天然气物理化学性质资料
- 格式:doc
- 大小:312.81 KB
- 文档页数:11
第一章 绪论1、 天然气:是指在不同地质条件下生成、运移并以一定压力储集在地下构造中的气体。
2、 我国天燃气工程技术特点:1) 地层和储层特性的特殊性:埋藏深(3000-6000m )开发开采难度大; 中低渗气藏居多,自然产能低:储集量不富集,中小型气田居多,开发分散性、复杂性 2) 气藏产水危害的严重性 3) 流体性质的高腐蚀性4) 天然气的可爆性和高压危险性第二章 天然气物理化学性质1、天然气组成:烃类气体:甲烷、乙烷、丙烷、丁烷及以上气体 非烃类气体:氮气、氢气、硫化氢、二氧化碳、水等 惰性气体:氦气、氩气等 3、 天然气组成的表示方法:已知天然气由k 种组分组成,组分i 的摩尔数为n i 体积为v i 质量为m i1) 摩尔分数法:ii kii=1n y n=∑ 2)体积分数法:ii kii=1V y V=∑ 3)质量分数法:ii kii=1m w m=∑4、 天然气按烃类气体分类:1) 按戊烷及以上组分分:干气:1m 3井口流出物中戊烷及以上液态烃含量低于13.5cm 3的天然气。
湿气:1m 3井口流出物中戊烷及以上液态烃含量高于13.5cm 3的天然气。
2) 按丙烷及以上组分分:贫气:1m 3井口流出物中丙烷及以上烃类含量低于100cm 3的天然气。
富气:1m 3井口流出物中丙烷及以上烃类含量高于100cm 3的天然气。
5、 天然气的相对分子量、密度、相对密度、比容:相对分子量:ni i i=1M y M =∑ 密度:g PMRTρ=相对密度:g g a 28.96Mργρ==比容:g 1νρ= 6、 天然气的偏差系数Z :指相同温度、压力下,真实气体体积与同质量理想气体体积之比。
影响因素:组成、温度、压力 确定方法:1)实验法2)图版法:H 2S 、CO 2校正;凝析气校正 3)计算法7、 临界压力c P 临界温度c T 对比压力:r cP P P =对比温度:r c T T T =拟临界压力:npc ciii=1P P y =∑ 拟临界温度:npcci i i=1TT y =∑拟对比压力:pr pc P P P =拟对比温度:pr pcTT T = 8、 天然气等温压缩系数C g :g T1V C V P ∂⎛⎫=-⎪∂⎝⎭ 拟对比等温压缩系数:pr g pc C C P =9、天然气体积系数、膨胀系数:体积系数:天然气在地层条件下体积与在地面条件下体积之比。
编号:SY-AQ-09384( 安全管理)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑天然气及其组分的物理化学性质Physical and chemical properties of natural gas and its components天然气及其组分的物理化学性质导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。
在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。
天然气的主要成分为甲烷,此外还含有乙烷、丙烷、丁烷等烃类气体,氮、CO2、H2S及微量氢、氦、氩等非烃类气体,一般气藏天然气的甲烷含量在90%以上。
油田伴生气中甲烷含量占65%~80%,此外还含有相当数量的乙烷、丙烷、丁烷等烃类气体。
一、天然气主要组分的物理化学性质天然气主要组分的物理化学性质见表1-3-1。
