五年级数学用含有字母的式子表示数量关系和公式练习
- 格式:doc
- 大小:20.53 KB
- 文档页数:2
五年级数学科导学案用字母表示数例1-例2教学过程一、知识链接:1、用字母表示数,有哪些好处?但要注意什么?2、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。
2×3 a×7 14+b a÷7a×a 5-x 0.6×0.6二、自主学习1、阅读教材主题图,理解图意。
(1)爸爸比小红大()岁。
当小红1岁时,爸爸()岁,当小红2岁时,爸爸()岁……. 这些式子,每个只能表示某一年爸爸的年龄。
2)你能用一个式子表示出任何一年爸爸的年龄吗?法1:小红的年龄+30岁=爸爸的年龄,法2:a+30 。
(3)你喜欢()种表示方法,为什么,理由是()。
想一想:a可以是哪些数?a能是200吗?为什么?(4)当a=11时,爸爸的年龄是a+30=2、(1)你能用含有字母的式子表示出人在月球上能举起的质量吗,(2)式子中的字母可以表示哪些数(3)图中小朋友在月球上能举起的质量是()千克。
(4)省略( )和( )的乘号后,数字一定要写在( )的前面。
三.合作交流1.讨论自主学习中存在的问题,组内进行互帮活动。
(不能解答的用红笔记录好)2.教师巡视,了解学生的计算情况和遇到的问题。
(2)兰兰有10元钱,买钢笔用去x元,还剩()元。
四.展示提升五.达标测评1、用含有字母的式子表示下面的数量关系。
35减去a的差() 9与y的和()B的4.5倍() 8个a相加的和()2、填一填。
(1)小苗体重36千克,比小红重a千克,小红体重()千克。
3、、超市运回10箱方便面,每箱X元,卖出180袋。
(1)用含有字母的式子表示超市还剩下方便面多少袋()(2)根据这个式子,求当X=24时,超市还剩方便面多少袋?六.总结反思在今天的学习,我学会了板书设计:教学反思:四会市城中街道中心小学五年级数学科导学案教学过程一、知识链接:1、省略下面乘号,写出下面各式。
6.5×x= a×3.2= x×y= c×8=a×8×b= a×a×7= t×t×b= 0.04×b=2我们学过哪些运算定律?二、自主学习1、自学教材例3(1)怎样用字母表示运算定律,,阅读理解例3后完成下面的空。
用字母表示数一、省略乘号写出下面各式。
2.8×a = M ×5×N = 5×b = 9×x ×6 = x ×y =1×a ×4 =x ×x =(a +b ) ×6 =二、火眼金睛辨对错。
(对的打“√”,错的打“×”) 1、2y 表示两个y 相加.( ) 2、6a +7a = (6+7)a 。
( )3、x +9可以写作9x 。
( )4、2x 一定大于2x 。
( )三、根据运算定律填上适当的数或字母。
a ×b ×c =×(2+b )+c = 2+( + )a +b = x -y -z = x -+四、用含有字母的式子表示下面的数量关系. 1、y 与60的和。
2、比a 的9倍少16的数。
3、a -b 的差除以12的商。
五、用含有字母的式子表示下面三角形中∠1的度数. 1、已知∠2 = a °,∠3 = b °,求∠1的度数。
2、已知∠2 = ∠3 = a°,求∠1的度数。
六、有问题,我帮忙。
甲、乙两辆汽车同时从两地相对开出。
甲车每小时行x千米,乙车每小时行驶y千米,t 小时后两车相距25千米。
1、用含有字母的式子表示甲、乙两地的路程。
2、如果x = 40,y = 45,t = 3,求甲、乙两地间的路程.七、已知爷爷今年的年龄是孙子年龄的a倍,孙子今年b岁,经过x年后,爷爷的年龄是孙子的几倍?答案:一、2.8a5MN 5b54x xy4a x26a+6b二、1、× 2、√ 3、× 4、×三、a b c b c b a y z四、1、y+602、9a-163、(a-b)÷12五、1、180°-a°-b°2、180°-2a°六、1、(x+y)×t+252、280千米七、(ab+x)÷(b+x)。
3 用含有字母的式子表示简单的数量关系本课导学知识点:理解用字母可以表示数,能用含有字母的式子表示简单的数量关系和计算公式,初步学习用代数符号语言进行表述交流。
1.工地用汽车运土,每辆车运m吨。
