4.2.2圆与圆的位置关系
- 格式:docx
- 大小:18.31 KB
- 文档页数:5
4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用目标定位 1.掌握圆与圆的位置关系及判定方法.2.能利用直线与圆的位置关系解决简单的实际问题.3.理解坐标法解决几何问题的一般步骤.自主预习1.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎪⎬⎪⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含2.用坐标方法解决平面几何问题的“三步曲”:即 时 自 测1.判断题(1)两圆无公共点,则两圆外离.( ×)(2)两圆有且只有一个公共点,则两圆内切和外切.(√)(3)设两圆的圆心距为l ,两圆半径长分别为r 1,r 2,则当|r 1-r 2|<l <r 1+r 2时,两圆相交.(√)(4)两圆外切时,有三条公切线:两条外公切线,一条内公切线.(√) 提示 (1)两圆无公共点,则两圆外离和内含.2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( ) A.相离B.相交C.外切D.内切解析 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交. 答案 B3.圆x 2+y 2+4x -4y +7=0与圆x 2+y 2-4x +10y +13=0的公切线的条数是( ) A.1B.2C.3D.4解析 两圆的圆心坐标和半径分别为(-2,2),(2,-5),1,4,圆心距d =(-2-2)2+(2+5)2>8,1+4=5<8,∴两圆相离,公切线有4条. 答案 D4.两圆x 2+y 2=r 2与(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值是________.解析 由题意可知(3-0)2+(-1-0)2=2r ,∴r =102. 答案102类型一 与两圆相切有关的问题【例1】 求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程. 解 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则(a -1)2+b 2=r +1,①b +3a -3=3,② |a +3b |2=r .③ 联立①②③解得a =4,b =0,r =2,或a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 规律方法 两圆相切时常用的性质有:(1)设两圆的圆心分别为O 1、O 2,半径分别为r 1、r 2,则两圆相切⎩⎪⎨⎪⎧内切⇔|O 1O 2|=|r 1-r 2|外切⇔|O 1O 2|=r 1+r 2(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦). 【训练1】 求与圆(x -2)2+(y +1)2=4相切于点A (4,-1)且半径为1的圆的方程. 解 设所求圆的圆心为P (a ,b ),则 (a -4)2+(b +1)2=1.①(1)若两圆外切,则有(a -2)2+(b +1)2=1+2=3,②联立①②,解得a =5,b =-1,所以,所求圆的方程为(x -5)2+(y +1)2=1; (2)若两圆内切,则有(a -2)2+(b +1)2=|2-1|=1,③联立①③,解得a =3,b =-1,所以,所求圆的方程为(x -3)2+(y +1)2=1. 综上所述,所求圆的方程为(x -5)2+(y +1)2=1或(x -3)2+(y +1)2=1. 类型二 与两圆相交有关的问题(互动探究)【例2】 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0.(1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度. [思路探究]探究点一 当两圆相交时,其公共弦所在直线的方程是什么? 提示 两圆的方程相减即可得公共弦所在直线的方程. 探究点二 如何求公共弦长?提示 (1)代数法:将两圆的方程联立,求出两交点的坐标,利用两点间的距离公式求弦长. (2)几何法:求出公共弦所在的直线方程,半径、弦心距、半弦长构成直角三角形的三边长,利用勾股定理求弦长.解 (1)将两圆方程配方化为标准方程,C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,则圆C 1的圆心为(1,-5),半径r 1=52, 圆C 2的圆心为(-1,-1),半径r 2=10.又∵|C 1C 2|=25,r 1+r 2=52+10,r 1-r 2=52-10, ∴r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x -2y +4=0. (3)法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35, ∴公共弦长l =2r 21-d 2=250-45=2 5.法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0, 解得⎩⎪⎨⎪⎧x =-4,y =0,或⎩⎪⎨⎪⎧x =0,y =2.即A (-4,0),B (0,2).所以|AB |=(-4-0)2+(0-2)2=25, 即公共弦长为2 5.规律方法 1.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.2.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. (2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.【训练2】 已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.解 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解, ①-②得:3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+(-4)2=95. ∴|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245.