表1-3-1天然气主要组分在标准状态下的物理化学性质名称分子式相对分子质量摩尔体积Vm/(m3/kmol)气体常数R(J/kg·K) 密度ρ/(kg/m3)临界温度Tc/K临界压力Pc/MPa高热值Hh/(MJ/m3)高热值Hh/(MJ/kg)低热值H1/(MJ/m3)甲烷CH4 16.043 22.362 518.75 0.7174 190.58 4.544 39.842 35.906 乙烷C2H6 30.07 22.187276.64 1.3553 305.42 4.816 70.351 55.367 64.397 丙烷C3H8 44.097 21.936 188.65 2.0102 369.82 4.194101.266 51.908 93.240 正丁烷n-C4H10 58.124 21.504 143.130 2.703 425.18 3.747 133.886 50.376 123.649 异丁烷i-C4H10 58.124 21.598 143.13 2.6912 408.14 3.600 133.048 49.532 122.853 正戊烷C15H12 72.151 20.891115.27 3.4537 46.965 3.325 169.377 49.438 156.733 氢H22.016 22.427 412.67 O.0898 33.25 1.280 12.74549.042 10.786 氧O2 31.999 22.392 259.97 1.4289 154.33 4.971 —141.926 —氮N2 23.01322.403 296.95 1.2507 125.97 3.349 ——氦He 3.016 22.42 281.17 0.1345 3.35 0.118 ——二氧化磺CO2 44.010 22.26 189.04 1.9768 304.25 7.290 ———硫化氢H2S34.07622.18 244.17 1.5392 373.55 8.890 25.364 23.383 空气28.066 22.40 287.24 1.2931 132.4 3.725 —16.488—水蒸气H2O18.01521.629461.760.8330647.0021.830—名称低热值H1/(MJ/kg)爆炸极限(体积分数)/% 动力黏度μ×106/(Pa·s)运动黏度υ×106/(m2/s)沸点/℃定压比热容Cp/(kJ/m3·K)绝热指数K导热系数λ/[W/(m·K)] 偏心因子上限下限甲烷5.015.010.60 14.50 -161.49 1.545 1.309 0.03024 0.0104 乙烷50.05 2.9 13.0 8.77 6.41-88.00 2.244 1.1980.01861 0.0986 丙烷47.515 2.19.57.65 3.81-42.05 2.960 1.161 0.01512 0.1524 正丁烷46.383 1.58.56.97 2.53-0.05 3.710 1.144 0.01349 0.2010 异丁烷45.745 1.88.5-11.72 —1.144 —0.1848 正戊烷45.65 1.4 8.3 6.48 1.85 36.06 —1.121 —0.2539 氢45.381 4.0 75.98.52 93.00 -252.75 1.298 1.407 0.2163 氧120.111 ——19.86 13.60 -182.98 1.315 1.400 0.02500.0213 氮——17.00 13.30 -195.78 1.302 1.402 0.02489 0.04氦————-269.95 —1.640 ——二氧化碳———14.30 7.09-78.200.6201.304 0.01372 0.225硫化氢4.3 45.5 11.90 7.63-60.20 1.557 1.320 0.01314 0.100 空气15.192 ——17.50 13.40-192.501.3061.4010.02489—水蒸气——8.6010.12—1.4911.3350.016170.3480二、天然气中有机硫化合物的主要性质天然气中除含有H2S外,还含有数量不等的硫醇、硫醚以及微量的二硫化碳、硫化羰。
表- 液态天然气的物理化学特性及危险属
性
液态天然气(LNG)是一种常见的液化石油气。
它是由天然气
经过冷却和压缩而成,以便在储存和运输过程中占据较小的体积。
