常微分方程讲义和作业
- 格式:docx
- 大小:973.19 KB
- 文档页数:6
高等数学常微分方程讲义,试题,答案常微分方程§4.1 基本概念和一阶微分方程(甲)内容要点一、基本概念1、常微分方程和阶2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程二、变量可分离方程及其推广1、dyp(x)Q(y)dx(Q(y) 0) 2、齐次方程:dy dxy f x三、一阶线性方程及其推广1、dydyP(x)y Q(x) 2、P(x)y Q(x)y dxdx( 0,1)四、全微分方程及其推广(数学一)1、P(x,y)dx Q(x,y)dy 0,满足Q P2、P(x,y)dx Q(x,y)dy 0,五、差分方程(数学三)(乙)典型例题例1、求y x22Q p (RQ) (RP)但存在R(x,y),使x y x ydydyxy的通解。
dxdx解:y (x xy)22dy0dxydyy2 x d__y x2 y1 x2yduu2令u,则u x udx x(1 u)du 0xdxu 11 udxdu u x C1 ln|xu| u C1例2C1 uce, y cedyy的通解d__ y4uyx求微分方程d__ y4dx1解:此题不是一阶线性方程,但把x看作未知函数,y看作自变量,所得微分方程即x y3是一阶dyydyy11dy 14 dy 133yydy C y Cy 线性方程P(y) ,Q(y) y x e yey 3例3设y e是xy p(x)y x的一个解,求此微分方程满足yx ln2 0的特解xx解:将y e代入微分方程求出P(x) xe先求出对应齐次方程x,方程化为dy(e x 1)y 1 dxx xdy(e x 1)y 0的通解y cex e根据解的结构立刻可得非齐次方程通解y ex cex e dx再由yx ln2 0得2 2ec 0,c e例4设1212故所求解y e exx e x12满足以下件F(x) f(x)g(x),其中f(x),g(x)在( , )内f (x) g(x),g (x) f(x),且f(0) 0,f(x) g(x) 2ex(1)求F(x)所满足的一阶微分方程(2)求出F(x)的表达式解:(1)由F (x) f (x)g(x) f(x)g (x) g2(x) f2(x) [f(x) g(x)]2 2f(x)g(x) (2ex)2 2F(x) 可知F(x)所满足的一阶微分方程为F (x) 2F(x) 4e2x (2)F(x) e2dx4e2xe 2dxdx c e 2x 4e4xdx c e2x ce 2x将F(0) f(0)g(0) 0代入,可知c 1 于是例52F(x) e2x e 2xdy2(1 y)的通解求微分方程(y x) xdxsec2udusec3u 解:令y tanu,x tanv, 原方程化为(tanu tanv)secv2secvdv化简为sin(u v)dudzdudz 1 再令z u v,则1,方程化为sinz 1 sinz dvdvdvdv sinz(sinz 1) 1dz dv c, 1 sinz 1 sinzdz v c,1 sinzv c21 sinz1 sinz z v c 2coszz tanz secz v c z最后Z再返回x,y,v也返回x,即可。
第三章一阶微分方程解的存在定理[ 教学目标]1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。
2. 了解解的延拓定理及延拓条件。
3. 理解解对初值的连续性、可微性定理的条件和结论。
[ 教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。
[ 教学方法] 讲授,实践。
[ 教学时间] 12 学时[ 教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。
[ 考核目标]1. 理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。
2. 熟练近似解的误差估计式,解对初值的连续性及可微性公式。
3. 利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。
§ 1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。
在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。
而实际问题中所需要的往往是要求满足某种初始条件的解。
因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。
他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。
例如方程过点(0,0) 的解就是不唯一,易知y 0是方程过(0,0) 的解,此外,容易验证,y x2或更一般地,函数都是方程过点(0,0)而且定义在区间0 x 1上的解,其中c是满足0 c 1的任一数解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。