类型三 直线与圆的方程的应用【例3】 一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解 以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9, 港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0), 则轮船航线所在直线l 的方程为x 7+y4=1, 即4x +7y -28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,∴d>r,∴直线与圆相离,所以轮船不会受到台风的影响.规律方法解决直线与圆的方程的实际应用题时应注意以下几个方面:【训练3】台风中心从A地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( )A.0.5小时B.1小时C.1.5小时D.2小时解析以台风中心A为坐标原点建立平面直角坐标系,如图,则台风中心在直线y=x上移动,又B(40,0)到y=x的距离为d=202,由|BE|=|BF|=30知|EF|=20,即台风中心从E到F时,B城市处于危险区内,时间为t=20千米20千米/时=1小时.故选B.答案 B[课堂小结]1.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作.2.直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程:1.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A.(1,0)和(0,1) B.(1,0)和(0,-1) C.(-1,0)和(0,-1)D.(-1,0)和(0,1)解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0;解得⎩⎪⎨⎪⎧x =0,y =-1或⎩⎪⎨⎪⎧x =-1,y =0. 答案 C2.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( ) A.x +y -1=0 B.2x -y +1=0 C.x -2y +1=0D.x -y +1=0解析 直线AB 的方程为:4x -4y +1=0,因此它的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),即两圆连心线. 答案 A3.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A 、B 两点,则直线AB 的方程是________.解析 ⎩⎪⎨⎪⎧x 2+y 2=10,x 2+y 2-2x -6y =10⇒2x +6y =0,即x +3y =0. 答案 x +3y =04.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,当m 的取值满足什么条件时,圆C 1与圆C 2相切?解 对于圆C 1与圆C 2的方程,化为标准方程得C 1:(x -m )2+(y +2)2=9,C 2:(x +1)2+(y -m )2=4,所以两圆的圆心分别为C 1(m ,-2),C 2(-1,m ),半径分别为r 1=3,r 2=2,且|C 1C 2|=(m +1)2+(m +2)2.当圆C 1与圆C 2相外切时,则|C 1C 2|=r 1+r 2,即(m +1)2+(m +2)2=3+2,解得m =-5或m =2.当圆C 1与圆C 2相内切时,则|C 1C 2|=|r 1-r 2|,即(m +1)2+(m +2)2=|3-2|,解得m =-1或m =-2.综上可知,当m =-5或m =2或m =-1或m =-2时,两圆相切.基 础 过 关1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.相离解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交. 答案 B2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A.21B.19C.9D.-11解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m . 又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9. 答案 C3.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( ) A.1.4米B.3.5米C.3.6米D.2米解析 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h ,则A (0.8,h -3.6)半圆所在圆的方程为:x 2+(y +3.6)2=3.62把A (0.8,h -3.6)代入得0.82+h 2=3.62.∴h =40.77≈3.5(米).答案 B4.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长为________.解析 由⎩⎪⎨⎪⎧x 2+y 2-x +y -2=0,x 2+y 2=5,①②②-①得两圆的公共弦所在的直线方程为x -y -3=0, ∴圆x 2+y 2=5的圆心到该直线的距离为d =|-3|1+(-1)2=32,设公共弦长为l ,∴l =25-⎝ ⎛⎭⎪⎫322= 2. 答案25.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为________.解析 圆C 2可化为(x +2)2+(y -2)2=4,则圆C 1,C 2的圆心为C 1(0,0),C 2(-2,2),所以C 1C 2的中点为(-1,1),kC 1C 2=2-0-2-0=-1,所以所求直线的斜率为1,所以直线l 的方程为y -1=x +1,即x -y +2=0. 答案 x -y +2=06.求与圆O :x 2+y 2=1外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,半径为2的圆的方程.