液态天然气在低温条件下存在,因此具有较高的物理化学特性和危
险属性。
液态天然气的化学式为C3H8,相对分子质量为44.097 g/mol。
它的液态密度为0.571 g/cm³,沸点为-42.1 °C,熔点为-187.7 °C,
闪点为-188.0 °C。
液态天然气具有自燃温度为460 °C,爆炸限度在2.1%到9.5%之间。
它不溶于水,也是非导电的。
主要成分为甲烷,含量大于等于90%。
液态天然气是高度易燃气体,因此具有危险性。
其物质容易燃烧,能形成爆炸性混合物,并且在高温下具有自燃性。
爆炸时会生成有毒气体。
在处理液态天然气的火灾时,适合使用干粉、二氧化碳、泡沫和水雾等灭火剂。
液态天然气的危险品运输编号为
UN1978,危险品分类编号为2.1,包装标志为3。
在液态天然气的应急处置中,需要避免火源。
如发生泄漏,需要立即采取适当的减压和通风处理,并迅速撤离人员到安全区域,以防止扩散。
以上是液态天然气的物理化学特性及危险属性的基本信息。
如需更多详细信息,请参考相关文献或咨询专业人士。
液态石油天然气的理化特征指南液态石油天然气(LNG)是一种具有重要战略意义的能源,了解其理化特征对于安全和有效使用LNG至关重要。
本指南将介绍LNG的主要理化特征,并提供相关的指导和建议。
1. 物理性质:- LNG是一种低温液体,在正常压力下呈现透明无色。
- LNG的沸点通常在-162摄氏度左右,但具体沸点取决于其成分和压力条件。
- LNG的密度较高,约为空气的一半,因此容易沉降和聚集。
- LNG具有低粘度和较低的表面张力。
2. 化学成分:- LNG主要由甲烷(CH4)组成,约占90%以上。
- LNG中还可能含有少量乙烷(C2H6)、丙烷(C3H8)、正丁烷(n-C4H10)等碳氢化合物。
- LNG中的杂质包括氮气、硫化氢和二氧化碳等,这些杂质的含量需要进行精确控制。
3. 安全性问题:- LNG在液态状态下具有低的爆炸危险性,但在蒸发成为天然气时可能形成爆炸性混合物。
- LNG的低温特性意味着需要特殊的隔热措施和设备,以防止泄漏和渗漏。
- 在LNG的存储和运输过程中,必须遵循严格的安全操作和规定。
4. 使用建议:- 在使用LNG时,必须考虑其低温特性和高能量密度,以避免可能的危险或损害。
- 必须使用专门设计的设备和管道来处理LNG,并确保其能够承受低温和压力。
- 在液态状态下,LNG占据较小的体积,便于储存、运输和使用。
总结:了解LNG的理化特征对于安全和高效地使用该能源至关重要。
本指南提供了有关LNG的物理性质、化学成分、安全性问题和使用建议等重要信息。
在使用LNG时,务必遵循相关的安全操作和规定,以确保使用过程中的安全性和可靠性。
参考资料:1. 中华人民共和国国家能源局。
《液化天然气技术导则》。
2. International Gas Union. "LNG Plant Safety Introduction." 2014.3. 美国劳工安全与健康管理局。
《液化天然气(LNG)工厂安全和危害评估指南》。
天然气及其组分的物理化学性质天然气及其组分的物理化学性质天然气的主要成分为甲烷,此外还含有乙烷、丙烷、丁烷等烃类气体,氮、CO2、H2S及微量氢、氦、氩等非烃类气体,一般气藏天然气的甲烷含量在90%以上。
油田伴生气中甲烷含量占65%~80%,此外还含有相当数量的乙烷、丙烷、丁烷等烃类气体。
一、天然气主要组分的物理化学性质天然气主要组分的物理化学性质见表1-3-1。
