入新课。
1、出示课件:120÷30的商是多少?
被除数和除都扩大3倍,商是多少?
被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)
2、在下面□里填上合适的数。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
①想一想,你是根据什么填上面的数的?(生口答)
(课件:商不变的性质)
②商不变的性质是什么?(生口答)
③除法与分数之间有什么关系?
生答,师板书:被除数÷除数=被除数/除数
二、讨论探究,学习新知。
1、课件出示:1÷2=(怎么写)
①1/2与()相等?你能想出哪些数?有办法怎么让它们相等吗?
让生合作探讨。
②生出示答案:1/2=2/4=4/8……
有选择填入上数。
2、引导学生证明它们相等。
①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得
2/4……。
(课件演示)
上述演示让学生感知后,问你发现了什么?(生讨论)
②再逆向思考,观察板书和课件。
问你又发现了什么?(生讨论)
得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的'大小不变。
3、验证、补充、强调
①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。
②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。
③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。
④归纳出上述板书为“分数的基本性质”(课题)。
4、信息反馈、纠正、巩固。
①判断(出示课件)
A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。
B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。
C、3/4的分子乘上3,分母除以3,分数的大小不变。
D、10/24=10÷2/24÷2=10×3/24×3()
完成后,强调重点,加以巩固。
②完成课本108页例2(学生尝试练习)
强调运用了什么性质?课件:“分数的基本性质”醒目强调。
三、实践练习,信息综合
1、练一练
①3/5=3×()/5×()=9/()
②7/8=()/48
③4÷18=()/()=4×5/18×()=2/()
2、练习二十二1―3题。
四、课堂总结、整体感知。
(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?
五、发散巩固、自主选择。
想一想:(选择一道你喜欢的题做)
课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。
②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗
分数的基本性质。