解 设所求圆的圆心为C (a ,b ),则所求圆的方程为 (x -a )2+(y -b )2=4.∵两圆外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,∴|OC |=1+2=3,|CP |=2.∴⎩⎨⎧a 2+b 2=9,⎝ ⎛⎭⎪⎫a +122+⎝ ⎛⎭⎪⎫b +322=4,解得⎩⎪⎨⎪⎧a =-32,b =-332. ∴圆心C 的坐标为⎝ ⎛⎭⎪⎫-32,-332,故所求圆的方程为⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +3322=4.7.已知圆C 1:x 2+y 2-10x -10y =0和圆C 2:x 2+y 2+6x -2y -40=0.求: (1)它们的公共弦所在直线的方程; (2)公共弦长.解 (1)由⎩⎪⎨⎪⎧x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,两方程相减,得公共弦所在直线方程为2x +y -5=0. (2)圆x 2+y 2-10x -10y =0的圆心C 1的坐标为(5,5),半径r =52,又点C 1到相交弦的距离d =|2×5+5-5|22+12=2 5. ∴公共弦长为2(52)2-(25)2=230.能 力 提 升8.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( ) A.4B.4 2C.8D.8 2解析 ∵两圆与两坐标轴都相切,且都经过点(4,1), ∴两圆圆心均在第一象限且横、纵坐标相等. 设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2, 即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根, 整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=(a -b )2+(a -b )2=32×2=8. 答案 C9.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A.(x -1)2+(y -1)2=1 B.(x +1)2+(y +1)2=1C.⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45D.⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45解析 两圆方程相减得公共弦所在直线的方程为x -y =0,因此所求圆的圆心的横、纵坐标相等,排除C ,D 选项,画图(图略)可知所求圆的圆心在第三象限,排除A.故选B. 答案 B10.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是________.解析 曲线化为(x -6)2+(y -6)2=18,其圆心C 1(6,6)到直线x +y -2=0的距离为d =|6+6-2|2=5 2.过点C 1且垂直于x +y -2=0的直线为y -6=x -6,即y =x ,所以所求的最小圆的圆心C 2在直线y =x 上,如图所示,圆心C 2到直线x +y -2=0的距离为52-322=2,则圆C 2的半径长为 2.设C 2的坐标为(x 0,x 0),则|x 0+x 0-2|2=2, 解得x 0=2(x 0=0舍去),所以圆心坐标为(2,2),所以所求圆的标准方程为(x -2)2+(y -2)2=2.答案 (x -2)2+(y -2)2=211.已知隧道的截面是半径为4 m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m ,高为3 m 的货车能不能驶入这个隧道?假设货车的最大宽度为a m ,那么要正常驶入该隧道,货车的限高为多少?解 以某一截面半圆的圆心为坐标原点,半圆的直径AB 所在直线为x 轴,建立如图所示的平面直角坐标系,那么半圆的方程为x 2+y 2=16(y ≥0).将x =2.7代入,得y =16-2.72=8.71<3,所以,在离中心线2.7 m 处,隧道的高度低于货车的高度.因此,货车不能驶入这个隧道.将x =a 代入x 2+y 2=16(y ≥0)得y =16-a 2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a 2m.探 究 创 新12.已知圆C 1:x 2+y 2-4x -2y -5=0与圆C 2:x 2+y 2-6x -y -9=0.(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;(3)在平面上找一点P ,过点P 引两圆的切线并使它们的长都等于6 2.(1)证明 圆C 1:(x -2)2+(y -1)2=10, 圆C 2:(x -3)2+⎝ ⎛⎭⎪⎫y -122=734. ∵|C 1C 2|=(2-3)2+⎝ ⎛⎭⎪⎫1-122=52.且732-10<52<732+10, ∴圆C 1与圆C 2相交.(2)解 联立两圆方程,得⎩⎪⎨⎪⎧x 2+y 2-4x -2y -5=0,x 2+y 2-6x -y -9=0, ∴两圆公共弦所在的直线方程为2x -y +4=0.(3)解 设P (x ,y ),由题意,得⎩⎨⎧2x -y +4=0,x 2+y 2-6x -y -9=(62)2,解方程组,得点P 的坐标为(3,10)或⎝ ⎛⎭⎪⎫-233,-265.。