一天上午运了a车,下午运了b车。
这一天共运土( )吨,上午比下午多运土( )吨。
如果a=10,b=8,m=5,一天共运土( )吨, 上午比下午多运土( )吨。
2.一本书有a页,张华每天看8页,看了b天。
8b表示( ),a-8b表示( )。
这本书如果有94页,张华看了7天。
用上面的式子求出还有( )页没看。
特别提醒:用含有字母的式子表示简单的数量关系和计算公式,要注意多积累。
字母不仅能表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来。
【快乐训练营】一、用含有字母的式子表示下面的数量关系。
1. a与8的和( )。
2. 比a的6倍少8的数( )。
3. m的平方减去a的4倍( )。
4. 从96里连续减去6个a( )。
二、选择。
(将正确答案的序号填在括号里)1.a2与( )相等。
A、a×2B、a+2C、a×a2.丁丁比明明小,丁丁今年a岁,明明今年b岁,2年后丁丁比昕昕小( )岁。
A、2B、b-aC、a-b4.当a=5、b=4时,ab+3的值是( )。
A、5+4+3=12B、54+3=57C、5×4+3=235.甲数是a,比乙数的4倍少b,乙数是( )。
A、a÷4-bB、(a-b)÷4C、(a+b)÷4【知识加油站】三、写出每个算式所表示的意义。
1.每支铅笔a元,每支钢笔b元,两种笔各买6支。
b-a表示( ) 。
(b-a)×6表示( ) 。
6a+ 6b表示( ) 。
2.张师傅和刘师傅共同加工2400个零件,张师傅每天加工a个,刘师傅每天加工b个。
4a表示( )。
a+b表示( )。
5(a+b)表示( )。
2400÷(a+b)表示( )。
用含有字母的式子表示数量关系教学内容:教材P58~59例4、例5及练习十三的习题。
教学目标:1.理解用字母表示数的意义和作用,会用含有字母的式子表示数量关系。
2.能正确根据字母的值求含有字母的式子的值,会根据实际情况确定字母的取值范围。
3.在探索现实生活数量关系的过程中,体验用字母表示数的简明性。
教学重点:理解用字母表示数的意义和作用。
教学难点:能用含有字母的式子表示数量关系,理解含有字母的式子不仅可以表示数量关系,还可以表示一个结果。
教学模式:导学议练教具准备:课件教学过程一、导1.谈话引入含有字母的式子表示数量关系(1)谈话:师:我告诉大家,我比同学们大26岁,请你们算一算,在你1岁、2岁、3岁……到现在11岁时,老师的年龄各是多少?教师根据学生的回答板书:同学们的年龄(岁)老师的年龄(岁)1 1+26=272 2+26=283 3+26=294 4+26=30(2)教师请一名学生在黑板上接着写下去,其他同学在练习本上写。
(3)教师:如果大家感到厌烦,那你们能想一个办法来表示老师的年龄吗?教师板书:a+26(4)根据a+26这个式子,你知道哪些信息呢?2.揭示课题今天我们就来学习含有字母的式子表示数量关系(板书)3.出示学习目标;(1)会用含有字母的式子表示数量关系。
(2) 能正确根据字母的值求含有字母的式子的值。
二、学1.自学提示(一)认真看课本58页的例4,思考以下问题:A.如果每个小杯中的果汁是X克,那么你会用含有字母的式子表示大杯的果汁还剩多少克吗?B.当X=200时,果汁还剩多少克呢?2. 自学提示(二)(1)认真看课本58页的例5,思考以下问题:摆一个三角形需要几根小棒呢?摆一个三角形需要几根小棒呢?摆一个三角形需要几根小棒呢?摆一个三角形需要几根X小棒呢?摆一个三角形需要几根小棒呢?(2)学生独立看书,完成以下问题,写在练习本上。
2.学生自学,老师巡视,关注学困生。
三、议1.交流自学指导上的3个问题,板演:(1)1200-3X 想一想:X可以表示哪些数?当X=200时,1200-3X=1200-3+200=600(2)3X+4X=(3+4)X=7X运用了什么运算定律?当X=8时,7X=7+8=56想一想:X可以表示哪些数?四、练基础练习1.商店原来有120kg苹果,又运来10箱苹果,每箱重a千克。
