必修1 新课标 数学 2.3对数函数
- 格式:doc
- 大小:110.00 KB
- 文档页数:4
高一必修一对数函数知识点对数函数是高中数学中的一个重要内容,它涉及到了指数函数和对数函数的关系。
对数函数的学习对于高中数学学习的深入理解和能力的发展非常重要。
本文将为大家介绍高一必修一对数函数的主要知识点,并通过示例来加深理解。
一、对数函数的定义和性质1. 对数函数的定义:对数函数y=loga(x)定义为y=a^x,其中a>0且a≠1。
其中,a称为底数,x称为指数,y称为对数。
2. 对数函数的性质:- 当x>0时,对数函数y=loga(x)是严格单调递增函数。
- 当0<a<1时,对数函数关于x轴对称。
- 当a>1时,对数函数关于y轴对称。
二、对数函数的图像和性质1. 对数函数的图像:对数函数的图像随着底数a的不同而变化,当底数a>1时,对数函数的图像呈现上升的指数形状;当0<a<1时,对数函数的图像呈现下降的指数形状。
2. 对数函数的常用性质:- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。
- 对数函数的图像经过点(1, 0),即loga(1) = 0。
- 对数函数在x=1时取到最小值,即loga(1) = 0。
- 对数函数在x→+∞时,值趋近于正无穷;在x→0+时,值趋近于负无穷。
三、对数函数的基本性质1. 对数函数的指数运算:- loga(xy) = loga(x) + loga(y)- loga(x/y) = loga(x) - loga(y)- loga(x^p) = p·loga(x)2. 对数函数的换底公式:- loga(x) = logb(x) / logb(a)四、对数方程和对数不等式1. 对数方程的求解:- 求解对数方程时,需要根据对数函数的性质来进行等式变形和求解。
2. 对数不等式的求解:- 求解对数不等式时,需要根据对数函数的性质来确定不等式的取值范围。
五、常用对数的计算常用对数是以10为底的对数,用logx表示。
高中数学各版本新教材目录体系比较第三章统计案例§1 回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析阅读材料高尔顿与回归§2 独立性检验2.1条件概率与独立事件阅读材料概率与法庭2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用《数学选修4-1 几何证明选讲》第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质《数学选修4-2 矩阵与变换》第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用《数学选修4-4坐标系与参数方程》第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质《数学选修4-5不等式选讲》第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式。
高一数学新授课课时安排表课程内容:高一(上)普通高中课程标准实验教科书数学必修1第一章集合与函数概念 8课时(包含习题课)1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ) 6课时(包含习题课)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用 4课时(包含习题课)3.1 函数与方程3.2函数模型及其应用小结:总结+习题 2课时普通高中课程标准实验教科书数学必修2第一章空间几何体 4课时(包含习题课)1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系 4课时(包含习题课)2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程 6课时(包含习题课)3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程 6课时(包含习题课)4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结:总结+习题 2课时高一(下)普通高中课程标准实验教科书数学必修3第一章算法初步 4课时(包含习题课)1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计 4课时(包含习题课)2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率 6课时(包含习题课)3.1 随机事件的概率3.2 古典概型3.3 几何概型小结+习题 4课时普通高中课程标准实验教科书数学必修4第一章三角函数 8课时(包含习题课)1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量 8课时(包含习题课)2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换 4课时(包含习题课)3.1 两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换小结+习题 4课时。
高中对数函数知识点在高中数学中,对数函数是一个重要的知识点。
对数函数是指以某个确定的正数为底,来定义一个新的函数。
在这篇文章中,我将介绍对数函数的定义、性质以及应用。
一、对数函数的定义对数函数的定义是:设a是一个正数且a≠1,对任意的正数x,y,如果aᵡ=y,则称x是以a为底的y的对数,记为logₐy。
