计算方法 14 欧拉公式-常微分方程
- 格式:ppt
- 大小:1.89 MB
- 文档页数:16
淮北师范大学2013届学士学位论文常微分方程数值解法的误差分析学院、专业数学科学学院数学与应用数学研究方向计算数学学生姓名李娜学号 20091101070指导教师姓名陈昊指导教师职称讲师年月日常微分方程数值解法的误差分析李娜(淮北师范大学数学科学学院,淮北,235000)摘要自然界与工程技术中的很多现象,往往归结为常微分方程定解问题。
许多偏微分方程问题也可以化为常微分方程问题来近似求解。
因此,研究常微分方程的数值解法是有实际应用意义的。
数值解法是一种离散化的数学方法,可以求出函数的精确解在自变量一系列离散点处的近似值。
随着计算机计算能力的增强以及数值计算方法的发展,常微分方程的数值求解方法越来越多,比较成熟的有Euler 法、后退Euler法、梯形方法、Runge—Kutta方法、投影法和多步法,等等.本文将对这些解的误差进行分析,以求能够得到求解常微分数值解的精度更好的方法。
关键词:常微分方程, 数值解法, 单步法, 线性多步法, 局部截断误差Error Analysis of Numerical Method for Solving theOrdinary Differential EquationLi Na(School of Mathematical Science, Huaibei Normal University, Huaibei, 235000)AbstractIn nature and engineering have many phenomena , definite solution of the problem often boils down to ordinary differential equations. So study the numerical solution of ordinary differential equations is practical significance. The numerical method is a discrete mathematical methods, and exact solution of the function can be obtained in the approximation of a series of discrete points of the argument.With the enhanced computing power and the development of numerical methods,ordinary differential equations have more and more numerical solution,there are some mature methods. Such as Euler method, backward Euler method, trapezoidal method, Runge-Kutta method, projection method and multi-step method and so on.Therefore, numerical solution of differential equation is of great practical significance. Through this paper, error of these solutions will be analyzed in order to get a the accuracy better way to solve the numerical solution of ordinary differential.Keywords:Ordinary differential equations, numerical solution methods, s ingle ste p methods, l inear multi-step methods, local truncation error目录引言 (1)一、常微分方程 (1)1、定义 (1)2、常微分方程初值问题描述 (2)3、数值解法的基本思想与途径 (2)4、数值解的分类 (3)5、问题(1)解的存在惟一性定理 (4)二、几种常用的数值解法及其误差分析 (4)1、单步法 (4)(一)、欧拉法 (5)(二)、向后EuIer方法 (6)(三)、- 法 (7)(四)、改进欧拉法 (7)(五)Runge—Kutta方法 (9)2、线性多步法 (14)总结 (16)参考文献: (17)引 言自然界中很多事物的运动规律可用微分方程来刻画。
初值问题《计算机数学基础(2)》辅导六第14章常微分⽅程的数值解法⼀、重点内容1.欧拉公式:(k=0,1,2,…,n-1)局部截断误差是O(h2)。
2. 改进欧拉公式:或表⽰成:平均形式:局部截断误差是O(h3)。
3. 四阶龙格――库塔法公式:其中κ1=f(x k,y k);κ2=f(x k+0.5h,y k+0.5hκ1);κ3=f(x k+0.5h,y k+0.5hκ2);κ4=f(x k+h,y k+hκ3)局部截断误差是O(h5)。