另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。
第八章 常微分方程【教学要求】一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。
二、熟练掌握一阶可分离变量微分方程的解法。
三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+'的解法——常数变易法和公式法。
四、理解线性微分方程解的性质和解的结构。
五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。
会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。
六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'')(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。
所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。
关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。
【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。
【典型例题】。
的阶数是微分方程例)(e )(12x y y y =-'+''2.1.B A 4.3.D C 解:B。
的特解形式是微分方程例)(e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++x x c b ax D cx b ax C e ).(e ).(++++解:C是一阶线性微分方程。
下列方程中例)(,3 x x y y x B y A yx cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0.解:B ⎩⎨⎧=='++1)1(0)1(4y y x y y 求解初值问题例 ⎰⎰-=+x x y y y d )1(d 解:由变量可分离法得c x y y ln ln 1ln+-=+∴ 代入上式得通解为由21ln ln 1)1(=⇒=c yx y y 211=+ 的特解。
授课11单元教案第一节微分方程的基本概念教学过程一、引入新课初等数学中就有各种各样的方程:线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。
这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后求取方程的解。
方程的定义:含有未知数的的等式。
它表达了未知量所必须满足的某种条件。
根据对未知量所施行的数学运算的不同,我们可以将方程分成许多不同的类型来研究。
引例1二、新授课1、微分方程的定义:含有未知函数的导数或微分的方程,称为微分方程如果未知函数是一元函数的微分方程称为常微分方程式;如果未知函数是多元函数的微分方程式称为偏微分方程。
例如,22;d yx y x dx=+=dx 和是常微分方程dyzxy x∂=∂是偏微分方程. 微分方程中未知函数的最高阶导数的阶数,称为微分方程式的阶。
一阶微分方程的一般形式为 (,,)0F x y y '= 例如:2354()0y x y x '+-=,2()20dy dyx y x dx dx-+=都是一阶微分方程。
二阶微分方程的一般形式为 (,,,)0F x y y y '''= 例如:222sin 0d y dyyx dx dx-+=,2223()(2)y k y '''=+都是二阶微分方程。
类似可写出n 阶微分方程的一般形式 ()(,,,,)0n F x y y y y '''=。
其中F 是n +2个变量的函数。
这里必须指出,在方程()(,,,,)0n F x y y y y '''=中,()n y 必须出现,而,,,x y y '(1),n y y -''等变量可以不出现。
例如()()n y f x =也是n 阶微分方程。
例1 .指出下列方程中哪些是微分方程,并说明它们的阶数:122222222(1) 0; (2) 2;(3) sin 0; (4) 3;(5) '''3; (6) ;(7) '''(')0. t dy y dx y y x d yxdy y xdx y e dt yy y x dy dx x y xy y -==++=+=+==+-=2、微分方程的解能够满足微分方程的函数都称为微分方程的解 求微分方程的解的过程,称为解微分方程例如,函数3x 16是微分方程22d y x dx =的解。
