全等三角形动点问题提高题
- 格式:docx
- 大小:690.95 KB
- 文档页数:14
全等三角形提高练习1. 如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。
2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO3. 如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC、BC EDC ,则∠C 的度数是多少?4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=5. 已知,如图所示,AB=AC ,A D ⊥BC 于D ,且AB+AC+BC=50cm,而AB+BD+AD=40cm ,则AD是多少?6. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,则DE= 7. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD于G ,AD 与EF 垂直吗?证明你的结论。
8. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E ⊥AB 于E ,DF ⊥AC 于F ,△ABC的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。
A B'C A B9. 已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:AF10. 如图,AD=BD ,A D ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?11. 如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F,且有BF=AC ,FD=CD ,求证:B E ⊥AC12. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N ,求证:(1)AE=BD(2)CM=CN (3)△CMN 为等边三角形 (4)MN13. 已知:如图1,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F (1) 求证:AN=BM(2) 求证:△CEF 为等边三角形14. 如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CD ;②BF=BG ;③BH平分∠AHD ;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD ,其中正确的有( ) A .3个 B. 4个 C. 5个 D. 6个15. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC ,点G 在CE 的延长线上,CG=AB ,求证:A G ⊥AFC B B A A B16. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG求证:(1)AD=AG (2)AD 与AG 的位置关系如何17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE求证:AF=AD-CF18.如图所示,已知△ABC 中,AB=AC ,D 是CB 延长线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB ,求证:AC=BE+BC19.如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF20.已知如图:AB=DE ,直线AE 、BD 相交于C ,∠B+∠D=180°,AF ∥DE ,交BD 于F ,求证:CF=CD21.如图,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 是OC 上一点,连接DF 和EF ,求证:DF=EF22.已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD ,求证:(1)△BDE ≌△CDF (2) 点D 在∠A 的平分线上BDB23.如图,已知AB ∥CD ,O 是∠ACD 与∠BAC 的平分线的交点,OE ⊥AC 于E ,且OE=2,则AB 与CD 之间的距离是多少?24.如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN ,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E (1)∠AEB 是什么角?(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD谁成立?并说明理由。
八年级数学全等三角形中的动点问题专题强化训练1、在等腰三角形ABC中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF=10.2、在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为8cm。
3、将边长为1的等边三角形OAP按图示方式,沿x轴正方向连续翻转2019次,点P依次落在点P1,P2,P3,P4,…,P2007的位置。
P1的坐标为(1,0),P3的坐标为(-1,0),P50的坐标为(0,-1),P2019的坐标为(1,0)。
4、在等腰直角三角形ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE。
连接DE、DF、EF。
1)证明△ADF≌△CEF。
首先,AD=CE,AF=BF,因此△ADF≌△BDF,△CEF≌△XXX。
又因为BF=EF,所以△BDF≌△XXX。
因此,△ADF≌△CEF。
2)证明△DFE是等腰直角三角形。
因为AD=CE,所以DE=DF。
又因为AF=BF,所以EF=2DF。
因此,△DFE是等腰直角三角形。
5、在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1个单位的速度沿AB向B和沿CA向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处。
1)在爬行过程中,CD和BE始终相等。
2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图所示,蜗牛爬行过程中∠CQE的大小条件不变,证明∠CQE=60°。
3)如果将原题中“沿着CA向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF。
6、如图1,若△ABC和△ADE为等边三角形,M、N分别为BC、CD的中点,易证:CD=BE,△AMN是等边三角形。
专题03 全等三角形章末重难点题型汇编【举一反三】【人教版】【考点1 利用全等三角形的性质求角】【方法点拨】全等三角形的性质:(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