其中,a称为对数的底数,x称为对数的真数,y称为对数的被求值。
二、对数函数的性质1. logₐ1 = 0:任何数以自己为底的对数都等于0,即logₐ1 = 0。
2. logₐa = 1:任何数以自己为底的对数都等于1,即logₐa = 1。
3. 对数函数的定义域是正实数集,值域是实数集。
三、对数函数的图像对数函数的图像是一个曲线,具有特殊的形状。
当底数a大于1时,对数函数是递增的;当底数a介于0和1之间时,对数函数是递减的。
对数函数的增长速度比指数函数慢,但比线性函数快。
四、对数函数的应用对数函数在实际生活中有广泛的应用,以下是一些常见的应用场景:1. 对数函数在计算复利和连续复利时具有重要作用,可以方便地计算投资或借贷的利息。
2. 在测量地震的强度时,使用了里氏震级的对数表示,这样可以更好地反映地震的强度差异。
3. 对数函数还在科学和工程中起着重要的作用,如在放射性衰变的研究、声学和天文学中的应用等。
五、常用的对数函数在数学中,常用的对数函数是以10为底的常用对数(以log表示)和以e为底的自然对数(以ln表示)。
常用对数在计算学科和实际生活中广泛使用,自然对数则在微积分和指数函数的研究中经常被使用。
六、对数函数的性质1. 对数函数的底数为正实数且不等于1。
2. 对数函数的图像是一条连续的曲线,且在定义域上处处大于0。
3. 对数函数的反函数是指数函数。
总结:对数函数是高中数学中的重要概念,它的定义、性质和应用在学习中起到关键的作用。
通过学习对数函数的知识,我们能够更好地理解数学的相关概念,并在实际生活中应用它们。
2.2.1第一课时 对数的概念教案1.对数的概念:定义:一般地,如果 ()1,0≠>a a a 的b 次幂等于N, 就是 N a b=,那么数 b 叫做 以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数例如:1642= ⇔ 216log 4= ; 100102=⇔2100l o g 10= 2421= ⇔212log 4= ; 01.0102=-⇔201.0log 10-= 1)以10为底的对数称常用对数,N 10log 记作N lg ,2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log 记作N ln ②基本性质:1)真数N 为正数(负数和零无对数), 2)01log =a ,3)1log =a a , 4)对数恒等式:N a N a =log③运算性质:如果,0,0,0,0>>≠>N M a a 则1)N M MN a a a log log )(log +=;2)N M NM a a a log log log -=; 3)∈=n M n M a n a (log log R ). ④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aN N m m a 1)1log log =⋅a b b a , 2).log log b mn b a n a m = (要注意以上公式中字母取值范围)。
对数运算是函数一章中的难点,又是学好对数函数的基础,要学好它,必须具备:1. 有指对数互化的意识由于对数的定义是建立在指数基础上的,所以它们之间有密切关系,因此在处理指数或对数运算时,往往将它们相互转化。
例1. 已知n 3log ,m 2log a a ==,求n 3m 2a-的值。
2. 有根据换底公式,换为同底的意识对数的运算公式都是建立在同底的基础上的,但在实际的运算中,底数往往不同,而换底公式的主要功能是将底数不相同的对数,换为相同的底数,进而可采用对数的运算公式。
《对数函数图像与性质》的教学设计必修1的《对数函数图像与性质》。
设计分为:教材分析、学情分析、教学目标、教学重点与难点、教法与学法、教学过程六个部分。
第一部分:教材分析函数是一种重要的数学思想,是实际生活中数学建模的重要工具。
本节的主要内容就是函数x y 2log =的图像和性质。
它是函数x y a log =的直观体现,是进一步学习对数函数的图像和性质的准备,又是学习函数图像作法的载体,学习它也是培养和建立数形结合思想的有效途径。
本节内容还涉及到前面的指数函数,所以它应该是从指数函数向对数函数过渡的有效纽带。
第二部分:学情分析。
在学习本节课之前,学生们已经学习了二次函数、指数函数图像画法及有关性质,经历了作图、观察、比较、归纳、应用,以及猜想、验证的学习过程,已经了解如何去分析函数式到作图,研究性质去应用,初步具有对数学问题进行合作探究的意识与能力。
但是学生对指、对数及运算还不灵活,函数定义不甚理解,也不能灵活应用图像及有关性质去解题。
第三部分:教学目标:知识与技能,过程与方法,情感、态度、价值观:(1)学生经历学习,掌握函数图像求作的两种基本方法,即描点法和图像变换法,并会用它们作函数x y 2log =的图像;学生经历作图的过程,感受到图像对函数性质的探究非常重要,并会通过图像获知互为反函数的两个函数的图像关于直线y = x 对称,会用x y 2log =的图像特征概括出函数x y 2log =的性质,会用研究x y 2log =的图像和性质的方法类比研究函数x y a log =的图像和性质。
(2)学生能从作函数x y2log =和x y 2=的图像的过程中较深刻的体会出图像变换法作图的特点和意义,并以此感悟出转化思想在数学中的重要意义;学生在不断感受用图形解题的过程中,会逐步建立起数形结合的思想意识;学生在自己做出的美妙的曲线中感悟出数学的美,并知道数学也具有形象的一面和很感性的地方,学生会更加喜爱数学这门学科。