例2 求解方程 .解令,有原方程的参数形式为由基本关系式有积分得到从而原方程的参数形式通解为也可以消去参数t ,得到原方程的通积分为通解为例4 求解方程解令原方程的参数形式为(1.72)由基本关系式有或上式又可化为由,代入(1.72)的第三式,得原程的一个特解 .再由,解得,代入(1.72)的第三式,得原方程的通解例5求解方程(1.73)这里,假定是二次可微函数.解 (1.73)的参数形式为(1.74)由基本关系式有整理得由,得,代入(1.74)的第三式,得原方程通解(1.75)由于,由解得隐函数 ,代入(1.74)第三式,得到原方程的一个特解(1.76)(第7讲几种可降阶的高阶方程例1求解方程解令则有通解为从而积分四次,得到原方程的通解第二种可降阶的高阶方程例2求解方程.解令,则代入原方程得或积分后得"其中a"为任意常数. 解出p"得或积分后得其中 b为任意常数. 于是有或其中为任意常数.1.7.3恰当导数方程假如方程( 1.80)的左端恰为某一函数对 x的导数,即(1.80)可化为则(1.80)称为恰当导数方程.这类方程的解法与全微分方程的解法相类似,显然可降低一阶,成为之后再设法求解这个方程.例3求解方程.解易知可将方程写成故有即.积分后即得通解例4 求解方程.解先将两端同乘不为0的因子,则有故,从而通解为参数法第10讲解的延展2.3.1 延展解、不可延展解的定义定义2.1 设是初值问题(2,2)在区间上的一个解,如果(2,2)还有一个在区间上的解,且满足(1)(2)当时,则称解是可延展的,并称是在I2上的一个延展解.否则,如果不存在满足上述条件的解,则称是初值问题(2.2)的一个不可延展解,(亦称饱和解).这里区间I1和I2可以是开的也可以是闭的..3.2 不可延展解的存在性定义2.2设定义在开区域上,如果对于D上任一点,都存在以为中心的,完全属于D的闭矩形域R,使得在R上的关于y满足李普希兹条件,对于不同的点,闭矩形域R的大小以及常数N可以不同,则称在D上关于y满足局部李普希兹条件“柯西收敛准则收敛对,N,使当1.数列,就有,存在对,N,使当2.,时,总有.存在对,A> 0,使当3.,总有.”例1试讨论方程通过点(1,1)的解和通过点(3,-1)的解的存在区间.解此时区域D是整个平面.方程右端函数满足延展定理的条件.容易算出,方程的通解是故通过(1,1)的积分曲线为它向左可无限延展,而当x →2-0时,y →+∞, 所以,其存在区间为(-∞,2),参看图2-10.图 2-10通过(3,-1)的积分曲线为它向左不能无限延展,因为当x →2+0时,y →-∞,所以其存在区间为(2,+∞).顺便指出:这个方程只有解y = 0可以向左右两上方向无限延展.这个例子说明,尽管在整个平面满足延展定理条件,解上的点能任意接近区域D的边界,但方程的解的定义区间却不能延展到整个数轴上去.例2讨论方程解的存在区间.解方程右端函数在无界区域内连续,且对y满足李普希兹条件,其通解为过D1内任一点的初值解.图 2-11在(0,+∞)上有定义,且当x →+0时,该积分曲线上的点无限接近D1的边界线x = 0,但不趋向其上任一点(图2-11).在区域内的讨论是类似的.延展定理是常微分方程中一个重要定理.它能帮助我们确定解的最大存在区间.从推论和上面的例子可以看出,方程的解的最大存在区间是因解而异的.例3考虑方程及在平面上连续,试证明:对于任意及假设,方程满足的解都在(-∞,+∞)上存在.图 2-12证明根据题设,可以证明方程右端函数在整个平面上满足延展定理及存在与唯一性定理的条件.易于看到,为方程在(-∞,+∞)上的解.由延展定理可知,满足任意,的解上的点应当无限远离原点,但是,由解的唯一性,又不能穿过直线,故只能向两侧延展,而无限远离原点,从而这解应在(-∞,+∞)上存在(图2-12).2.4.1 奇解在本章 2.2节的例2中,我们已经看到方程的通解是,还有一解,除解外,其余解都满足唯一性,只有解所对应的积分曲线上每一点,唯一性都被破坏. 这样的解在许多方程中存在.例1求方程的所有解.解该方程的通解是此外还有两个特解和.由于该方程右端函数的根号前只取+号,故积分曲线如图2-13所示,图 2-13显然解和所对应的积分曲线上每一点,解的唯一性均被破坏。
常微分⽅程考研讲义第⼆章⼀阶微分⽅程的初等解法第⼆章、⼀阶微分⽅程的初等解法[教学⽬标]1. 理解变量分离⽅程以及可化为变量分离⽅程的类型(齐次⽅程),熟练掌握变量分离⽅程的解法。
2. 理解⼀阶线性微分⽅程的类型,熟练掌握常数变易法及伯努⼒⽅程的求解。
3. 理解恰当⽅程的类型,掌握恰当⽅程的解法及简单积分因⼦的求法。
4. 理解⼀阶隐式⽅程的可积类型,掌握隐式⽅程的参数解法。
[教学重难点] 重点是⼀阶微分⽅程的各类初等解法,难点是积分因⼦的求法以及隐式⽅程的解法。
[教学⽅法] 讲授,实践。
[教学时间] 14学时[教学内容] 变量分离⽅程,齐次⽅程以及可化为变量分离⽅程类型,⼀阶线性微分⽅程及其常数变易法,伯努利⽅程,恰当⽅程及其积分因⼦法,隐式⽅程。
[考核⽬标]1.⼀阶微分⽅程的初等解法:变量分离法、⼀阶线性微分⽅程的常数变易法、恰当⽅程与积分因⼦法、⼀阶隐⽅程的参数解法。
2.会建⽴⼀阶微分⽅程并能求解。