【例1】(2019春•临安区期中)如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°【变式1-1】(2018秋•绍兴期末)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【变式1-2】(2018秋•厦门期末)如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB【变式1-3】(2018秋•桐梓县校级期中)如图,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,点B′在线段AB上,AC,A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【考点2 全等三角形的判定条件】【方法点拨】寻找并证明全等三角形还缺少的条件,其基本思路是:(1)有两边对应相等,找夹角对应相等,或第三边对应相等.前者利用SAS判定,后者利用SSS判定. (2)有两角对应相等,找夹边对应相等,或任一等角的对边对应相等.前者利用ASA判定,后者利用AAS 判定.(3)有一边和该边的对角对应相等,找另一角对应相等.利用AAS判定.(4)有一边和该边的邻角对应相等,找夹等角的另一边对应相等,或另一角对应相等.前者利用SAS判定,后者利用AAS判定.【例2】(2019春•沙坪坝区校级期中)如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E【变式2-1】(2019秋•潘集区期中)在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,AC=DF,BC=EF(2)AB=DE,∠B=∠E,BC=EF(3)∠B=∠E,BC=EF,∠C=∠F(4)AB=DE,∠B=∠E,AC=DF,其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【变式2-2】(2018春•渝中区校级期中)如图,点B、F、C、E在一条直线上,∠A=∠D,∠B=∠E,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.BC=EF C.∠ACB=∠DFE D.AC=DF【变式2-3】(2018秋•鄂尔多斯期中)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE【考点3 全等三角形判定的应用】【方法点拨】解决此类题型的关键是理解题意,利用全等三角形的判定.【例3】(2019春•郓城县期末)如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B 两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.【变式3-1】(2019春•峄城区期末)如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF 的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?【变式3-2】(2019春•槐荫区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【变式3-3】如图,两根长12m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.【考点4 利用AAS证明三角形全等】【方法点拨】两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)【例4】(2018秋•仙游县期中)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是.并证明结论.【变式4-1】(2018春•揭西县期末)如图,∠ABC=∠ACB,∠ADE=∠AED,BE=CD,试说明:△ABD≌△ACE.【变式4-2】(2018秋•杭州期中)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.求证:△ACD≌△CBE.【变式4-3】(2018•雁塔区校级二模)如图,在四边形ABCD中,点E在AD上,其中∠BAE=∠BCE=∠ACD =90°,且BC=CE,求证:△ABC≌△DEC.【考点5 利用SAS证明三角形全等】【方法点拨】两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)【例5】(2018春•金山区期末)如图,已知CA=CD,CB=CE,∠ACB=∠DCE,试说明△ACE≌△DCB的理由.【变式5-1】(2018春•黄岛区期末)如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE全等吗?请说明理由.【变式5-2】(2018秋•仪征市校级月考)如图,已知点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE,说明△ABC与△DEF全等的理由.【变式5-3】(2019秋•东莞市校级月考)如图:△ABC和△EAD中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE.求证:△ABD≌△AEC.【考点6 利用ASA证明三角形全等】【方法点拨】两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)【例6】(2019秋•利辛县期末)如图,已知AB=AC,∠ABE=∠ACD,BE与CD相交于O,求证:△ABE≌△ACD.【变式6-1】(2018•双柏县二模)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;【变式6-2】(2019•陕西模拟)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【变式6-3】(2019秋•乐清市校级期中)如图,△ABC的两条高AD、BE相交于点H,且AD=BD,求证:△BDH≌△ADC.【考点7 利用SSS证明三角形全等】【方法点拨】三边对应相等的两个三角形全等(可简写成“SSS”)【例7】(2019春•渝中区校级月考)如图,AB=CD,AE=CF,E、F是BD上两点,且BF=DE.求证:△ABE≌△CDF.【变式7-1】(2019秋•扶余县校级月考)如图,在△ABC中,AD=AE,BE=CD,AB=AC.(1)求证:△ABD≌△ACE;(2)求证:∠BAE=∠CAD.【变式7-2】(2019秋•保亭县校级月考)如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?【变式7-3】(2019秋•蓬江区校级期末)如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.【考点8 利用HL证明三角形全等】【方法点拨】对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例8】(2018秋•思明区校级月考)如图,在四边形ABCD中,AD⊥BD,AC⊥CB,BD=AC.求证:△ABD ≌△BAC;【变式8-1】(2019秋•睢宁县校级月考)如图,Rt△ABC中,∠C=90°,BC=2,一条直线MN=AB,M、N分别在AC和过点A且垂直于AC的射线AP上运动.问点M运动到什么位置,才能使△ABC和△AMN 全等?并证明你的结论.【变式8-2】(2019秋•合浦县期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.【变式8-3】(2019春•醴陵市期末)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.【考点9 全等三角形的判定与性质综合】【例9】(2019•南岸区)如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.【变式9-1】(2019•福州模拟)(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA =∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.【变式9-2】(2018秋•天台县期末)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长.