表1-3-1天然气主要组分在标准状态下的物理化学性质名称分子式相对分子质量摩尔体积Vm/(m3/kmol)气体常数R(J/kg·K)密度ρ/(kg/m3)临界温度T c/K临界压力Pc/MPa高热值Hh/(MJ/m3)高热值Hh/(MJ/kg)低热值H1/(MJ/m3)甲烷CH416.04322.362518.750.7174190.584.54439.842 35.906乙烷C2H630.0722.187276.641.3553305.424.81670.35155.36764. 397丙烷C3H844.09721.936188.652.0102369.824.194101.26651.90893.24 0正丁烷n-C4H1058.12421.504143.1302.703425.183.747133.88650.376 123.649异丁烷i-C4H1058.12421.598143.132.6912408.143.600133.04849.532 122.853正戊烷C15H1272.15120.891115.273.453746.9653.325169.37749.43 8156.733氢H22.01622.427412.67O.089833.251.28012.74549.04210.786氧O231.99922.392259.971.4289154.334.971—141.926—氮N223.01322.403296.951.2507125.973.349——氦He3.01622.42281.170.13453.350.118——二氧化磺CO244.01022.26189.041.9768304.257.290———硫化氢H2S34.07622.18244.171.5392373.558.89025.364 23.383空气28.06622.40287.241.2931132.43.725—16.488—水蒸气H2O18.01521.629461.760.8330647.0021.830—名称低热值H1/(MJ/kg)爆炸极限(体积分数)/%动力黏度μ×106/(Pa·s)运动黏度υ×106/(m2/s)沸点/℃定压比热容Cp/(kJ/m3·K)绝热指数K导热系数λ/[W/(m·K)]偏心因子上限下限甲烷 5.015.010.6014.50- 161.491.5451.3090.030240.0104乙烷50.052.913.08.776.41-88.002.2441.1980.018610.0986丙烷47.5152.19.57.653.81-42.052.9601.1610.015120.1524正丁烷46.3831.58.56.972.53-0.053.7101.1440.013490.2010异丁烷45.7451.88.5 -11.72—1.144—0.1848正戊烷45.651.48.36.481.8536.06—1.121—0.2539氢45.3814.075.98.5293.00-252.751.2981.4070.21630氧120.111——19.8613.60-182.981.3151.4000.02500.0213氮——17.0013.30-195.781.3021.4020.024890.04氦————-269.95—1.640——二氧化碳———14.307.09-78.200.6201.3040.013720.225硫化氢 4.345.511.907.63-60.201.5571.3200.013140.100空气15.192——17.5013.40-192.501.3061.4010.02489—水蒸气——8.6010.12—1.4911.3350.016170.3480二、天然气中有机硫化合物的主要性质天然气中除含有H2S外,还含有数量不等的硫醇、硫醚以及微量的二硫化碳、硫化羰。
海底天然气物理化学性质第一节海底天然气组成表示法一、海底天然气组成海底天然气是由多种可燃和不可燃的气体组成的混合气体。
以低分子饱和烃类气体为主,并含有少量非烃类气体。
在烃类气体中,甲烷(CH4)占绝大部分,乙烷(C2H6)、丙烷(C3H8)、丁烷(C4H10)和戊烷(C5H12)含量不多,庚烷以上(C5+)烷烃含量极少。
另外,所含的少量非烃类气体一般有氮气(N2)、二氧化碳(CO2)、氢气(H2)、硫化氢(H2S)和水汽(H2O)以及微量的惰性气体。
由于海底天然气是多种气态组分不同比例的混合物,所以也像石油那样,其物理性质变化很大,它的主要物理性质见下表。