⼆、实例例1⽤欧拉法解初值问题取步长h=0.2。
计算过程保留4位⼩数。
解h=0.2,f(x,y)=-y-xy2。
⾸先建⽴欧拉迭代格式=0.2y k(4-x k y k) (k=0,1,2)当k=0,x1=0.2时,已知x0=0,y0=1,有y(0.2)≈y1=0.2×1(4-0×1)=0.8当k=1,x2=0.4时,已知x1=0.2,y1=0.8,有y(0.4)≈y2=0.2×0.8×(4-0.2×0.8)=0.6144当k=2,x3=0.6时,已知x2=0.4,y2=0.6144,有y(0.6)≈y3=0.2×0.6144×(4-0.4×0.6144)=0.4613 例2 ⽤欧拉预报-校正公式求解初值问题取步长h=0.2,计算y(1.2),y(1.4)的近似值,⼩数点后⾄少保留5位。
解步长h=0.2,此时f(x,y)=-y-y2sin x欧拉预报-校正公式为:有迭代格式:当k=0,x0=1,y0=1时,x1=1.2,有=y0(0.8-0.2y0sin x0)=1×(0.8-0.2×1sin1)=0.63171y(1.2)≈y1=1×(0.9-0.1×1×sin1)-0.1(0.63171+0.631712sin1.2)=0.71549 当k=1,x1=1.2,y1=0.71549时,x2=1.4,有=y1(0.8-0.2y1sin x1)=0.71549×(0.8-0.2×0.71549sin1.2)=0.47697y(1.4)≈y2=0.71549×(0.9-0.1×0.71549×sin1.2)-0.1(0.47697+0.476972sin1.4)=0.52611例3写出⽤四阶龙格――库塔法求解初值问题的计算公式,取步长h=0.2计算y(0.4)的近似值。
欧拉近似方法求常微分方程朱翼1、编程实现以下科学计算算法,并举一例使用之。
“欧拉近似方法求常微分方程”算法说明:欧拉法是简单有效的常微分方程数值解法,欧拉法有多种形式的算法,其中简单欧拉法是一种单步递推算法。
其基本原理为对简单的一阶方程的初值问题:y’=f(x,y)其中y(x0 )=y0欧拉法等同于将函数微分转换为数值微分,由欧拉公式可得y n+1 =y n+hf(x n ,y n)程序代码:function [tout,yout]=myeuler(ypfun,t0,tfinal,y0,tol,trace) %初始化pow=1/3;if nargin<5,tol=1.e-3;endif nargin<6,trace=0;endt=t0;hmax=(tfinal-t)/16;h=hmax/8;y=y0(:);chunk=128;tout=zeros(chunk,1);yout=zeros(chunk,length(y));k=1;tout(k)=t;yout(k,:)=y.';if trace %绘图 clc,t,h,yendwhile (t<tfinal)&(t+h>t) %主循环if t+h>tfinal,h=tfinal-t;end% Compute the slopesf=feval(ypfun,t,y);f=f(:);%估计误差并设定可接受误差delta=norm(h*f,'inf');tau=tol*max(norm(y,'inf'),1.0);%当误差可接受时重写解if delta<=taut=t+h;y=y+h*f;k=k+1;if k>length(tout)tout=[tout;zeros(chunk,1)];yout=[yout;zeros(chunk,length(y))];endtout(k)=t;yout(k,:)=y.';endif tracehome,t,h,yend% Update the step sizeif delta~=0.0h=min(hmax,0.9*h*(tau/delta)^pow);endendif (t<tfinal)dish('Singularity likely.')tendtout=tout(1:k);yout=yout(1:k,:);流程图:用欧拉法求y’=-y+x+1,y(0)=1。
5.1常微分⽅程的数值解法第五章常微分⽅程的差分⽅法⼀、教学⽬标及基本要求通过对本节课的学习,使学⽣掌握常微分⽅程、常微分⽅程⽅程组的数值解法。
⼆、教学内容及学时分配本节课主要介绍常微分⽅程的数值解法。
具体内容如下:讲授内容:欧拉公式、改进的欧拉公式。
三、教学重点难点1.教学重点:改进的欧拉公式、龙格库塔⽅法、收敛性与稳定性。
2. 教学难点:收敛性与稳定性。
四、教学中应注意的问题多媒体课堂教学为主。
适当提问,加深学⽣对概念的理解。
五、正⽂基于数值积分的求解公式:欧拉公式、改进的欧拉公式引⾔1.主要考虑如下的⼀阶常微分⽅程初值问题的求解:00()(,)()y x f x y y x y '=??=?微分⽅程的解就是求⼀个函数y=y(x),该函数满⾜微分⽅程并且符合初值条件。
2. 例如微分⽅程:xy'-2y=4x ;初始条件: y(1)=-3。
于是可得⼀阶常微分⽅程的初始问题24(1)3y y x y ?'=+=-?。