(用含a,b的式子表示)【变式9-3】(2019春•道外区期末)如图,四边形ABCD中,∠ABC=∠BCD=90°,点E在BC边上,∠AED =90°(1)求证:∠BAE=∠CED;(2)若AB+CD=DE,求证:AE+BE=CE;(3)在(2)的条件下,若△CDE与△ABE的面积的差为18,CD=6,求BE的长.【考点10 动点问题中的全等三角形应用】【例10】(2019春•平川区期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?【变式10-1】(2019春•永新县期末)△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.【变式10-2】(2019春•宝安区期中)如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从D 点出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度沿C →B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【变式10-3】(2018秋•十堰期末)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【考点1 利用全等三角形的性质求角】【方法点拨】全等三角形的性质:(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
全等三角形提高32题(含答案)(一)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
C D B AB C D EF 21 AD B CAB ACDF2E7. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .9.如图,OM 平分∠POQ ,MA ⊥OP ,MB⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP于D .求证:AD +BC =AB .11.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. D C B A F E PED C B AD C B A13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):14.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE . 15、如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
八年级数学全等三角形动点问题压轴题精选20题1.如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒得速度由B点向C点运动,同时点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△B PD≌△CQP?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2.如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且E F=FP.(1)请你通过观察,测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.3.如图,在△ABC中,∠CAB=70°.在同一平面内, 将△ABC绕点A旋转到△AB′C′的位置, 使得CC′∥AB,则∠B′AB=_________4. 已知如图(1),△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在AE 的两侧,BD⊥AE于D,CE⊥AE于E,求证:(1)BD=DE+CE;(2)若直线AE绕A点旋转到(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予证明.(3)若直线AE绕A点旋转到图(3)位置时,(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不须证明.(4)归纳(1)、(2)、(3),请用简捷语言表述BD、DE、CE 的关系.[来源学科网]。
七年级数学全等三角形型动点问题专题训练1.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP;(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的1;4(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1.42.如图,在长方形ABCD中,AB=8cm,BC=12cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒.=_________ .(用t的代数式表示)(1)如图1,S△DCP(2)如图1,当t=3时,试说明:△ABP≌△DCP.(3)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.3.如图(1),AB=7cm,AC⊥AB,BD⊥AB,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上由点B向点D运动.它们运动的时间为t(s),当点P到达点B时,点Q也停止运动.(1)若点Q的运动速度与点P的运动速度相等,当t=1s时,△ACP与△BPQ全等,此时PC⊥PQ吗?请说明理由.(2)将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”后得到如图(2),其他条件不变.设点Q的运动速度为xcm/s,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.(3)在(2)成立的条件下且P、Q两点的运动速度相同时,∠CPQ=______.(直接写出结果)4.如图,在△ABC中,AB=AC,∠BAC=90°,BC=12cm.过点C作直线l⊥BC,动点P从点C开始沿射线CB方向以2cm/s的速度运动,动点Q也同时从点C出发在直线l上以1cm/s的速度向上或向下运动.连接AP、AQ,设运动时间为ts.(1)请写出CP、CQ的长度(用含t的代数式表示):CP=______cm,CQ=______cm;(2)当点P在边BC上时,若△ABP的面积为24cm2,求t的值;(3)当t为多少时,△ABP与△ACQ全等?5.如图①,在ΔABC中,AB=12cm,BC=20cm,过点C作射线CD//AB.点M从点B出发,以3cm/s速度沿BC匀速移动;点N从点C出发,以acm/s的速度沿CD 匀速移动.点M、N同时出发,当点M到达点C时,点M、N同时停止移动.连接AM、MN,设移动时间为t(s).(1)点M、N从移动开始到停止,所用时间为_____s;(2)当ΔABM与ΔMCN全等时,①若点M、N的移动速度相同,求t的值;②若点M、N的移动速度不同,求a的值;(3)如图②,当点M、N开始移动时,点P同时从点A出发,以2cm/s的速度沿AB向点B匀速移动,到达点B后立刻以原速度沿BA返回.当点M到达点C时,点M、N、P同时停止移动.在移动的过程中,是否存在ΔPBM与ΔMCN全等的情形?若存在,求出t的值;若不存在,说明理由.。