海底天然气中主要成分的物理化学性质二、海底天然气容积分数和摩尔分数定义混合物中各组分的容积为V i ,总容积V ;摩尔分数y i :i 组分的摩尔数n i 与混合物总摩尔数n 的比值。
∑=='i i i i V VV V y ; 1='∑i y ;∑==ii i i n n n n y ; 1=∑i y 由分压定律,存在P i V= n i R M T ;P i V=n R M T 由分容定律,存在PV i = n i R M T ;PV=n R M Tppn n y i i i ==; i i i i y n n V V y ==='结论:对于理想气体混合物,任意组分的摩尔分数可以用该组分的分压与混合物总压的比值表示,且摩尔分数与容积分数相等。
三、海底天然气分子量标准状态下,1kmol 天然气的质量定义为天然气的平均分子量,简称分子量。
∑=i i M y M 四、海底天然气密度(1)平均密度混合气体密度指单位体积混合气体的质量。
按下面公式计算: 0℃标准状态 ∑=i i M y 414.221ρ; 20℃标准状态 ∑=i i M y 055.241ρ 任意温度与压力下 i i i i V y M y ∑∑=/ρ (2)相对密度在标准状态下,气体的密度与干空气的密度之比称为相对密度。
天然气与井喷知识1、天然气的组成天然气主要组分为甲烷,通常占90%以上,还含有一些乙烷、丙烷、丁烷及戊烷以上的烃类,并且有少量的二氧化碳、氮气、硫化氢、氢气等非烃类组分。
我国油气田中普遍含硫化氢较少,但四川所产天然气中含硫化氢较多。
含量约在0.1%左右。
天然气的物理化学性质相对密度:0.55-0.75闪点:-218℃自燃点:500-700℃(典型干气)爆炸下限:3.6%-6.5%爆炸上限:13%-17%最小点火能:0.3-0.4MJ(典型干气)天然气的低位发热量(扣除水的气化潜热后的发热量):35-39MJ/Nm32、天然气的危害甲烷等轻烃本身无毒,为单纯窒息性气体。
但硫化氢是一种剧毒气体,天然气中如果含有较多的硫化氢,大量吸入会损害健康。
3、油气井井喷失控钻井分钻探井和生产井两种,钻探井的目的是要搞清地下是否有石油或天然气;钻生产井是为了把地层中的油、气开采出来。
当钻井遇到地下油、气、水层时,地下的油、气或水串进井内的泥浆里,加快了泥浆流动和循环的速度,地下油、气压力失去控制,造成油、气、水等混合物沿着环空迅速喷到地面。
为什么油井会发生井喷失控?地下压力是怎样形成的?原来,在井眼未形成之前,地层四周应力处于平衡状态,压力相对稳定。
井眼形成以后,地层压力平衡受到破坏,地层下的流体由于流动而产生压力。
钻井时为了平衡地层压力,保证钻井正常进行,要不断地往井内注入泥浆,并随时根据地层压力的变化调整泥浆比重,使井底压力始终与地层压力保持平衡,而油井井喷失控则是由于种种原因,使井底压力低于地层压力,井下压力失去平衡造成的。
在钻井的过程中发生井喷失控的事故,根据我国玉门、四川、大庆、中原等油气田发生的一些井喷失控事故的发生分析,大多数是在钻入高压油、气层时,由于施工设计不准确,泥浆性能不好,操作技术不当,或井下发生严重漏失等原因造成的。
井喷失控如不能及时控制,很容易发生火灾,井喷失控一旦发生火灾将会造成巨大损失。
天然气物理化学性质一、物理性质1. 密度天然气密度较小,一般为 0.7-0.9 kg/m³,约为空气的1/5-1/8,因此天然气比空气轻。
2. 比热容天然气的比热容较低,一般在 2-3 kJ/(kg•℃)左右,这意味着加热天然气所需的能量较少,燃烧时也能释放更多的热量。
3. 蒸汽压由于天然气的分子量较小,因此蒸汽压也较低。
在常温下,天然气的蒸汽压非常低,几乎可以忽略不计。
4. 粘度天然气的粘度极低,比液化石油气还要低,一般为0.015-0.02 Pa•s,因此流动性非常好。
二、化学性质1. 氧化性天然气是一种可燃气体,含有大量的甲烷、乙烷等烷烃和少量的烯烃、芳香烃等物质,因此在空气中容易燃烧并释放大量的热能。