显然函数y(x)=x 2-4x 满⾜以上条件,因⽽是该初始问题的微分⽅程的解。
3. 但是,只有⼀些特殊类型的微分⽅程问题能够得到⽤解析表达式表⽰的函数解,⽽⼤量的微分⽅程问题很难得到其解析解,有的甚⾄⽆法⽤解析表达式来表⽰。
因此,只能依赖于数值⽅法去获得微分⽅程的数值解。
4.微分⽅程的数值解:设微分⽅程问题的解y(x)的存在区间是[a,b],初始点x 0=a ,将[a,b]进⾏划分得⼀系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。
y(x)的解析表达式不容易得到或根本⽆法得到,我们⽤数值⽅法求得y(x)在每个节点x k 的近似值y(x k ),即 y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分⽅程的数值解。
如果计算y n 时,只利⽤y n-1,称这种⽅法为单步法;如果在计算y n 时不仅利⽤y n-1,⽽且还要利⽤y n-2, y n-3,…, y n-r ,则称这种⽅法为r 步⽅法,也称多步法。
欧拉方程的求解.————————————————————————————————作者:————————————————————————————————日期:ﻩ欧拉方程的求解1.引言在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leo nhard E uler,1707--1783).几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数”欧拉还是许多数学符号的发明者,例如用π表示圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”.在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解.但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明.2.几类欧拉方程的求解定义1 形状为()1(1)110n n n n n n y a x y a xy a y x ---'++++=(1)的方程称为欧拉方程. (其中1a ,2a ,,1n a -,n a 为常数)2.1二阶齐次欧拉方程的求解(求形如K y x =的解)二阶齐次欧拉方程:2120x y a xy a y '''++=. (2)(其中1a ,2a 为已知常数)我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ),且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2).对K y x =求一、二阶导数,并带入方程(2),得212()0K K K K K x a Kx a x -++=或212[(1)]0K K a K a x +-+=,消去K x ,有 212(1)0K a K a +-+=. (3)定义 2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程.由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解.于是,对于方程(2)的通解,我们有如下结论:定理1 方程(2)的通解为(i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根)(ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根)(iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根)(其中1c 、2c 为任意常数)证明 (i )若特征方程(3)有两个相等的实根: 12K K =,则11K x y =是方程(2)的解,且设2()u x y =,11()K y x u x =(()u x 为待定函数)也是方程(2)的解(由于21()y u x y =,即1y ,2y 线性无关),将其带入方程(2),得 11122111112[()2]()0K K K x K K u K xu x u a x K u xu a x u ''''-+++++=,约去1K x ,并以u ''、u '、u 为准合并同类项,得22111112(2)[(1)]0x u K a xu K a K a u '''++++-+=.由于1K 是特征方程(3)的二重根, 因此21112(1)0K a K a +-+=或112(1)0K a +-=,于是,得20x u ux '''+=或0xu u '''+=,即 ()0xu ''=, 故 12()ln u x c x c =+. 不妨取()ln u x x =,可得方程(2)的另一个特解12ln K y x x =,所以,方程(2)的通解为1112ln K K y c x c x x =+.(其中1c ,2c 为任意常数)(ii )若特征方程(3)有两个不等的实根: 12K K ≠,则11K x y =,22K y x =是方程(2)的解.