(苏科版)八年级上册数学《第1章全等三角形》专题全等三角形中的动点运动问题(30题)1.(2023春•横山区期末)如图,AB=8cm,∠A=∠B,AC=BD=6cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上以xcm/s的速度由点B向点D运动.它们运动的时间为t (s).当△ACP与△BPQ全等时,x的值为.2.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.1、全等三角形中的动点运动问题,通过点的运动,用代数式表示线段的大小,从而寻找线段间的等量关系,建立方程,进而快速解题.2、解题策略:①明晰点的运动方向和速度;②根据已知和求证的目标,寻找线段或角之间的数量关系,进而解决问题;③有时要用到分类讨论的思想.典型题训练3.(2022秋•攸县期末)如图,在四边形ABCD中,∠DAB=∠ABC,AB=5cm,AD=BC=3cm,点E在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为cm/s.4.(2023春•吴江区期末)如图,已知长方形ABCD中,AB=8cm,AD=12cm,点E在AB边上,BE=3cm,点F在线段BC上以3cm/s的速度由B点向C点运动,到达点C后马上折返,向点B运动,点G在线段CD上以vcm/s的速度由C点向D点运动.点F,G同时出发,当一个点到达终点停止运动时,另一个点也随之停止运动,设运动的时间为t秒.若以E,B,F为顶点的三角形和以F,C,G为顶点的三角形全等,则t=秒.5.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=()A.3B.4C.2或4D.2或36.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是()A.2B.2.8C.3D.67.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为()A.2B.4C.6D.2或68.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为(不考虑两三角形重合的情况).9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QP A全等.11.(2022秋•昭阳区期中)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能使△BPD与△CQP全等?12.如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.14.如图,在等腰△ABC中,AB=AC=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C 运动,设点P的运动时间为ts.(1)PC=cm.(用t的代数式表示)(2)当点P从点B开始运动,同时,点Q从点C出发,以vcm/s的速度沿CA向点A运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)16.(2022秋•南召县期末)如图,在四边形ABCD中,∠B=∠C,AB=20cm,BC=15cm,E为AB的中点,若点P在线段BC上以5cm/s的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.(1)若点Q运动的速度是5cm/s,经过1秒后,△BPE与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当△BPE与△CQP全等时,求出点Q的运动速度.17.(2022春•二七区校级期中)如图,点E在线段CD上,EA,EB分别平分∠DAB和∠CBA,点F在线段AB上运动,AD=4cm,BC=3cm,且AD∥BC.(1)当点F运动到离点A多少厘米时,△ADE和△AFE全等?为什么?(2)在(1)的情况下,此时BF=BC吗?为什么?求出AB的长.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△AEP与△BPQ全等.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.22.如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度,沿C→B→C做匀速移动,点G 从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒,G点的移动距离为y.(1)请用含t的代数式表示以下线段:ED=,当0<t≤2时,BF=,当2<t≤4时,BF=;(2)请猜想AD与BC的位置关系,并说明理由;(3)在移动过程中,请你探究当t取何值时,△DEG与△BFG全等?并求出此时G点的移动距离y.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.24.(2022春•华容县期中)如图,已知正方形ABCD的边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D 点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等.请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?相遇点在何处?25.(2022秋•红花岗区期中)如图1,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2cm/s的速度沿射线AN方向运动,动点D以1cm/s的速度运动;已知AC=6cm,设动点D,E的运动时间为t.(1)当点D在射线AM上运动时满足S△ADB:S△BEC=2:1,试求点D,E的运动时间t的值;(2)当动点D在直线AM上运动,E在射线AN运动过程中,是否存在某个时间t,使得△ADB与△BEC 全等?若存在,请求出时间t的值;若不存在,请说出理由.26.如图,AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在射线AB上以1cm/s的速度由点A出发沿射线AB方向运动,同时,点Q在射线DB上由点D出发沿射线DB方向运动.它们运动的时间为t (s).(1)若点Q的运动速度是点P的运动速度的2倍,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)设点Q的运动速度为xcm/s(x≠2),是否存在实数x,使△ACP与△BPQ全等?若存在,请画出示意图,将全等的三角形用符号表示出来,并直接写出相应的x,t的值;若不存在,请说明理由.27.(2022秋•沭阳县校级月考)如图①,线段BC=6,过点B、C分别作垂线,在其同侧取AB=4,另一条垂线上任取一点D.动点P从点B出发,以每秒2个单位的速度沿BC向终点C运动;同时动点Q从点C出发,以每秒a个单位的速度沿射线CD运动,当点P停止时,点Q也随之停止运动.设点P的运动的时间为t(s).(1)当t=1,CP=,用含a的代数式表示CQ的长为;(2)当a=2,t=1时,①求证:△ABP≌△PCQ;②求证:AP⊥PQ;(3)如图②,将“过点B、C分别作垂线”改为“在线段BC的同侧作∠ABC=∠DCB”,其它条件不变.若△ABP与△PCQ全等,直接写出对应的a的值.28.在直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,①如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E.求证:△ACD≌△CBE;②如图2,过点A作AD⊥直线l于点D,点B与点F关于直线l对称,连接BF交直线l于E,连接CF.求证:DE=AD+EF.(2)当AC=8cm,BC=6cm时,如图3,点B与点F关于直线l对称,连接BF、CF.点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M、N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒.当△MDC与△CEN全等时,求t的值.29.(2022秋•浠水县期中)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.30.(2022秋•原平市校级期中)如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=23CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值,若不存在,请说明理由.。