【成才之路】2015-2016学年高中数学圆与圆的位置关系练习新人教A版必修2基础巩固一、选择题1.圆C1:x2+y2+4x-4y+7=0和圆C2:x2+y2-4x-10y+13=0的公切线有( ) A.1条B.3条C.4条D.以上均错[答案] B[分析] 先判断出两圆的位置关系,然后根据位置关系确定公切线条数.[解析] ∵C1(-2,2),r1=1,C2(2,5),r2=4,∴|C1C2|=5=r1+r2,∴两圆相外切,因此公切线有3条,因此选B.规律总结:如何判断两圆公切线的条数首先判断两圆的位置关系,然后判断公切线的条数:(1)两圆相离,有四条公切线;(2)两圆外切,有三条公切线,其中一条是内公切线,两条是外公切线;(3)两圆相交,有两条外公切线,没有内公切线;(4)两圆内切,有一条公切线;(5)两圆内含,没有公切线.2.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是( )A.(x-3)2+(y-5)2=25B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25D.(x-3)2+(y+2)2=25[答案] B[解析] 设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x -5)2+(y+1)2=25.3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是( )A.a2-2a-2b-3=0B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0D.3a2+2b2+2a+2b+1=0[答案] B[解析] 利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.4.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=( )A.5 B.4C.3 D.2 2[答案] C[解析] 设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.5.已知两圆相交于两点A(1,3),B(m,-1),两圆圆心都在直线x-y+c=0上,则m +c的值是( )A.-1 B.2C.3 D.0[答案] C[解析] 两点A,B关于直线x-y+c=0对称,k AB=-4m-1=-1.∴m=5,线段AB的中点(3,1)在直线x-y+c=0上,∴c=-2,∴m+c=3.6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为( ) A.(x-6)2+(y-4)2=6B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36D.(x-6)2+(y±4)2=36[答案] D[解析] 半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.二、填空题7.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是_________.[答案] 外切[解析] ∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d =|C 1C 2|=a 2+b 2=4=2, ∴d =r 1+r 2.∴两圆外切.8.与直线x +y -2=0和圆x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是_________.[答案] (x -2)2+(y -2)2=2[解析] 已知圆的标准方程为(x -6)2+(y -6)2=18,则过圆心(6,6)且与直线x +y -2=0垂直的方程为x -y =0.方程x -y =0分别与直线x +y -2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x -2)2+(y -2)2=2.三、解答题9.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 方法1:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0,联立得两圆交点坐标(-1,2),(5,-6). ∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为 125+12+-6-22=5.∴圆C 的方程为(x -2)2+(y +2)2=25.方法2:由方法1可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-1221+λ,-16λ-221+λ).∵圆心C 在公共弦所在直线上, ∴4·-12λ-1221+λ+3·-16λ-221+λ-2=0,解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0. 10.(2015·某某天一中学模拟)已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个?若存在,请求出r ;若不存在,请说明理由.[解析] (1)依题意可设动圆C 的方程为(x -a )2+(y -b )2=25,其中(a ,b )满足a -b +10=0.又因为动圆C 过点(-5,0), 故(-5-a )2+(0-b )2=25.解方程组⎩⎪⎨⎪⎧a -b +10=0,-5-a 2+0-b2=25,得⎩⎪⎨⎪⎧a =-10,b =0或⎩⎪⎨⎪⎧a =-5,b =5,故所求圆C 的方程为(x +10)2+y 2=25或(x +5)2+(y -5)2=25. (2)圆O 的圆心(0,0)到直线l 的距离d =|10|1+1=5 2.当r 满足r +5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相切的圆;当r 满足r +5=d ,即r =52-5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切;当r 满足r +5>d ,即r >52-5时,与圆O :x 2+y 2=r 2相外切的圆有两个. 综上,当r =52-5时,动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个.能力提升一、选择题1.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[答案] D[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.2.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( ) A .4x -y -4=0 B .4x +y -4=0 C .4x +y +4=0 D .4x -y +4=0[答案] A[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.3.