又2211()21K K K K y x x y x -==不是常数,即1y ,2y 是线性无关的. 所以,方程(2)的通解为1212K K x c x y c +=.(其中1c ,2c 为任意常数)(iii )若特征方程(3)有一对共轭复根:1,2K i αβ=±(0β≠),则()1i x y αβ+=,()2i y x αβ-=是方程(2)的两个解,利用欧拉公式,有()ln 1(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ+===+, ()ln 2(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ--===-,显然,12cos(ln )2y y x x αβ+=和12sin(ln )2y y x x iαβ-=是方程(2)的两个线性无关的实函数解. 所以,方程(2)的通解为12cos(ln )sin(ln )x x x x y c c ααββ=+.(其中1c ,2c 为任意常数)例1求方程20x y xy y '''-+=的通解. 解 该欧拉方程的特征方程为(1)10K K K --+=,即 2(1)0K -=, 其根为: 121K K ==, 所以原方程的通解为12(ln )y c c x x =+.(其中1c ,2c 为任意常数)例2 求方程280x y xy y '''--=的通解.解 该欧拉方程的特征方程为2(11)80K K +---=,即 2280K K --=, 其根为: 12K =-,24K =,所以原方程的通解为4122c y c x x=+. (其中1c ,2c 为任意常数)例3 求方程的通解2350x y xy y '''++=. 解 该欧拉方程的特征方程为(1)350K K K -++=,即 2250K K ++=, 其根为: 1,212K i =-±, 所以原方程的通解为121[cos(2ln )sin(2ln )]y c x c x x=+.(其中1c ,2c 为任意常数)2.2二阶非齐次欧拉方程的求解(初等积分法)二阶非齐次欧拉方程:212()x y a xy a y f x ++='''. (4)(其中1a ,2a 为已知实常数,()f x 为已知实函数)为了使方程(4)降阶为一阶线性微分方程,不妨设1121a K K =--,212a K K =,(5)则方程(4)变为212122)(1()K a x y K K xy K y f x +--+=''',即212()()()x xy K y K xy K y f x ---=''',(6)根据韦达定理,由(5)式可知,1K ,2K 是一元二次代数方程212(1)0K a K a +-+=(3)的两个根.具体求解方法:定理2 若1K ,2K 为方程(2)的两个特征根,则方程(4)的通解为212111[()]K K K K y x x x f x dx dx ----=⎰⎰.(7)证明 因为1K ,2K 为方程(2)的两个特征根, 于是方程(4)等价于方程(6),令 2xy K y p '-=, 代入方程(6)并整理,得1()K f x p x x p =-' 和2K p y y x x'-=, 解之,得方程(4)的通解为212111[()]K K K K y x x x f x dx dx ----=⎰⎰.由定理2知,只需要通过两个不定积分(当(7)式中的积分可积时)即可求得方程(4)的通解.为了方便计算,给出如下更直接的结论.定理3 若1K ,2K 为方程(2)的两个特征根,则(i)当12K K =是方程(2)的相等的实特征根时,方程(4)的通解为11111[ln ()ln ()]K K K x x f x dx x x f x dx y x -----⋅=⎰⎰,(ii )当12K K ≠是方程(2)的互不相等的实特征根时,方程(4)的通解为112211121[()()]K K K K x x f x dx x x f x dx K K y ------=⎰⎰,(iii)当1,2K i αβ=±是方程(2)的共轭复特征根时,方程(4)的通解为111[sin(ln )cos(ln )()cos(ln )sin(ln )()]y x x x x f x dx x x x f x dx αααβββββ----=-⎰⎰证明 (ii )当12K K ≠是方程(2)的互不相等的的实特征根时, 将方程(1)的通解(7)进行分部积分,得21212112212121121111211212112111[()]1[()]1{[()]}1[]()()()K K K K K K K K K K K K K K K K K K K x x x f x dx dxx x f x dx dx K K x x x d x f x dx K K x x K K y x f x dx x f x dx x f x dx -------------------=-===--⎰⎰⎰⎰⎰⎰⎰⎰⎰(8)(iii)当1,2K i αβ=±是方程(2)的共轭复特征根时,122K K i β-=, 再由欧拉公式有1ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ+===+,2ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ--===-,将其代入(8)式,整理可得方程(4)的通解为111[sin(ln )cos(ln )()cos(ln )sin(ln )()]x x x x f x dx x x x f x dx y αααβββββ-----=⎰⎰(i)的证明和(ii)类似.