§1 变量分离⽅程与变量变换1、变量分离⽅程1) 变量分离⽅程形如()()dyf xg y dx= (或1122()()()()0M x N y dx M x N y dy +=) (2.1)的⽅程,称为变量分离⽅程,其中函数()f x 和()g y 分别是,x y 的连续函数. 2) 求解⽅法如果()0g y ≠,⽅程(2.1)可化为,()()dyf x dxg y = 这样变量就分离开了,两边积分,得到()()dyf x dx cg y =+??(2.2)把,()()dy f x dx g y ??分别理解为1,()()f x y ?的某⼀个原函数. 容易验证由(2.2)所确定的隐函数(,)y x c ?=满⾜⽅程(2.1).因⽽(2.2)是如果存在0y 使0()0g y =,可知0y y =也是(2.1)的解.可能它不包含在⽅程的通解(2.2)中,必须予以补上.3) 例题例1 求解⽅程dy x dx y=- 解将变量分离,得到ydy xdx =- 两边积分,即得22222y x c=-+ 因⽽,通解为22x y c += 这⾥的c 是任意的正常数. 或解出显式形式y =例2 解⽅程2cos dyy x dx= 并求满⾜初始条件:当0x =时.1y =的特解.解将变量分离,得到 2cos dyxdx y= 两边积分,即得1sin x c y-=+因⽽,通解为1sin y x c=-+这⾥的c 是任意的常数.此外,⽅程还有解0y =.为确定所求的特解,以0x =.1y =代⼊通解中确定常数c ,得到 1c =- 因⽽,所求的特解为11sin y x=-例3 求⽅程 ()dyP x y dx的通解,其中()P x 是x 的连续函数.解将变量分离,得到 ()dyP x dx y= 两边积分,即得ln ()y P x dx c =+?这⾥的c 是任意常数.由对数的定义,即有 ()P x dx cy e +?=即()P x dxc y e e ?=±令ce c ±=,得到()P x dxy ce ?=(2.4)此外,0y =也是(2.3)的解.如果在(2.4)中允许0c =,则0y =也就包括在(2.4)中,因⽽,(2.3)的通解为(2.4),其中c 是任意常数. 注: 1.常数c 的选取保证(2.2)式有意义.2.⽅程的通解不⼀定是⽅程的全部解,有些通解包含了⽅程的所有解,有些通解不能包含⽅程的所有解.此时,还应求出不含在通解中的其它解, 即将遗漏的解要弥补上.3.微分⽅程的通解表⽰的是⼀族曲线,⽽特解表⽰的是满⾜特定条件00()y x y =的⼀个解,表⽰的是⼀条过点00(,)x y 的曲线.2、可化为变量分离⽅程的类型1).形如 dy y g dx x ??=(2.5)的⽅程,称为齐次⽅程,这⾥的()g u 是u 的连续函数. 另外,ⅰ)对于⽅程(,)(,)dy M x y dx N x y = 其中函数(,)M x y 和(,)N x y 都是x 和y 的m 次齐次函数,即对0t >有(,)(,)m M tx ty t M x y ≡ (,)(,)m N tx ty t N x y ≡事实上,取1t x=,则⽅程可改写成形如(2.5)的⽅程. (1,)(1,)(1,)(1,)m m y y== ⅱ)对⽅程(,)dyf x y dx= 其中右端函数(,)f x y 是x 和y 的零次齐次函数,即对0t >有(,)(,)f tx ty f x y =则⽅程也可改写成形如(2.5)的⽅程(1,)dy y f dx x= 对齐次⽅程(2.5)利⽤变量替换可化为变量分离⽅程再求解. 令yu x= (2.6)即y ux =,于是dy du x u dx dx=+ (2.7)将(2.6)、(2.7)代⼊(2.5),则原⽅程变为 ()dux u g u dx+= 整理后,得到()du g u udx x-=(2.8)⽅程(2.8)是⼀个可分离变量⽅程,按照变量分离法求解,然后将所求的解代回原变量,所得的解便是原⽅程(2.5)的解.例4 求解⽅程dy y y tg dx x x=+ 解这是齐次⽅程,以,y dy duu x u x dx dx==+代⼊,则原⽅程变为 dux u u tgu dx+=+ 即du tgudx x=(2.9)分离变量,即有dx= 两边积分,得到ln sin ln u x c =+ 这⾥的c 是任意的常数,整理后,得到sin u cx = (2.10)此外,⽅程(2.9)还有解0tgu =,即sin 0u =. 如果(2.10)中允许0c =,则sin 0u =就包含在(2.10)中,这就是说,⽅程(2.9)的通解为(2.10).代回原来的变量,得到原⽅程的通解为sinycx x =例5 求解⽅程(0).dyxy x dx+=<解将⽅程改写为(0)dy y x dx x=<这是齐次⽅程,以,y dy du u x u x dx dx==+代⼊,则原⽅程变为dux dx=(2.11)分离变量,得到dxx = 两边积分,得到(2.11)的通解ln()x c =-+ 即2[ln()](ln()0)u x c x c =-+-+>(2.12)这⾥的c 是任意常数.