八年级上册数学《第十二章 全等三角形》专题 全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB =8,BC =10,CD 为射线,∠B =∠C ,点P 从点B 出发沿BC 向点C 运动,速度为1个单位/秒,点Q 从点C 出发沿射线CD 运动,速度为x 个单位/秒;若在某时刻,△ABP 能与△CPQ 全等,则x = .【分析】设点P 、Q 的速度为ts ,分两种情形构建方程即可解决问题.【解答】解:设点P 、Q 的速度为ts ,分两种情形讨论:①当AB =PC ,BP =CQ 时,△ABP ≌△PCQ ,即8=10﹣t ,解得:t =2,∴2x =2×1,∴x =1;②当BP =PC ,AB =CQ 时,△ABP ≌△QCP ,即t =12×10=5,∴5x =8,x =85,综上所述,x =1或85,故答案为:1或85.【点评】本题考查全等三角形的判定、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.(2022秋•攸县期末)如图,在四边形ABCD 中,∠DAB =∠ABC ,AB =5cm ,AD =BC =3cm ,点E 在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.【分析】设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,由于∠DAB=∠ABC,则当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt;当AD=BF,AE=BE 时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,然后分别解方程求出x即可.【解答】解:设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,∵∠DAB=∠ABC,∴当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt,解得t=2,x=1;当AD=BF,AE=BE时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,解得t=2.5,x=1.2,综上所述,点F的运动速度为1或1.2cm/s.故答案为:1或1.2.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或3【分析】表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD 与CQ是对应边两种情况讨论即可.【解答】解:∵AB=AC=20cm,BC=16cm,点D为AB的中点,∴BD=12×24=12cm,设点P、Q的运动时间为t,则BP=2t,PC=(16﹣2t)c①当BD=PC时,16﹣2t=12,解得:t=2,则BP=CQ=2t=4,故点Q的运动速度为:4÷2=2(厘米/秒);②当BP=PC时,∵BC=16cm,∴BP=PC=8cm,∴t=8÷2=4(秒),故点Q的运动速度为12÷4=3(厘米/秒);故选:D.【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.5.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或23【分析】设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【解答】解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,2y=6−2y4=8−xy,解得,x=83 y=32,即点Q的运动速度83cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,2y=8−xy4=6−2y,解得:x=6 y=1,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度83或6cm/s时能使两三角形全等.故选:B.【点评】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.6.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.6【分析】分三种情况讨论得出关于t的方程,解方程求得t的值.【解答】解:当P在AC上,Q在BC上时,如图,过点P,Q,C分别作PE⊥直线l于点E,QF⊥直线l于点F,CD⊥AB于点D,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,∴6﹣2t=8﹣3t,解得t=2;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣2t=3t﹣8,解得t=2.8;当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,由题意得,2t﹣6=6,解得t=6.综上,当△CPE与△CQF全等时,t的值为2或2.8或6.∴t的值不可能是3.故选:C.【点评】本题考查了三角形全等的判定和性质、作图﹣基本作图、平行线之间的距离、勾股定理,根据题意得出关于t的方程是解题的关键.7.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或6【分析】当点E在射线CM上时,D在CB上,BD=CE,当点E在CM的反向延长线上时DB=CE,由全等三角形的性质求出其解即可.【解答】解:∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,当t=2或6时,△ABD≌△ACE,故选:D.【点评】本题考查了全等三角形的性质的运用,等腰三角形的性质的运用,三角形的面积公式的运用,解答时分类讨论是重点也是难点.8.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).【分析】三角形PEC和三角形QFC要全等,P的对应顶点是C,有两种情况:一种是点P在AC上,点P在BC上时;另一种是点Q到达终点,而P在BC上时,先把各线段的长度表示出来,再让对应边相等,即可构造方程解出t.【解答】解:①当点P在线段AC上,点P在线段BC上时;如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=7﹣t,BQ=3t,CQ=12﹣3t;∴7﹣t=12﹣3t,解得t=2.5.②当P在线段BC上,点Q到达终点时,如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=t﹣7,CQ=7,∴t﹣7=7,解得t=14.综上所述,t的值为2.5或14.【点评】本题考查全等三角形的性质,找到全等三角形的对应边是解题的关键.9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.【分析】(1)根据点F从点B出发、点E从点A出发的速度、结合图形解答;(2)根据题意列出方程,解方程即可;(3)分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.【解答】解:(1)当0<t≤2时,BF=4t,当2<t≤4时,BF=16﹣4t;(2)由题意得,16﹣4t=2t,解得t=8 3;(3)当0<t≤2时,△ADE≌△CDF,则AE=CF,即8﹣4t=2t,解得t=4 3,当2<t≤4时,△ADE≌△CDF,则AE=CF,即4t﹣8=2t,解得t=4,则t=43或4时,△ADE≌△CDF.【点评】本题考查的是全等三角形的性质的应用,根据题意求出函数关系式、掌握全等三角形的对应边相等是解题的关键.