章节测试题1.【答题】两筐苹果,甲筐a千克,乙筐b千克,从甲筐中取x千克放到乙筐里,两筐重量相等.用a、b表示x为().A. x=a-bB. x=(a-b)÷2C. x=a-xD. x=b+x【答案】B【分析】根据移多补少的原则,要使两筐的重量相同,只要将甲筐比乙筐多的部分平均分成两份,取其中的一份给乙筐即可.也就是说,取出的部分x千克,就是甲筐比乙筐多的部分的一半,即x=(a-b)÷2.【解答】用a、b表示x为x=(a-b)÷2,选B.2.【答题】小强两天看一本书,第一天看了m页,第二天比第一天多看了8页,这本书一共()页.A. m-8B. m+8C. m-8+mD. 2×m+8【答案】D【分析】先求出第二天看了多少页,再与第一天看的相加即可.【解答】根据题意,第二天看了(m+8)页,两天一共看了(2×m+8)页,选D.3.【答题】比b的12倍多c的数,用含有字母的式子表示的是().A. b×12+cB. b+12+cC. b×12-cD. b-12-c【答案】A【分析】先表示b的12倍,再加上c即可.【解答】根据题意,比b的12倍多c的数,用含有字母的式子表示的是b×12+c,选A.4.【答题】m2=().A. m+mB. m·mC. 2m【答案】B【分析】此题考查的是用字母表示数量关系.m2表示2个m相乘.【解答】因为m2表示2个m相乘,所以m2=m·m,选B.5.【答题】师大附小三年级的同学向新疆阿克苏地区捐款x元,比四年级少捐45元,四年级捐款()元.A. 45-xB. x+45C. x-45【答案】B【分析】此题考查的是用字母表示数量关系.根据题意,三年级比四年级少捐45元,说明四年级捐的多,即用三年级捐款的钱数加上45即可.【解答】根据题意,四年级捐款(x+45)元,故选B.6.【答题】如果姐姐今年(m+5)岁,妹妹今年m岁,再过n年,她们相差()岁.A. 5B. nC. 5+nD. m+n【答案】A【分析】此题考查的是用字母表示数量关系.【解答】根据题意,妹妹今天m岁,姐姐今年(m+5)岁,可知姐姐比妹妹大5岁.无论过了多少年,姐姐和妹妹相差的年龄是不变的,仍是相差5岁.选A.7.【答题】小军有a枚邮票,小刚的邮票比小军的3倍多1枚,小刚有______枚邮票.【答案】3a+1【分析】此题考查的是用字母表示数量关系.根据“小刚的邮票比小军的3倍多1枚”可知,小军的邮票数量乘3再加上1,就是小刚邮票的数量.【解答】根据题意,小刚有(3a+1)枚邮票.8.【答题】一辆公交车上原有乘客y人,在桂林路下车9人,上车13人,车上现有乘客______人.【答案】y+4【分析】此题考查的是用字母表示数量关系.根据题意,用车上原有乘客的数量减去9人再加上13人,就是现在有乘客的数量.【解答】根据题意,y-9+13=y+4,故车上现有乘客(y+4)人.9.【答题】a×5+6省略乘号记作______,a×2×b简写作______.【答案】5a+6,2ab【分析】此题考查的是简写含字母的式子.在含有字母的式子中,乘号可以记作“· ”,也可以省略不写.省略乘号时,通常把数字写在字母的前面.【解答】a×5+6=5a+6,a×2×b=2ab.10.【答题】一个长方形的长是5厘米,宽是3厘米.它的周长是多少厘米?(先写出字母公式,再把相应的数值代入公式计算)【答案】它的周长是16厘米.【分析】求长方形的周长,先写出长方形周长的字母公式,根据题中的已知条件可知长a和宽b的值,然后把相应的数值代入公式中计算出结果.【解答】答:它的周长是16厘米.11.【答题】经过x小时,请用含有字母的式子表示出飞机比高铁多行的路程,并计算当x=4时,飞机比高铁多行多少千米.【答案】飞机比高铁多行2120千米.【分析】方法一:根据“速度×时间=路程”可知,高铁和飞机经过x小时行驶的路程分别为320x和850x,随所以飞机比高铁多行(850x-320x)千米.方法二:因为经过的时间相同,所以飞机和高铁的路程差=飞机与高铁的速度差×时间,即(850-320)x千米.【解答】方法一:850x-320x=850×4-320×4=3400-1280=2120方法二:(850-320)x=(850-320)×4=530×4=2120答:当x=4时,飞机比高铁多行2120千米.12.【答题】根据所给图形算一算.(1)左边图形的面积是______,周长是______;(2)右边图形的面积是______,周长是______;(3)整个图形的面积是______,周长是______.