此外,(2.11)还有解0u = 注意,此解不包括在通解(2.12)中.原⽅程的通解还可表为2[ln()],ln()0,0,x x c x c y ?-+-+>=?它定义于整个负半轴上.注:1.对于齐次⽅程dy y g dx x ??=的求解⽅法关键的⼀步是令y u x =后,解出y ux =,再对两边求关于x 的导数得dy duu x dx dx=+,再将其代⼊齐次⽅程使⽅程变为关于,u x 的可分离⽅程.2.齐次⽅程也可以通过变换xv y=⽽化为变量分离⽅程.这时x vy =,再对两边求关于y 的导数得dx dv v y dy dy =+,将其代⼊齐次⽅程dxx f dy y ??=使⽅程变为,v y 的可分离⽅程⼩结:这⼀讲我们主要讲解了⼀阶微分⽅程的可分离变量法和齐次⽅程的dy y g dx x ??=形状的解法.⽽这⼀齐次⽅程通过变量替换任然可化为可分离⽅程,因⽽,⼀定要熟练掌握可分离⽅程的解法. 2)形如111222a xb yc dy dx a x b y c ++=++ (2.13)的⽅程经变量变换化为变量分离⽅程,这⾥的121212,,,,,a a b b c c 均为常数.分三种情况来讨论(1)120c c ==情形. 这时⽅程(2.13)属齐次⽅程,有1122a x b y dy y g dx a x b y x +??== ?+??此时,令yu x=,即可化为变量可分离⽅程. (2)0a b a b =,即1122a b a b =的情形. 设1122a b k a b ==,则⽅程可写成22122222()()()k a x b y c dy f a x b y dx a x b y c ++==+++ 令22a x b y u +=,则⽅程化为22()dua b f u dx=+ 这是⼀变量分离⽅程.(3)1112220,a b c c a b ≠及不全为零的情形. 这时⽅程(2.13)右端的分⼦、分母都是,x y 的⼀次式,因此 1112220a xb yc a x b y c ++=??++=?(2.14)代表xy 平⾯上两条相交的直线,设交点为(,)αβ.显然,0α≠或0β≠,否则必有120c c ==,这正是情形(1)(只需进⾏坐标平移,将坐标原点(0,0)移⾄(,)αβ就⾏了,若令X x Y y αβ=-??=-?(2.15)则(2.14)化为11220a X bY a X b y +=??+=?从⽽(2.13)变为 1122a X bY dY Y g dX a X b Y X +??== ?+??(2.16)因此,得到这种情形求解的⼀般步骤如下:(1)解联⽴代数⽅程(2.14),设其解为,x y αβ==; (2)作变换(2.15)将⽅程化为齐次⽅程(2.16); (3)再经变换Y将(2.16)化为变量分离⽅程; (4)求解上述变量分离⽅程,最后代回原变量可得原⽅程(2.13)的解. 上述解题的⽅法和步骤也适⽤于⽐⽅程(2.13)更⼀般的⽅程类型111222a x b y c dyf dx a x b y c ??+== ?++??()dyf ax by c dx++ ()()0y xy dx xg xy dy += 2()dyx f xy dx= 2dy y xf dx x= ?以及(,)()(,)()0M x y xdx ydy N x y xdy ydx ++-=(其中,M N 为,x y 的齐次函数,次数可以不相同)等⼀些⽅程类型,均可通过适当的变量变换化为变量分离⽅程.例6 求解⽅程13dy x y dx x y -+=+- (2.17)解解⽅程组 1030x y x y -+=??+-=? 得1, 2.x y ==令12x X y Y =+??=+?代⼊⽅程(2.17),则有 dY X YdX X Y-=+ (2.18)再令Yu X= 即 Y uX = 则(2.18)化为2112dX u22ln ln 21X u u c=-+-+22(21)c X u u e +-=± 记1,c e c ±=并代回原变量,就得2212Y XY X c +-= 221(2)2(1)(2)(1)y x y x c -+----= 此外,易验证2210u u +-= 即2220Y XY X +-= 也就是(2.18)的解.因此⽅程(2.17)的通解为22262y xy x y x c +---= 其中c 为任意的常数.3、应⽤举例例7 电容器的充电和放电如图(2.1)所⽰的R C -电路,开始时电容C 上没有电荷,电容两端的电压为零.把开关K 合上“1”后,电池E 就对电容C 充电,电容C 两端的电压C u 逐渐升⾼,经过相当时间后,电容充电完毕,再把开关K 合上“2”,这时电容就开始放电过程,现在要求找出充、放电过程中,电容C 两端的电压C u 随时间t 的变化规律.解对于充电过程,由闭合回路的基尔霍夫第⼆定理,c u RI E += (2.19)对于电容C 充电时,电容上的电量Q 逐渐增多,根据C Q Cu =,得到 ()C C du dQ dI Cu C dt dt dt=== (2.20)将(2.20)代⼊(2.19),得到c u 满⾜的微分⽅程 cc du RC u E dt+= (2.21)这⾥R 、C 、E 都是常数.