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,AP=BCPQ=AB∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,AP=ACPQ=AB,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?【分析】(1)根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD 与△CQP全等;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,BD=CP∠B=∠C,BP=CQ∴△BPD≌△CQP(SAS);(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?【分析】分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,利用三角形全等得PA=AQ,即22﹣2t=28﹣3t;当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,由PA=AQ,即2t﹣22=3t﹣28;当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,然后分别解方程求出t,再根据题意确定t的值.【解答】解:设P、Q点运动的时间为t,(1)当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,∵△PFA与△QAG全等,∴PA=AQ,即22﹣2t=28﹣3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;(2)当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,解得t=10,(3)当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,∵△PFA与△QAG全等,∴PA=AQ,即2t﹣22=3t﹣28,解得t=6(舍去);当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,解得t=22,舍去.综上所述:当t等于6秒或10秒时,△PFA与△QAG全等.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.对于动点问题常利用代数的方法解决.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.【分析】(1)证明△ABC≌△EDC(SAS),可得∠A=∠E,然后根据内错角相等两直线平行即可得出结论;(2)分两种情况讨论:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,可得AP=8﹣(2t﹣8)=(16﹣2t)cm,进而可以解决问题;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况列方程求解即可.【解答】(1)证明:在△ABC和△EDC中,AC=EC∠ACB=∠ECD,BC=DC∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ =tcm ,则EQ =(8﹣t )cm ,由(1)得:∠A =∠E ,ED =AB =8cm ,在△ACP 和△ECQ 中,∠A =∠E AC =EC ∠ACP =∠ECQ,∴△ACP ≌△ECQ (ASA ),∴AP =EQ ,当0≤t ≤4时,2t =8﹣t ,解得:t =83;当4<t ≤8时,16﹣2t =8﹣t ,解得:t =8;综上所述,当线段PQ 经过点C 时,t 的值为83或8.【点评】本题考查了全等三角形的判定与性质,列代数式,一元一次方程的应用,解决本题的关键是得到△ACP ≌△ECQ .14.如图,在等腰△ABC 中,AB =AC =6cm ,BC =10cm ,点P 从点B 出发,以2cm /s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC = cm .(用t 的代数式表示)(2)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /s 的速度沿CA 向点A 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)此题主要分两种情况①当BP =CQ ,AB =PC 时,△ABP ≌△PCQ ;当BA =CQ ,PB =PC 时,△ABP ≌△QCP ,然后分别计算出t 的值,进而得到v 的值.【解答】解:(1)依题意,得PC=(10﹣2t)(cm).故答案为:10﹣2t;(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6cm,∴PC=6(cm),∴BP=10﹣6=4(cm),2t=4,解得:t=2,CQ=BP=4(cm),v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5(cm),2t=5,解得:t=2.5,CQ=BP=6(cm),v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①△BPD≌△CQP,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQt=32=1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24×1.5=36,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.【分析】(1)经过1秒后,可得BP=CQ=3厘米,则PC=8﹣3=5厘米,可证明△BPE≌△CQP;(2)由△BPE与△CQP全等可知有△BEP≌△CQP或△BEP≌△CPQ,全等可得BP=CP或BP=CQ,或可求得BP的长,可求得P点运动的时间,由CQ=BE或CQ=BP可求得Q点运动的路程,可求得其速度.【解答】解:(1)△BPE与△CQP全等,理由如下:当运动1秒后,则BP=CQ=3厘米,∴PC=BC﹣BP=8﹣3=5厘米,∵E为AB中点,且AB=10厘米∴BE=5厘米,∴BE=PC,在△BPE和△CQP中BE=PC∠B=∠CBP=CQ∴△BPE≌△CQP(SAS);(2)∵△BPE与△CQP全等,∴△BEP≌△CQP或△BEP≌△CPQ,当△BEP≌△CQP时,则BP=CP,CQ=BE=5厘米,设P点运动的时间为t秒,则3t=8﹣3t,解得t=4 3,∴Q点的运动的速度=5÷43=154(厘米/秒),当△BEP≌△CPQ时,由(1)可知t=1(秒),∴BP=CQ=3厘米,∴Q点的运动的速度=3÷1=3(厘米/秒),即当Q点每秒运动154厘米或3厘米时△BEP≌△CQP.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定是解题的关键,即SSS、SAS、ASA、AAS和HL17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?【分析】(1)根据∠C=90°,PD⊥AB,QE⊥AB,于是得到∠A+∠APD=∠A+∠B=90°,证得∠APD =∠B,∠ADP=∠QEB=90°,即可得到结论;(2)分两种情况:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,求得t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,求得t=4.