【答案】a2,4a,ab,2(a+b),a2+ab,4a+2b【分析】此题考查的是用字母表示数量关系.【解答】左边图形的面积是a2,周长是4a;右边图形的面积是ab,周长是2(a+b);整个图形的面积是a2+ab,周长是4a+2b.13.【答题】小红今年a岁,小芳今年(a+b)岁,n年后,她们相差()岁.A. nB. bC. (a+b)D. (b+n)【答案】B【分析】此题考查的是用字母表示数量关系.根据“小红今年a岁,小芳今年(a+b)岁”可知,小芳比小红大b岁.无论过了多少年,她们的年龄差是不变的.【解答】根据题意可知,小芳比小红大b岁,选B.14.【答题】在下面各组数中,结果不一定相同的是().A. 2×2和B. 和C. 和8×8D. a×b×1和ab【答案】B【分析】此题考查的是简写含字母的式子.在含有字母的式子中,乘号可以记作“· ”,也可以省略不写.省略乘号时,通常把数字写在字母的前面.【解答】根据题意,2×2=,=8×8,a×b×1=ab,而,与不一定相等.选B.15.【答题】在a-3=b+5中,a()b.A. >B. =C. <D. 无法确定【答案】A【分析】此题考查的是用字母表示数量关系.根据题意,因为a减少3与b增加5相等,所以a>b.【解答】根据题意,a减少3与b增加5相等,说明a>b,选A.16.【答题】张英m岁,徐乔比张英大2岁,比小兰小4岁,小兰的年龄是()岁.A. 2m+4B. m+4C. m+6【答案】C【分析】此题考查的是用字母表示数量关系.根据题意,张英m岁,徐乔比张英大2岁,则徐乔是(m+2)岁;徐乔比小兰小4岁,则小兰是(m+2+4)岁.【解答】根据题意,小兰是(m+2+4)岁,即是(m+6)岁.选C.17.【答题】甲数是a,比乙数的4倍少b,乙数是().A. a÷4-bB. (a-b)÷4C. (a+b)÷4【答案】C【分析】此题考查的是用字母表示数量关系.根据甲数比乙数的4倍少b,可列出关系式甲数=乙数×4-b,则乙数=(甲数+b)÷4.【解答】根据题意,乙数是(a+b)÷4,选C.18.【答题】在横线上填上“>”、“<”或“=”.5×2______52a2______a+a(a>2)4.8+4.8______4.8×2b2______b·b3.62______3.6×3.6a×10______10a【答案】<,>,=,=,=,=【分析】此题考查的是用字母表示数量关系及比较大小.【解答】5×2=10,52=5×5=25,因为10<25,所以5×2<52;假设a=3,则,a2=3×3=9,3+3=6,因为9>6,所以a2>a+a;4.8+4.8=4.8×2;b2=b·b;3.62=3.6×3.6.19.【答题】一张青岛国际啤酒节白天门票的售价是20元,夜间门票的售价是30元.(1)买a张青岛国际啤酒节白天门票和b张青岛国际啤酒节夜间门票共需要______元;(2)当a=15,b=15时,共需要______元.【答案】20a+30b,750【分析】此题考查的是用字母表示数量关系.(1)要求白天和夜间门票共需要多少元钱,先分别求出买白天门票和夜间门票各需要多少元,再将结果相加,即可;(2)将a=15,b=15代入刚列出的式子中,计算出结果即可.【解答】(1)买a张青岛国际啤酒节白天门票和b张青岛国际啤酒节夜间门票共需要(20a+30b)元;(2)当a=15,b=15时,20a+30b=20×15+30×15=300+450=75020.【答题】甲、乙两地相距1206千米,一辆汽车以每小时42千米的速度从甲地开往乙地.(1)开出t(t<28)小时后,汽车距离甲地多少千米?当t=12时,汽车距离甲地多少千米?(2)开出t(t<28)小时后,汽车距离乙地还有多少千米?当t=16时,汽车距离乙地还有多少千米?【答案】(1)42t,504;(2)1206-42t,534.【分析】此题考查的是用字母表示数量关系.根据“速度×时间=路程”解答即可.【解答】(1)根据题意,汽车距离甲地42t千米;当t=12时,答:汽车距离甲地504千米.(2)根据题意,汽车距离乙地还有(1206-42t)千米;当t=16时,答:汽车距离乙地还有534千米.。