对数与对数函数一、本次课教学目标1. 掌握对数的概念、常用对数、对数式与指数式互化,对数的运算性质、换底公式与自然对数;2. 掌握对数函数的概念、图象和性质.二、考点、热点知识点一、对数及其运算我们在学习过程遇到2x=4的问题时,可凭经验得到x=2的解,而一旦出现2x=3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算.(一)对数概念:1. 如果,那么数b叫做以a为底N的对数,记作:log a N=b.其中a叫做对数的底数,N叫做真数.2. 对数恒等式:3. 对数的基本性质:(1)0和负数没有对数,即;(2)1的对数为0,即;(3)底的对数等于1,即.(二)常用对数与自然对数通常将以10为底的对数叫做常用对数,.以e为底的对数叫做自然对数,.(三)对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a,b,N三个字母在不同的式子中名称可能发生变化。
(四)对数的运算性质已知(1);推广:(2);(3).(五)换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0,a≠1,M>0的前提下有:(1)令log a M=b,则有a b=M,(a b)n=M n,即,即,即:.(2) ,令log a M=b,则有a b=M,则有即,即,即当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:.知识点二、对数函数1. 函数y=log a x(a>0,a≠1)叫做对数函数.2. 在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0<a <1时,对数函数的图象随a的增大而远离x轴.(见图1)(1)对数函数y=log a x(a>0,a≠1)的定义域为(0,+∞),值域为R(2)对数函数y=log a x(a>0,a≠1)的图像过点(1,0)(3)当a>1时,三、规律方法指导容易产生的错误(1)对数式log a N=b中各字母的取值范围(a>0 且a≠1,N>0,b∈R)容易记错.(2)关于对数的运算法则,要注意以下两点:一是利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.二是不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,loga.(3)解决对数函数y=log a x (a>0且a≠1)的单调性问题时,忽视对底数a的讨论.(4)关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.三、典型例题类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、对数运算性质3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1);(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a≠1,k∈R).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log1.8,log2.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;(2)与第(1)小题类似,logx在R+上是单调减函数,且1.8<2.7,所以log1.8>log2.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】若log m3.5>log n3.5(m,n>0,且m≠1,n≠1),试比较m ,n的大小.解:(1)当m>1,n>1时,∵3.5>1,由对数函数性质:当底数和真数都大于1时,对同一真数,底数大的对数值小,∴n>m>1.(2)当m>1,0<n<1时,∵log m3.5>0,log n3.5<0,∴0<n<1<m也是符合题意的解.(3)当0<m<1,0<n<1时,∵3.5>1,由对数函数性质,此时底数大的对数值小,故0<m<n<1.综上所述,m,n的大小关系有三种:1<m<n或0<n<1<m或0<m<n<1.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R 上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性.(1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.四、课后练习1.函数f(x)=|log2x|的图象是111-111111xxxxyyyyOOOOC D2.已知f(x)的定义域为[0,1],则函数y=f[log21(3-x)]的定义域是__________.3.若log x7y=z,则x、y、z之间满足A.y7=x zB.y=x7zC.y=7x zD.y=z x4.已知1<m<n,令a=(log n m)2,b=log n m2,c=log n(log n m),则A.a<b<cB.a<c<bC.b<a<cD.c<a<b5.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42 B.22 C.41D.216.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A.21B.-21C.2D.-28.方程lg x +lg (x +3)=1的解x =__________________。
2.3对数函数
重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用.