例1求方程22234ln y xy y x x x x '''-+=+的通解.解 该欧拉方程所对应的齐次方程的特征方程为2440K K -+=, 特征根为 122K K ==, 所以由定理3,原方程的通解为23223222232122223212[ln (ln )ln (ln )]111{ln [(ln )ln ][(ln )(ln )]}23211ln [(ln )(ln )]62x x x x x dx x x x x x dx x x x c x x c x x c x x x x y x x c --+-⋅+++-+-+++===⎰⎰(其中1c ,2c 为任意常数)例2求方程2322x x y xy y x e -+='''的通解. 解 该欧拉方程所对应的齐次方程的特征方程为2320K K -+=,特征根为 12K =,21K =, 所以由定理3,原方程的通解为23323212212()()x x x x x xx x e dx x x x e dxx e c x xe e c c x c x xe y x ---=+---=++=⎰⎰(其中1c ,2c 为任意常数)例3求方程2cos(ln )2xx x y xy y -+='''的通解.解 该欧拉方程所对应的齐次方程的特征方程为2220k k -+=,特征根为 1,21K i =±, 所以由定理3,原方程的通解为212122cos(ln )]cos(ln )cos(ln )11sin(ln )cos(ln )cos(ln ))sin(ln )cos(ln )sin(ln )cos(ln )sin(ln )[sin(ln )]{sin(ln )(ln )cos(ln )[ln(cos(ln )]}[][sin(ln )ln x xx x dx dx x x x dx x dx x x x x c x y x x x x x x x x x x c x x c x c x x x ----+===+++=++⎰⎰⎰⎰cos(ln )ln(cos(ln ))]x x(其中1c ,2c 为任意常数)在定理3中,若令()0f x =,则得到二阶齐次欧拉方程(2)的通解.推论 方程(2)的通解为(i)1112ln K K x c x x y c +=, (12K K =是方程(2)的相等的实特征根)(ii )1212K K x c x y c +=, (12K K ≠是方程(2)的不等的实特征根)(iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(2)的共轭复特征根)(其中1c ,2c 为任意常数)2.3三阶非齐次欧拉方程的求解(常数变易法)三阶非齐次欧拉方程:32123()x y a x y a xy a y f x +++=''''''.(9)(其中1a ,2a ,3a 为常数) (9)对应的齐次方程为321230x y a x y a xy a y +++=''''''. (10)特征方程为321123(3)(2)0K a K a a K a +-+-++=. (11)定理4 设1K 是方程(11)的根,2K 是方程22122112(31)[3(1)2]0K K a K K K a K a ++-+-++=的根,则(9)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰ .(12)证明 根据条件1K y cx =(c 为任意常数)是方程(10)的解. 设1()K y c x x =是方程(9)的解(其中()c x 是待定的未知数), 将其代入方程(9),整理得1121111112(3)3231111213()(3)()[3(1)2]()[(3)(2)]()()K c x K a x c x K K a K a x c x K a K a a K a x c x xf x ---+-''''''+++-++++-+-++= (13)因为1K 是(11)的根,则321111213(3)(2)0K a K a a K a +-+-++=,于是(13)式化为1(3)121111112()(3)()[3(1)2]()()K c x K a x c x K K a K a x c x x f x -+--''''''+++-++=(14)这是以()c x '为未知函数的二阶欧拉方程. 设2K 为(14)对应的齐次方程的特征方程21111112(31)[3(1)2]0K K a K K K a K a ++-+-++=, (15)的根,则221121(23)(2)()[()]K K K a K K c x x x x f x dx dx -+++-'=⎰⎰.