用字母表示数1.用字母表示定律和公式(1)用字母表示减法运算性质:a-b-c=______.(2)用字母表示除法运算性质:a÷b÷c=______.(b≠0,c≠0)(3)用字母表示加法结合律是(a+b)+c=______.(4)用字母表示乘法结合律是:(a×b)×c=______.(5)图中阴影部分的面积是______.(6)在下图中,空白部分是个正方形。
用字母表示空白部分的面积是______,阴影部分的面积是______.(填编号)①a2;②b2;③(b-a);④ab-a22.用字母表示数量关系(1)用含有字母的式子表示下面的数量关系。
a的3倍除40,商是______;m减去n的差的9倍是______.(2)用含有字母的式子表示下面的数量关系。
a的11倍加7,和是______;m与n的和除以8,商是______.(3)用含有字母的式子表示下面的数量关系。
m的5倍被7除,商是______;a与b的和的12倍是______.(4)用含有字母的式子表示:一堆黄沙共重y吨,运走2次后,还剩18吨,每次运走______吨.(5)用含有字母的式子表示:去年缴电费a元,今年比去年多缴55元,今年平均每月缴电费______元.(6)一辆车,上午开2小时,每小时行驶a千米,下午开2.5小时,每小时行驶b千米,这辆车总共行驶______千米.3.字母式的含义(1)林林今年x岁,妈妈今年35岁,两人的年龄之差是______岁.(填正确答案的序号)①x +35; ②x-35; ③35-x;(2)写出下面每个式子所表示的意义:学校买篮球,每个要a元,每个足球比篮球少5元,a-5表示____________(3)在校运动会上,四年级同学获得a枚金牌,五年级同学获得金牌数比四年级多7枚。
a+(a+7)表示______,当a=8时,四、五年级一共获得______枚金牌.(填编号)①四年级同学获得金牌数; ②四、五年级同学一共获得金牌数;③15枚; ④23枚.(4)王师傅有120米布,已经做了b套衣服,每套衣服用布2.5米,120-2.5b表示______,当b=16时,王师傅剩下的布有______米.(填编号)①b套衣服用布米数; ②剩下的米数; ③80; ④40;(5)正方形的边长为a分米,4a分米表示正方形的周长。
第八单元用字母表示数
用含有字母的式子表示数量关系和公式练习
教学内容:
课本第104页。
教学目标:
1.通过练习.学生进一步理解并会用字母表示数.会用含有字母的式子表示数量、数量关系和计算公式;进一步学会根据字母所取的值.求简单的含有字母式子的值。
2.体会用字母表示数的简洁和便利.培养符号意识。
教学重点:
会用含有字母的式子表示数量、数量关系和计算公式。
教学难点:
含有字母的式子既可表示结果.又可表示关系。
教学准备:
课件
教学过程:
一、计算热身。
(3分钟左右)
笔算四道小数加、减、乘法题。
选择其中1-2题请学生说说你是怎么算的?突出小数加减、乘法的计算方法。
引导学生进行整理。
二、共建网络。
(3分钟左右)
用字母表示数
用含有字母的式子表示简单的数量关系
用含有字母的式子表示稍复杂的计算公式.代入计算
三、基本练习。
(10分钟左右)
练习单(时间8分钟)
在探究本上完成如下练习:
(1)完成书本第104页第7、8、9题
小组内互相说一说.再全班交流。
第7题根据条件再提出一些不同的问题。
例如.“a+25”表示什么意思?
第8题点拨:三角形内角和的知识。
启发学生根据等腰三角形中三个角的关系列出表示∠3度数的式子。
四、提高练习。
(10分钟左右)
练习单(时间8分钟)
在探究本上完成如下练习:
1.完成书本第104页第10题。
先观察三种数量之间的关系.再根据已知两个数量写出表示另一个数量的式子。
2.完成书本第104页第11题。
思考:解答以上题目的关键是什么?需要注意的是什么?
全班交流。
指导学生横着一行一行地进行观察和思考.突出要根据同一横行中给出的两个数量.推想另一个数量的表示方法。
提醒学生注意运用公式进行计算的一般方法和书写格式。
五、思维拓展。
(6分钟左右)
书本第104页思考题
启发学生先用具体的方式表达每组数的排列规律.再逐步把发现的规律抽象为含有字母的式子。
六、课堂总结。
通过这节课的学习.你学到了什么知识呢?
教学反思:。