若集合A ={(x ,y )|x 2+y 2≤16|,B ={(x ,y )|x 2+(y -2)2≤a -1},且A ∩B =B ,则a 的取值X 围是( )A .a ≤1B .a ≥5C .1≤a ≤5D .a ≤5[答案] D[解析] A ∩B =B 等价于B ⊆A .当a >1时,集合A 和B 分别代表圆x 2+y 2=16和圆x2+(y -2)2=a -1上及内部的点,容易得出当B 对应的圆的半径长小于等于2时符合题意.由0<a -1≤4,得1<a ≤5;当a =1时,集合B 中只有一个元素(0,2),满足B ⊆A ;当a <1时,集合B 为空集,也满足B ⊆A .综上可知,当a ≤5时符合题意.4.(2015·某某某某模拟)若圆(x -a )2+(y -a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值X 围是( )A .⎝⎛⎭⎪⎫22,322B .⎝ ⎛⎭⎪⎫-322,-22C .⎝ ⎛⎭⎪⎫-322,-22∪⎝ ⎛⎭⎪⎫22,322D .⎝ ⎛⎭⎪⎫-22,22[答案] C[解析] 圆(x -a )2+(y -a )2=4的圆心C (a ,a ),半径r =2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R =1,则这两个圆相交,圆心距d =a 2+a 2=2|a |,则|r -R |<d <r +R ,则1<2|a |<3,所以22<|a |<322, 所以-322<a <-22或22<a <322.二、填空题5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =_________. [答案] 1[解析] 两个圆的方程作差,可以得到公共弦的直线方程为y =1a,圆心(0,0)到直线y=1a 的距离d =|1a |,于是由(232)2+|1a|2=22,解得a =1. 6.(2015·某某某某月考)已知两点M (1,0),N (-3,0)到直线的距离分别为1和3,则满足条件的直线的条数是_________.[答案] 3[解析] ∵已知M (1,0),N (-3,0),∴|MN |=4,分别以M ,N 为圆心,1,3为半径作两个圆,则两圆外切,故有三条公切线.即符合条件的直线有3条.三、解答题7.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程.[解析] 解法一:考虑到圆B 的圆心在直线l 上移动,可先写出动圆B 的方程,再设法建立圆B 的半径r 的目标函数.设圆B 的半径为r .∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2, 即x 2+y 2-2tx -4ty +5t 2-r 2=0.① ∵圆A 的方程是x 2+y 2+2x +2y -2=0,② ∴②-①,得两圆的公共弦方程为 (2+2t )x +(2+4t )y -5t 2+r 2-2=0.③ ∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③并整理,得r 2=5t 2+6t +6=5(t +35)2+215≥215.∴当t =-35时,r min =215. 此时,圆B 的方程是 (x +35)2+(y +65)2=215.解法二:也可以从图形的几何性质来考虑,用综合法来解. 如图,设圆A ,圆B 的圆心分别为A ,B ,则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M ,N 两点.∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M ,N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4.欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得直线AB 方程为y +1=-12(x +1),即y =-12x -32,与直线l :y =2x 联立可求得B (-35,-65),r min =215. ∴圆B 的方程是 (x +35)2+(y +65)2=215.8.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.[解析] (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在,设直线l 的方程为y =k (x -4),圆C 1的圆心C 1(-3,1)到直线l 的距离为d =|1-k -3-4|1+k2, 因为直线l 被圆C 1截得的弦长为23, ∴4=(3)2+d 2,∴k (24k +7)=0, 即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ),因为C 1和C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k -3-a -b |1+k2=⎪⎪⎪⎪⎪⎪5+1k 4-a -b 1+1k 2整理得:|1+3k +ak -b |=|5k +4-a -bk |,∴1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5. 因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0a +b -5=0,解得⎩⎪⎨⎪⎧ a =52b =-12或⎩⎪⎨⎪⎧a =-32b =132这样点P 只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2⎝ ⎛⎭⎪⎫-32,132.经检验点P 1和P 2满足题目条件.。
422 圆与圆的位置关系
(一)教学目标
1 .知识与技能
(1)理解圆与圆的位置的种类;
(2)禾U用平面直角坐标系中两点间的距离公式求两圆的连心线长;
(3)会用连心线长判断两圆的位置关系
2.过程与方法
设两圆的连心线长为I,则判断圆与圆的位置关系的依据有以下几点:
当I > r i+r2时,圆C i与圆C2相离;
当I = r什「2时,圆C i与圆C2外切;
当『1 -r2|v I < r i+r2时,圆C i与圆C2相交; 当I = 1「1 -「2|时,圆C i与圆C2内(4)
切;当I< 1「1 -「2|时,圆C1与圆C2内含.