⽅程(2.21)属于变量分离⽅程.将(2.21)分离变量,得到C C du dtu E RC=-- 两边积分,得到11ln C u E t c RC-=-+ 即1112t t c RCRCC u E e e c e---=±=这⾥12c c e =±为任意常数.将初始条件:0t =时,0C u =代⼊,得到2c E =-. 所以 1(1)t RC C u E e -=-这就是R C -电路充电过程中电容C 两端的电压的变化规律.由(2.22)知道,电压C u 从零开始逐渐增⼤,且当t →+∞时,C u E →,在电⼯学中,通常称RC τ=为时间常数,当3t τ=时,0.95C u E =,就是说,经过3τ的时间后,电容C 上的电压已达到外加电压的95%.实⽤上,通常认为这时电容C 的充电过程已基本结束.易见充电结果C u E =.对于放电过程的讨论,可以类似地进⾏.例8 探照灯反射镜⾯的形状在制造探照灯的反射镜⾯时,总是要求将点光源射出的光线平⾏地射出去,以保证照灯有良好的⽅向性,试求反射镜⾯的⼏何形状.解取光源所在处为坐标原点,⽽x 轴平⾏于光的反射⽅向,设所求曲⾯由曲线()y f x z =??=?(2.23)绕x 轴旋转⽽成,则求反射镜⾯的问题归结为求xy 平⾯上的曲线()y f x =的问题,仅考虑0y >的部分,过曲线()y f x =上任⼀点(,)M x y 作切线NT ,则由光的反射定律:⼊射⾓等于反射⾓,容易推知12αα= 从⽽OM ON = 注意到2dy MP tg dx NPα==及,,OP x MP y OM ===就得到函数()y f x =所应满⾜的微分⽅程式dy dx =(2.24)这是齐次⽅程.由2.12知引⼊新变量xu y=可将它化为变量分离⽅程.再经直接积分即可求得⽅程的解.对于⽅齐次⽅程(2.24)也可以通过变换xv y=⽽化为变量分离⽅程也可由x yv =得dx dvv y dy dy=+代⼊(2.24)得到sgn dvv y v y dysgn dy y y =(2.25)积分(2.25)并代回原来变量,经化简整理,最后得2(2)y c c x =+(2.26)其中c 为任意常数.(2.26)就是所求的平⾯曲线,它是抛物线,因此,反射镜⾯的形状为旋转抛物⾯22(2)y z c c x +=+ (2.27)⼩结: 本节我们主要讨论了⼀阶可分离微分⽅程和齐次微分⽅程的求解问题.将各种类型的求解步骤记清楚的同时要注意对解的讨论.§2 线性⽅程与常数变易法1、⼀阶线性微分⽅程()()()0dya xb x yc x dx++= 在()0a x ≠的区间上可以写成()()dyP x y Q x dx=+ (2.28)对于()a x 有零点的情形分别在()0a x ≠的相应区间上讨论.这⾥假设(),()P x Q x 在考虑的区间上是x 的连续函数.若()0Q x ≡,(2.28)变为 ()dyP x y dx= (2.3)称为⼀阶齐线性⽅程.若()0Q x ≠,(2.28)称为⼀阶⾮齐线性⽅程.2、常数变易法(2.3)是变量分离⽅程,已在例3中求得它的通解为 ()P x dxy ce ?=(2.4)这⾥c 是任意的常数.下⾯讨论⼀阶⾮齐线性⽅程(2.28)的求解⽅法.⽅程(2.3)与⽅程(2.28)两者既有联系⼜有区别,设想它们的解也有⼀定的联系,在(2.4)中c 恒为常数时,它不可能是(2.28)的解,要使(2.28)具有形如(2.4)的解, c 不再是常数,将是x 的待定函数()c x ,为此令 ()()P x dx(2.29)两边微分,得到()()()()()P x dxP x dx dy dc x e c x P x e dx dx=+ (2.30)将(2.29)、(2.30)代⼊(2.28),得到()()()()()()()()()P x dxP x dx P x dx dc x e c x P x e P x c x e Q x dx+=+ 即()()()P x dx dc x Q x e dx-?= 积分后得到()()()P x dxc x Q x e dx c -?=+?(2.31)这⾥c 是任意的常数..将(2.31)代⼊(2.29),得到()()()()()() =()P x dxP x dx P x dx P x dx P x dxy e Q x e dx c ce e Q x e dx--=+ +(2.32)这就是⽅程(2.28)的通解.这种将常数变易为待定函数的⽅法,通常称为常数变易法.实际上常数变易法也是⼀种变量变换的⽅法.通过变换(2.29)可将⽅程(2.28)化为变量分离⽅程.注: ⾮齐线性⽅程的通解是它对应的齐线性⽅程的通解与它的某个特解之和. 例1 求⽅程1(1)(1)x n dy x ny e x dx++-=+的通解,这⾥的n 为常数. 