2. 惰性天然气在大多数情况下不会发生化学反应,是一种具有较高化学惰性的气体。
但在高温高压的条件下,天然气也会发生一些特殊的化学反应。
3. 可溶性天然气在水中的可溶性非常低,每升水中只能溶解数毫升的天然气,因此在生产和运输过程中需要采用一系列的处理工艺来进行天然气的脱水和脱酸等处理。
4. 酸碱性天然气本身是一种中性物质,不具有酸碱性。
三、在工业生产中的应用1. 燃气天然气具有燃烧热值高、燃烧清洁、供应安全稳定等优点,被广泛应用于城市燃气和工业燃料等领域。
目前已有大量的城市建立了天然气供应系统,供应给民用和工业用户。
2. 化工原料天然气中含有大量的甲烷、乙烷等有机物质,这些物质可以通过加工制造成为化工原料,制造丙烷、丙烯、烯烃等物质,广泛应用于化工生产中。
3. 发电天然气发电是现代发电技术的主要形式之一,利用天然气发电可以实现高效节能、绿色环保等好处,受到越来越广泛的关注。
在中国,天然气发电正在逐渐成为重要的电源之一。
四、结论天然气作为一种重要的能源资源,具有燃烧热值高、燃烧清洁、供应安全稳定等优点,被广泛应用于各个领域。
但是,天然气也存在一些问题,比如难以存储和运输、价格波动较大等。
天然气及其组分的物理化学性质一、天然气的定义、分类及成分天然气是指从地球内部产生,通过地层破裂、孔隙和裂隙等天然通道,自然释放到地面上或岩石层中含有气体的地层中产生的混合气体。
天然气主要由甲烷及其伴生气体组成,包括乙烷、丙烷、丁烷等烷烃和少量的非烷类气体如CO2、H2S、氮等。
1. 烷烃类气体烷烃类气体是天然气中的主要组分,其中以甲烷含量最高,占天然气的50%~98%。
甲烷化学式为CH4,分子式中只包含碳和氢两种元素,成分简单。
甲烷是最轻、相对稳定和不易形成其他化合物的烷基化合物。
乙烷的分子式为C2H6,其含量在天然气中通常为2%~20%。
丙烷含量较少,通常占天然气的2%以内。
2. 非烷类气体天然气中还含有一些非烷类气体,包括CO2、H2S、氮等。
此类气体的含量较低,但是对天然气的运输、处理和使用都有一定的影响。
二、物理化学性质1. 密度天然气是一种相对较轻的气体,在标准条件下(温度为15℃,气压为101.325kPa)其密度约为0.65~0.85kg/m³,低于空气密度,故在空气中会上升。
由于天然气密度较低,自重力非常小,因此天然气在地层中的运移和分布受到很多因素的制约,需要相对较高的地层压力和孔隙度才能保持稳定的储集和运输状态。
2. 燃烧性能天然气是一种较为理想的化石燃料,具有高燃烧效率和低污染排放等优点。
天然气的燃烧热值高、燃烧过程稳定,生成的二氧化碳、水蒸气等废气排放量较小,相比煤、石油等传统化石燃料来说更环保。
天然气燃烧时生成的NOx等有害气体排放量也相对更少,但是气体中的硫化氢等成分在燃烧过程中也会生成二氧化硫等有害气体。
3. 溶解性天然气主要成分甲烷在水中的溶解度非常小,表现为不易被水溶解。
常温常压下,1L水只能溶解22.5ml甲烷,极端情况下最高可至50ml/L。
由于天然气中含有一部分CO2等成分,其溶解度要高于甲烷,导致水与天然气的接触面积越大,溶解率就越高。
天然气储存过程中,通常还需要与储气库内的地层水接触,因此溶解度的问题也是储存过程中需要考虑的重要因素。
天然气的性质和特点1、天然气是一种易燃易爆气体,和空气混合后,温度只要达到550℃就燃烧。
在空气中,天然气的浓度只要达到5-15%就会爆炸。
2、天然气无色,比空气轻,不溶于水。
一立方米气田天然气的重量只有同体积空气的55%左右,一立方米油田伴生气的重量,只有同体积空气的75%左右。
3、天然气的主要成分是甲烷,本身无毒,但如果含较多硫化氢,则对人有毒害作用。
如果天然气燃烧不完全,也会产生一氧化碳等有毒气体。
4、天然气的热值较高,一立方米天然气燃烧后发出的热量是同体积的人工煤气(如焦炉煤气)的两倍多,即35.6-41.9兆焦/立方米(约合8500-10000千卡/立方米)。