3.情态与价值观
让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想
(二)教学重点、难点
重点与难点:用坐标法判断圆与圆的位置关系
两个方程所表示的圆吗?你从中发现了什么? 生应该给矛表扬.同时强调,解析几何是一门数与形结合的学
师:启发学生利用图形的特
应用举例
方法
拓展
延伸
合”的意识.
进一步
培养学生解
4 •根据你所画出的图形,
可以直观判断两个圆的位置
关系.如何把这些直观的事
实转化为数学语言呢?
5.从上面你所画出的图
形,你能发现解决两个圆的位
置的其它方法吗?
6.如何判断两个圆的位
置关系呢?
7 .阅读例3的两种解法,
解决第137页的练习题.
8•若将两个圆的方程相
减,你发现了什么?
征,用代数的方法来解决几何问
生:观察图形,并通过思考,
指出两圆的交点,可以转化为两
个圆的方程联立方程组后是否有
实数根,进而利用判别式求解
师:指导学生利用两个圆的
圆心坐标、半径长、连心线长的
关系来判别两个圆的位置
生:互相探讨、交流,寻找
解决问题的方法,并能通过图形
的直观性,利用平面直角坐标系
的两点间距离公式寻找解题的途
师:对于两个圆的方程,我
们应当如何判断它们的位置关系
呢
?
引导学生讨论、交流,说出
各自的想法,并进行分析、评价,
补充完善判断两个圆的位置关系
的方法.
师:指导学生完成练习题
生:阅读教科书的例3,
完成第137页的练习题.
师:引导并启发学生相交弦
所在直线的方程的求法.
生:通过判断、分析,得出
相交弦所在直线的方程.
决问题、分
析问题的能
别式来探求
两圆的位置
进一步
激发学生探
求新知的精
神,培养学
从具体
到一般总结
判断两个圆
的位置关系
的一般方法.
巩固方
法,并培养
学生解决问
题的能力.
得出两
个圆的相交
弦所在直线
的方程.
所以当m = -5或m = 2时,C 1与C 2外切; 当乞< m < -1时,G 与C 2内含.
例2 求过直线x + y + 4 = 0与圆x 2
+ y 2
+ 4x -2y 程.
备选例题
例 1 已知圆 C i : x 2
+ y 2
-2mx + 4y + m 2
-5 = 0,圆 C 2: x 2
+ y 2
+ 2x -2my + m 2
-3 = 0,
m 为何值时,(1)圆C i 与圆C 2相外切;
(2)圆C i 与圆C 2内含.
【解析】对于圆 C 1,圆C 2的方程,经配方后
2 2 2 2
C 1: (x -m) + (y + 2) = 9, C 2: (x + 1) + (y -m) = 4. (1)
(2) 如果 C 1与C 2外切,则有 J (m +1)2 +(m +2)2
2
m + 3m -10 = 0,解得 m = 2 或 -5.
如果C 1与C 2内含,则有 J (m +1)2 +(m + 2)2 m + 3m =3+2 V3_2 ,
-4 = 0的交点且与y = x 相切的圆的方
【解析】设所求的圆的方程为x2 + y2 + 4x -2y -4 + Z (x + y + 4) = 0.
i v =x
联立方程组<y2 2
$ +y + 4x-2y-4 +Z(x+y+ 4)=0
得:X2+(1+Q x+2(扎一1) =0 .
因为圆与y = x相切,所以A=0.
即(1 + 耳2+8仏一1) =0,则Z=3
故所求圆的方程为x2 + y2 + 7x + y + 8 = 0.
例3 求过两圆x + y + 6x -4 = 0求x + y + 6y -28 = 0的交点,且圆心在直线x -y -4 =0上的圆的方程.
【解析】依题意所求的圆的圆心,在已知圆的圆心的连心线上,又两已知圆的圆心分别为(43, 0)和(0, -}.
则连心线的方程是x + y + 3 = 0.
由J x+y+3=0
X -y —4 =0 解得
所以所求圆的圆心坐标是
2
y 由三个圆有同一条公共弦得设所求圆的方程是X2 +
故所求方程是X2 + y2 -X + _1
~2
7 =~—
2
GJ
2 2
-X + 7y + m = 0
m = -
32.
7y -32 =
0.。