【解答】解:(1)△ADP≌△QBE,理由:∵∠C=90°,PD⊥AB,QE⊥AB,∴∠A+∠APD=∠A+∠B=90°,∴∠APD=∠B,∠ADP=∠QEB=90°,∵AP=BQ=t,在△ADP与△QBE中,∠APD=∠B∠ADP=∠QEB AP=BQ,∴△ADP≌△QBE;(2)①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.【点评】本题考查了全等三角形的判定,解方程,垂直的定义,熟练掌握全等三角形的判定定理是解题的关键.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.【分析】(1)①当t=1时,AP=BQ,∠A=∠B,AE=PB,从而可证明△EAP≌Rt△PBQ;②当t≤4时,AP=BQ=t,S=S梯形AEQB﹣S AEP﹣S PBQ;当4<t≤6时,点P与点B重合,S=2t;(2)如图3所示:因为△AEP≌△BQP,所以AP=PB=2,AE=BQ=3,从而可求得t=2,点Q运动的速度为=3÷2=1.5cm/秒.【解答】解:(1)①当t=1时,AP=1,BQ=1,∴AP=BQ.∵E是AD的中点,∴AE=12AD=3.∵PB=AB=AP=4﹣1=3,∴AE=PB.在Rt△EAP和Rt△PBQ中,AE=PB ∠A=∠B AP=BQ,∴Rt△EAP≌Rt△PBQ.∴∠APE=∠BQP,∵∠BQP+∠BPQ=90°,∴∠APE+∠BPQ=90°,∴∠EPQ=90°,∴PE⊥PQ;②如图1所示连接QE.图1Ⅰ、当t≤4时,AP=BQ=t,S梯形AEQB =12(AE+BQ)•AB=12×4×(3+t)=2t+6.S△AEP =12AE•PA=12×3t=32t,S△PBQ=12PB•BQ=12×(4﹣t)t=2t−12t2.∴S=2t+6−32t﹣(2t−12t2).整理得:S=12t2−32t+6,如图2所示:Ⅱ、当4<t≤6时,点P与点B重合,S=12QB•AB=12×4×t=2t.∴S与t的函数关系式为S=2−32t+6(0<t≤4)<t≤6);(2)如图3所示:∵△AEP≌△BQP,PA≠BQ,∴AP=PB=2,AE=BQ=3.∴t=AP=12AB=12×4=2.∴点Q运动的速度为=3÷2=1.5cm/秒时,△AEP≌△BQP.故答案为:1.5.【点评】此题是四边形综合题,主要考查的是全等三角形的性质和判定、相似三角形的性质和判定、矩形的性质、函数的解析式、一元一次方程的综合应用,根据题意画出符合题意的图形是解题的关键.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.【分析】(1)由AAS证明Rt△BDO≌Rt△ADC,根据对应边相等求得BO的长;(2)分情况讨论点F分别在BC延长线上或在BC之间时△AOP≌△FCQ,根据对应边相等求得t值.【解答】解:(1)∵∠BOD=∠AOE,∠CAD+∠ACD=∠CAD+∠AOE=90°,∴∠ACD=∠AOE,∴∠BOD=∠ACD.又∵∠BDO=∠ADC=90,AD=BD,∴Rt△BDO≌Rt△ADC(AAS),∴BO=AC=6.(2)①当点F在BC延长线上时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=6﹣4t,∴t=6﹣4t,解得t=1.2.②当点F在BC之间时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=4t﹣6,∴t=4t﹣6,解得t=2.综上,t=1.2或2.【点评】本题考查全等三角形的判定.这部分内容是初中几何中非常重要的内容,一定要深刻理解,做到活学活用.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.【分析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE时,分别根据AD=BE,AE=BF,列方程组可得结论.【解答】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,∴BE=AB﹣AD=7﹣2=5,∵AD=5,∴BE=AD,∵∠A=∠B=90°,∴△BEF≌△ADE;②由①得DE=EF,∠BEF=∠ADE,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°﹣(∠BEF+∠AED)=90°,∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则5=7−t t=xt∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则t=7−t 5=xt,∴x=107,t=72.(说明:每正确写出一对x、t的值,给1分.)【点评】本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.【分析】(1)由PD⊥BD、∠C=90°可推出∠PDA=∠CBD,即可根据ASA判定△PDA≌△DBC;(2)由PD⊥AB,AE⊥AC可推出∠APF=∠CAB,即可根据AAS判定△APD≌△CAB,再由全等三角形的性质即可得解.【解答】(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,∠PAD=∠CAD=CB,∠PDA=∠CBD∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,∠APD=∠CAB∠PAD=∠C,AD=CB∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.【点评】此题考查了全等三角形的判定与性质,根据ASA判定△PDA≌△DBC、根据AAS判定△APD≌△CAB是解题的关键.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?【分析】(1)①根据全等三角形的判定定理ASA证得结论;②利用①中全等三角形的性质得到:AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.【解答】解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,∠CAO=∠DEO OA=OE∠AOC=∠DOE,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=143(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、143、12秒时,△OPE与△OQF全等【点评】本题考查了全等三角形的判定,坐标与图形的性质,正确的理解题意是解题的关键.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P 在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12AB,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:112或192;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速度为154cm/s或9332cm/s.。
全等三角形动点问题提高题
全等三角形动点问题提高题
1.如图,已知△ABC中,AB=AC=12厘米,BC= 9厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒得速度由B点向C点运动,同时点Q在线段CA上由C 点向A点运动.
①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;
②若点Q
的运动速
度与点P
的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CQP?
(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
不成立,请说明理由.