从而2211211(23)(22){[()]}()K K K a K K a x x x f x dx dx dx c x -++++-=⎰⎰⎰. 故方程(1)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰.定理5 设1K 是方程(11)的根,2K 是方程(15)的根,则(i)当1K 是方程(11)的单实根,2K 是方程(15)的单实根,则(9)的通解为1212121121(2)1(3)(2)121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++=-++-⎰⎰⎰(ii )当1K 是方程(11)的单实根,2K 是方程(15)的单虚根,则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,2211112113624(1)2K K a K a a β=-++--) (iii)当1K 是方程(11)的单实根,2K 是方程(15)的重实根,则(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰,(iv)当1K 是方程(11)的三重实根,方程(15)变为2210K K ++=,有21K =-,则(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K y x x x x f x dx x x f x dx dx -+-+-=-⋅⎰⎰⎰. 证明 (i)因为2K 是方程(15)的单实根,得(14)的通解为212121121(2)1(3)(2)31211[()()](32)1()K K K K K a K K a x x f x dx x x f x dx K K a c x -++-++++--++-='⎰⎰则(9)的通解为1212121121(2)1(3)(2)3121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++-=-++-⎰⎰⎰(ii )因为2K 是方程(14)的单虚根,此时方程(15)有一对共轭虚根1,222111111212(13)3624(1)2a K i K K a K a a K --±-++--=, 得(14)的通解为11(2)(2)[sin(ln )cos(ln )()cos(ln )sin(ln )()]()K K x x x x f x dx x x x f x dx c x αααβββββ-++-++-='⎰⎰则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,2211112113624(1)2K K a K a a β=-++--) (i ii)因为2K 是方程(15)的重实根,得(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰.(i v)当1K 是方程(10)的三重实根(1133a K =-),方程(15)变为222210K K ++=,有21K =-,将1133a K =-,21K =-代入(12)式得11(1)11{[()]}K K y x x x x f x dx dx dx -+--=⎰⎰,对上式分部积分得(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K x x x x f x dx x x f x dx dx y -+-+-⋅-⋅=⎰⎰⎰.例1 求三阶欧拉方程32366x y x y xy y x -+-=''''''的通解. 解 原方程对应的齐次方程为323660x y x y xy y -+-='''''',其特征方程为3261160K K K -+-=,解得其特征根为1,2,3,取 11K =, 将11K =,13a =-,26a =,代入方程(15),得2220K K -=,解得21K =或0,利用定理5(i)的通解公式有323212311[]ln 22y x x x dx x dx dx x x c x c x c x --=-=+++⎰⎰⎰. (其中1c ,2c ,3c 为任意常数)例2 求三阶欧拉方程3241313x y x y xy y x ''''''-+-=的通解. 解 原方程对应的齐次方程为32413130x y x y xy y ''''''-+-=,其特征方程为21613()()0K K K -+-=,从而解得特征单实根为11K =,将11K =,14a =-,213a =代入方程(15),得到222250K K -+=,解得 1,2212i K =±. 