解将⽅程改写为 (1)1x n dy n y e x dx x -=++ (2.33)先求对应的齐次⽅程01dy n y dx x -=+ 的通解,得令 ()(1)n y c x x =+ (2.34)微分之,得到()(1)(1)()n dy dc x x n x c x dx dx=+++ (2.35)以(2.34)、(2.35)代⼊(2.33),再积分,得 ()x c x e c =+ 将其代⼊公式(2.34),即得原⽅程的通解 (1)()n x y x e c =++ 这⾥c 是任意的常数. 例2 求⽅程22dy ydx x y=-的通解. 解原⽅程改写为2dx x y dy y=- (2.36)把x 看作未知函数,y 看作⾃变量,这样,对于x 及dxdy来说,⽅程(2.36)就是⼀个线性⽅程了.先求齐线性⽅程2dx x dy y= 的通解为2x cy = (2.37)令2()x c y y =,于是 2()2()dx dc y y c y y dy dy=+ 代⼊(2.36),得到()ln c y y c =-+ 从⽽,原⽅程的通解为2(ln )x y c y =-这⾥c 是任意的常数,另外0y =也是⽅程的解. 特别的,初值问题00()()()dyP x y Q x dxy x y ?=+=? 的解为00()()()=()xxsx x x P d P d P d xx y ceeQ s eds ττττττ-+?例3 试证(1)⼀阶⾮齐线性⽅程(2.28)的任两解之差必为相应的齐线性⽅程(2.3)之解;(2)若()y y x =是(2.3)的⾮零解,⽽()y y x =是(2.28)的解,则(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.(3)⽅程(2.3)任⼀解的常数倍或两解之和(或差)仍是⽅程(2.3)的解. 证(1)设12,y y 是⾮齐线性⽅程的两个不同的解,则应满⾜⽅程使1122()(1)()(2)dy py Q x dxdy py Q x dx=+=+(1)—(2)有1212()()d y y p y y dx-=-说明⾮齐线性⽅程任意两个解的差12y y -是对应的齐次线性⽅程的解.(2)因为(()())()()(()()()()d cy x y x dy x d y x c p cy p y Q x p cy y Q x dx dx dx+=+=++=++故结论成⽴.(3)因为12121212()()()(),(),()d y y d y y d cy p cy p y y p y y dx dx dx+-==+=- 故结论成⽴.3、Bernoulli ⽅程。
第四章 常微分方程与数学模型
微积分最主要的应用可能就是微分方程了,在物理学、力学、工程技术、经济学和管理科学等实际问题中具有广泛的应用。
一、什么是微分方程
例1:含有未知函数的导数或微分的方程称为微分方程,例如
()dy
u x dx
=,其中()y f x =为未知函数,()u x 为已知函数。
满足上述方程的函数()y f x =称为微分方程的
解。
求下列微分方程满足所给条件的解: (1)
2(2)dy
x dx
=-,20x y ==; (2)2232d x dt t
=,
11t dx
dt ==,11t x ==。
二、分离变量法
※例2:求微分方程y xy '=的通解。
解: 变形为:
dy xy dx
=, 分离变量:1
dy xdx y =(此时漏掉解0y =),
两边同时积分:
1
dy xdx y =⎰⎰, 得:211ln 2
y x C =+, 2
2111122
x C x C y e
e e
+==,
从而221
112
2
2x x C y e e
C e =±=,其中12C
C e =±,为任意非零常数,
但0y =亦是方程的解,统一起来,方程的通解为:
212
x y Ce
=,C 为任意常数。
上述求解过程比较繁琐,由于经常出现,为方便计,从分离变量后开始将求解过程简写为:
两边同时积分:
1
dy xdx y =⎰⎰, 得:21ln ln 2
y x C =+, 从而 2
211ln 2
2
x x C
y e e
Ce
==
这个过程严格说是有问题的,但比较简洁,又能得到正确的结果,所以常被采用。
例3:(1)牛顿冷却定律指出:如果物体和周围环境之间的温度相差不是很大的话,物体冷
却速度与温差成正比(同样可用于加热的情况)。
命()T t 表示在时刻t 物体的温度,c T 表示周围环境的温度(假定是常数),建立微分方程并求解,得出()T t 的变化规律。
(2)清晨,警察局接到报案,街头发现一具死尸,6:30时测量体温为18℃,7:30时再测一次为16℃,室外温度为10℃(假定不变),人正常体温为37℃,请估计被害人何时死亡?(死亡时刻记为0t ,则0()37T t =,时刻6:30计算时看成6.5)
例4:人口预测
记时刻t 的人口为()P t ,当考察一个国家或一个较大地区的人口时,()P t 是一个很大的整数,为了利用微积分这一数学工具,将()P t 视为连续、可微函数.记初始时刻(0)t =的人口为0P ,假设人口增长的速度(即增长率)与t 时刻的人口数量()P t 成正比,利用下表中数据为20世纪世界人口建模,增长率是多少,建立的模型与数据相符合吗?