考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;
②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点;
③知道对数函数是一类重要的函数模型;
④了解指数函数与对数函数互为反函数.
经典例题:已知f(logax)=,其中a>0,且a≠1.
(1)求f(x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数.
当堂练习:
1.若,则()
A.B.C.D.
2.设表示的小数部分,则的值是()
A.B.C.0 D.
3.函数的值域是()
A.B.[0,1] C.[0,D.{0}
4.设函数的取值范围为()
A.(-1,1)B.(-1,+∞)C.D.
5.已知函数,其反函数为,则是()
A.奇函数且在(0,+∞)上单调递减B.偶函数且在(0,+∞)上单调递增C.奇函数且在(-∞,0)上单调递减D.偶函数且在(-∞,0)上单调递增
6.计算= .
7.若2.5x=1000,0.25y=1000,求.
8.函数f(x)的定义域为[0,1],则函数的定义域为.
9.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是.
10.函数图象恒过定点,若存在反函数,则
的图象必过定点.
11.若集合{x,xy,lgxy}={0,|x|,y},则log8(x2+y2)的值为多少.
12.(1) 求函数在区间上的最值.
(2)已知求函数的值域.
13.已知函数的图象关于原点对称.(1)求m的值;
(2)判断f(x) 在上的单调性,并根据定义证明.
14.已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M;
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)-h(x2)|≤a|x1-x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数.
参考答案:
经典例题:(1)解:设t=logax,则t∈R,∴x=at(x>0).则f(t)==(at -a-t).
(2)证明:∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数.
(3)证明:设x1、x2∈R,且x1<x2,则f(x2)-f(x1)=[(a-a-)-(a
-a-)]
=;(a-a)+a-a-(a-a)]=(a-a)(1+a-a-).若0<a<1,则a2-1<0,a>a,∴f(x2)>f(x1).∴y=f(x)在R上为增函数;
若a>1,则a2-1>0,a<a.∴f(x2)>f(x1).∴y=f(x)在R上为增函数.
综上,a>0,且a≠1时,y=f(x)是增函数.
当堂练习:
1.A ;
2. A ;
3. B ;
4. D ;
5. D ;
6. 0;
7. ;
8. [0,2];
9. 1<a<2;10. ;
11.根据集合中元素的互异性,在第一个集合中,x≠0,第二个集合中,知道y≠0,∴第一个集合中的xy≠0,只有lg(xy)=0,可得xy=1①,∴x=y②或xy=y③.由①②联立,解得x=y=1或x=y=-1,若x=y=1,xy=1,违背集合中元素的互异性,若x=y=-1,则xy=|x|=1,从而两个集合中的元素相同.①③联立,解得x=y=1,不符合题意.∴x
=-1,y=-1,符合集合相等的条件.因此,log8(x2+y2)=log82=.
12.(1) 解:
=,当时,,
而,所以当时,y有最小值;当时, y有最大值3. (2)由已知,得
=
13.由图象关于原点对称知它是奇函数,得f(x)+f(-x)=0,即,
得m= -1;(2)由(1)得,定义域是,
设,得,所以当a>1时,f(x) 在上单调递减;当0<a<1时,f(x) 在上单调递增.
14.(1)由y=x2-1(x≥1),得y≥0,且x=,∴f-1(x)=(x≥0),
即C2:g(x)= ,M={x|x≥0}.
(2)对任意的x1,x2∈M,且x1≠x2,则有x1-x2≠0,x1≥0,x2≥0.
∴|g(x1)-g(x2)|=|-|=<|x1-x2|.
∴y=g(x)为利普希茨Ⅰ类函数,其中a=.。