令212i K =+,则1α=,2β=, 利用定理5(ii)的通解公式有33213{[sin(2ln )cos(2ln )cos(2ln )sin(2ln )]}211ln [sin(2ln )cos(2ln )]816xx x x dx x x x dx dxx x c x c x c x y x ---=+-+=⎰⎰⎰(其中1c ,2c ,3c 为任意常数)2.4 n 阶齐次欧拉方程的求解(求形如K y x =的解)令K y x =是方程(1)的解,将其求导(需要求出y '、y''(1)n y -、()n y )代入方程(1),并消去K x ,得 1(1)(1)(1)(1)(2)0n n K K K n a K K K n a K a ---++--++++=. (16)定义3 以K 为未知数的一元n 次方程(16)称为n 阶齐次欧拉方程(1)的特征方程.由此可见,如果选取k 是特征方程(16)的根,那么幂函数k y x =就是方程(1)的解.于是,对于方程(1)的通解,我们有如下结论:定理6 方程(1)的通解为112211n n n n y c y c y c y c y --=++++(其中1c ,2c 1n c -,n c 为任意常数),且通解中的每一项都有特征方程(16)的一个根所对应,其对应情况如下表:例1 求方程4(4)3(3)281550x y x y x y xy '''+++=的通解. 解 该欧拉方程的特征方程为(1)(2)(3)8(1)(2)15(1)50K K K K K K K K K K ---+--+-+=,整理,得2(22)0K K K ++=,其根为120K K ==,3,41K i =-±,所以原方程的通解为3412ln cos(ln )sin(ln )c cy c c x x x x x=+++. (其中1c ,2c ,3c ,4c 为任意常数)例2 求方程(4)(3)432670x y x y x y xy y ++++='''的通解. 解 该欧拉方程的特征方程为方程(16)的根 方程(1)通解中的对应项 单实根:K给出一项:K cx一对单共轭复根:1,2K i αβ=±给出两项:12cos(ln )sin(ln )c x x c x x ααββ+ k 重实根:K给出k 项:12[ln (ln )]K K K x c c x c x +++一对k 重共轭复根:1,2K i αβ=±给出2k 项:1212[ln (ln )]cos(ln )[ln (ln )]sin(ln )k k kk x c c x c x x x d d x d x x ααββ+++++++(1)(2)(3)6(1)(2)7(1)10K K K K K K K K K K ---+--+-++=,整理,得410K +=,其根为1,2K i =-,3,4K i =(即一对二重共轭复根),所以原方程的通解为1234cos(ln )sin(ln )ln cos(ln )ln sin(ln )y c x c x c x x c x x =+++.(其中1c ,2c ,3c ,4c 为任意常数)3.结束语从前面的讨论过程来看,和教材中的变量变换法相比,本文中的解决办法更直接、更简单.但需要说明的是,本文中的定理和例题都是在0x >范围内对齐次欧拉方程求解的,如果要在0x <范围内对其求解,则文中的所有ln x 都将变为ln()x -,所得的结果和0x >范围内的结果相似.4.致谢经过这好几个月忙碌的学习跟工作,本次毕业论文的写作已经接近尾声了,但这次毕业论文的写作经历让我感受颇多.首先,自己要有很好的专业知识的储备,这也是写作的基础. 其次,自己要有严谨的思维逻辑.再次,自己要善于思考,遇到不懂得问题就要勤于思考,查资料,问老师.最后,自己一定要有坚持不懈的精神.毕业论文的写作是一个长期的过程,在写作过程中我们难免会遇到各种各样的过程,但我们不能因此就放弃,而要做到坚持.要相信“有付出就一定会有所收获”的.在这里首先要感谢我的指导老师胡宏昌教授.胡老师平日里工作繁多,但在我做毕业论文阶段,他都给予了我悉心的指导,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩胡老师的专业水平外,他的治学严谨和科学研究的精神也值得我永远学习,并将积极影响我今后的学习和工作.然后还要感谢大学四年来我的所有的老师跟领导,为我们打下了坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!5、参考文献[1]王高雄,周之铭,朱思铭,王寿松.常微分方程[M].第3版.北京:高等教育出版社,2006:142-144.[2]华东师范大学数学系.数学分析(上)[M].第3版.北京:高等教育出社,1999:87-199.[3]钟玉泉.复变函数论[M].第3版.北京:高等教育出版社,2003:10-11.[4]胡劲松.一类欧拉方程特解的求解.重庆科技学院学报[J],2009,11(2):143-144.[5]胡劲松,郑克龙.常数变易法解二阶欧拉方程.大学数学[J],2005,21(2):116-119.[6]米荣波,沈有建,汪洪波.三阶欧拉方程求解的简化常数变易方法.海南师范大学学报[J],2008,21(3):260-263.[7]胡劲松.齐次欧拉方程的另一种求解方法.重庆工学院学报[J],2004,18(1):4-748.[8]冀弘帅.认识伟大的数学家----欧拉.数学爱好者[J],2006,10:52-53.[9]卓越科学家欧拉.中学生数理化(北师大版)[J],2007,Z2: 101-102.。