3.如图,在△ABC中,∠CAB=70°. 在同一平面内,将△ABC绕点A旋转到△AB′C′的位置, 使得C C′∥AB, 则∠B′AB = _________
4. 已知如图(1),△ABC中,∠BAC=90°,AB =AC,AE是过A的一条直线,且B、C在AE
的两侧,BD⊥AE于D,CE⊥AE于E,求证:(1) BD=DE+CE;(2)若直线AE绕A点旋转到(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予证明.(3)若直线AE绕A点旋转到图(3)位置时,(BD>CE),其余条件不变,
问BD与DE、CE的关系如何?请直接写出结果,不须证明.(4)归纳(1)、(2)、(3),请用简捷语言表述BD、DE、CE的关系.
5.在图中,直线MN与线段AB相交于点O,∠1 = ∠2 = 45°.
(1)如图,若AO = OB,请写出AO与BD 的数量关系和位置关系;
(2)将图中的MN绕点O顺时针旋转得到下图,其中AO = OB.求证:AC = BD,AC ⊥BD;
6.如图,A、B、C、D在同一直线上,AB=CD,DE∥AF,且DE=AF,
(1)求证:△AFC≌△DEB.
(2)如果将BD沿着AD边的方向平行移动,如图,B点与C点重合时,如图,B点在C点右
侧时,其余条件不变,结论是否仍成立,如果成立,请予证明;如果不成立,请说明理由.7.如图,E、F分别为线段AC上的两个动点,且DE ⊥AC于E点,BF⊥AC于F点,若AB=CD,AF=CE, BD交AC于M点,(1)求证:MB=MD,ME=M F(2)当E、F两点移到至如图所示的置时,其它条件不变,上述结论能否成立?若成立,请说明你的理由。
8.如图,宽为50cm的长方形图案由20个全等的直角三角形拼成,其中一个直角三角形的面积为______.
9.如图,△ABC中,∠C=90°,AD 平分∠BAC,AB=5,CD=2,则△ABD的面积是______.
10.如图,在△ABC中,∠CAB=70°. 在同一平面内, 将△ABC绕点A旋转到△AB′C′的位置, 使得CC′∥AB, 则∠B′AB = _________
A D C B
11.如图,在△ABC 中,AB =AC ,AD 是ABC △的角平分线,DE AB DF AC ⊥⊥,,垂足分别为E ,F .则下列四个结论:①AD 上任意一点到点C ,B 的距离相等;②AD 上任意一点到边AB ,AC 的距离相等;③BD =CD ,AD ⊥BC ;④∠BDE =∠CDF .其中,正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个
12.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:
A
D E C B
F
(1)如图1,在爬行过程中,CD 和BE 始终相等吗?
(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE=60°;
(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F”,其他条件不变,如图3,则爬行过程中,DF 始终等于EF 是否正确?
13.
如图
,△ABC 的边BC 在直线l 上,AC ⊥BC ,且AC=BC ;△EFP 的边FP 也在直线l 上,边EF 与边A C 重合,且EF=FP.
(1)请你通过观察,测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;
D
E
A
Q
E
A
B
C
F
D
A
(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出B Q与AP所满足的数量关系和位置关系,请证明你的猜想;
(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
14.等边△ABC,点D是直线BC上一点,以AD为边在AD的右侧作等边△ADE,连接CE.
(1)如图1,若点D在线段BC上,求证:CE+CD=AB;
(2)如图2,若点D在CB的延长线上,线段CE,CD,AB的数量有怎样的数量关系?请加以证明.
15.如图1,四边形ABCD是正方形,点E是边BC的中点.90
∠的
∠=,且EF交正方形外角DCG
AEF
平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△≌△,所以AE EF
AME ECF
=.
在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC
的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结
论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
16.如图所示,有一直角三角形△ABC ,∠C=900,AC=10cm ,BC=5cm ,一条线段PQ=AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AM 上运动,问P 点运动到AC 上什么位置时,△ABC 才能和△APQ 全等?
A D F C G E
B 图 A D F
C G E B 图 A
D F C G
E B 图D
B
17.在△ABC 中,AB=AC ,P 是△ABC 内任意一点,将AP 绕点A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连接BQ ,CP ;
(1)如图1,试说明BQ=CP ;
(2)若将点P 在△ABC 外,如图2,其它条件不变,结论依然成立吗?试说明理由。
18.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若点B P 、在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接.PM PN 、
(1)延长MP 交CN 于点E (如图2),①求证:BPM CPE △≌△;②求证:PM PN =;
(2)若直线a 绕点A 旋转到图3的位置时,点B P 、在直线a 的同侧,其它条件不变.此时PM PN =还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变,请直接判断PM PN =还成立吗?不必说明理由.
Q B C P
A
Q
B C
P
A
图1 图2 图3
19.如图所示,有一块塑料模板ABCD,长为10㎝,宽为4㎝,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重
合)并在AD上平行移动:
(1)能否使你的三角板两直
角边分别通过点B与点C?
若能,请你求出这时AP的
长;若不能,请说明理由. (2)再次移动三角板位置,使三角板顶点P在AD 上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2㎝?若能,请你求出这时AP的长;若不能,请说明理由.。