解:设比例系数为μ(即增长率),则()P t 满足的微分方程为:
0,(0)dP
P P P dt
μ==. 解出 0()t
P t P e μ= ,
表明人口将按指数规律随时间无限增长(0μ>).上式称为人口指数增长模型,也称为马尔
萨斯人口模型.
以1900年为初始时刻,0(0)=1650P P =,得()1650t
P t e μ=,
以1910年数据估计μ,即10(10)16501750P e
μ
==,解11750
ln 0.005884101650
μ=
≈, 即增长率约为0.6%,增长模型为0.005884()1650t
P t e
=
若以1950年为初始时刻,为20世纪后50年建模,则0=2560P ,得()2560t
P t e μ=, 以1960年数据估计μ,即10(10)25603040P e
μ
==,解13040
ln 0.017185102560
μ=
≈, 即增长率约为1.7%,增长模型为0.017185()2560t
P t e
=
但是长期来看,任何地区的人口都不可能无限增长,即指数模型不能描述、也不能预测较长时期的人口演变过程,这是因为人口增长率事实上是不断地变化着.排除灾难、战争等特殊时期,一般来说,当人口较少时,其增长较快,即增长率较大;人口增加到一定数量后,增长就会慢下来,即增长率变小.看来,为了使人口预测特别是长期预测能更好地符合实际情况,必须修改人口指数增长模型中关于人口增长率是常数这个基本假设.
2.人口阻滞增长模型(Logistic 模型)
分析人口增长到一定数量后增长率下降的主要原因,人们注意到,自然资源、环境条件等因素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大.所谓人口阻滞增长模型就是考虑到这个因素,对人口指数增长模型的基本假设进行修改后得到的.
阻滞作用体现在对人口增长率μ的影响上,使得μ随着人口数量P 的增加而下降。
若将μ表示为P 的函数()P μ,对()P μ的一个最简单的假设是
()(1)P P K
μμ=-
K 为承载能力(指自然资源和环境长期能支持的最大种群数量)
,当P 较小时,()P μμ≈,即人口近似按指数增长,当P 增大时,增长率()P μ开始减小,当P K >时开
始负增长。
相应的微分方程为:
0(1),(0)dP P
P P P dt K
μ=-=. 称为人口阻滞增长模型,也称为Logistic 模型.
可用分离变量法解方程得
000
()=
(1)
1(
1)t
t t K KP e P t K
K P e e P μμμ-=
+-+- . P 的增加是先快后慢.当t →∞时,P K →,拐点在2
K
P =
处.
上面的曲线称为Logistic 曲线,逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性.
除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.
作业:
1. 解微分方程:先求出通解,再解出满足初始条件的特解
(1) 2
(1)x y xy '+=,(0)2y =;(2)
2
cos 1dy y x dx y =+,(0)1y =. 2. 细菌数量的增长率与总数成正比.如果培养的细菌总数在24h 内由100增长为400,那
么,经过12h 后细菌总数是多少?
3. 从冰箱中取出一杯5℃的饮料,放到室温为20℃的房间里,25分钟后饮料温度升高到
10℃,则50分钟后饮料温度为多少,需要多长时间饮料温度升高到15℃? 4. 设子弹以200m/s 的速度射入厚0.1m 的木板,受到的阻力大小与子弹的速度平方成正比,
如果子弹穿出木板时的速度为80m/s ,求子弹穿过木板的时间(在木板中子弹受力随时间变化,因而不是匀加速运动,不能用中学的知识求解)。