5、天然气可液化,液化后其体积将缩小为气态的六百分之一。
每立方米天然气完全燃烧需要大约十立方米空气助燃。
6、一般油田伴生气略带汽油味,含有硫化氢的天然气略带臭鸡蛋味。
天然气的主要成分是甲烷,甲烷本身是无毒的,但空气中的甲烷含量达到10%以上时,人就会因氧气不足而呼吸困难,眩晕虚弱而失去知觉、昏迷甚至死亡。
天然气中如含有一定量的硫化氢时,也具有毒性。
硫化氢是一种具有强烈臭鸡蛋味的无色气味,当空气中的硫化氢浓度达到0.31毫克/升时,人的眼、口、鼻就会受到强烈的刺激而造成流泪、怕光、头痛、呕吐;当空气中的硫化氢含量达到1.54毫克/升时,人就会死亡。
因此,国家规定:对供应城市民用的天然气,每立方米中硫化氢含量要控制在20毫克以下天然气的化学组成天然气是指烃类气体。
地壳中,天然气就其产状分析,有游离态、溶解态(溶于原油和水中)、吸附态和固态气水合物四种类型。
从分布特点又可分为聚集型和分散型两类。
气藏气、气顶气、凝析气、油溶气属聚集型,也称为常规型天然气;水溶气、煤层气、固态气水合物则属分散型,也称为非常规型天然气。
从与油藏的关系划分,气顶气、油溶气以及油藏之间或油藏上方的、在成因上与成油过程相伴的气藏气,均归于伴生气;与油没有明显联系的或仅含有极少量原油的气藏气,成因上与煤系有机质或未成熟的有机质有关而生成的天然气称之为非伴生气。
海底天然气物理化学性质第一节海底天然气组成表示法一、海底天然气组成海底天然气是由多种可燃和不可燃的气体组成的混合气体。
以低分子饱和烃类气体为主,并含有少量非烃类气体。
在烃类气体中,甲烷(CH4)占绝大部分,乙烷(C2H6)、丙烷(C3H8)、丁烷(C4H10)和戊烷(C5H12)含量不多,庚烷以上(C5+)烷烃含量极少。
另外,所含的少量非烃类气体一般有氮气(N2)、二氧化碳(CO2)、氢气(H2)、硫化氢(H2S)和水汽(H2O)以及微量的惰性气体。
由于海底天然气是多种气态组分不同比例的混合物,所以也像石油那样,其物理性质变化很大,它的主要物理性质见下表。
海底天然气中主要成分的物理化学性质名称分子式相对分子质量密度/Kg·m-3临界温度/℃临界压力/MPa粘度/KPa·S自燃点/℃可燃性限/%热值/KJ·m-3(15.6℃,常压)气体常数/Kg·m·(Kg·K)-1低限高限全热值净热值甲烷CH416.0430.716-82.54.640.01(气)6455.15.372623349452.84乙烷C2H630.0701.34232.274.880.009(气)533.212.45661516028928.2丙烷C3H844.0971.96796.814.260.125(10℃)512.379.5937848624819.23正丁烷n-C4H1058.122.593152.013.80.174491.868.4112141710843814.59异丁烷i-C4H1058.122.593134.983.650.1941.88.4412141710843814.59氨He 4.0030.197-267.90.230.0184211.79氮N228.021.25-147.133.390.01730.26氧 O 2 32.0 1.428 -118.82 5.04 0.014 26.49 氢 H 2 2.016 0.0899 -239.91.29 0.00842514.1 74.21277010760420.75 二氧化碳 CO 2 44.01.96331.1 7.380.013719.27一氧化碳 CO 28.0 1.250 -140.2 3.50 0.0166 610 12.5 74.2 12644 12644 30.26 硫化氢 H 2S 34.09 1.521100.49.010.01166 294.3 74.2 24.87 空气 28.97 1.293 -140.75 3.770.017345.529.27二、海底天然气容积分数和摩尔分数定义混合物中各组分的容积为V i ,总容积V ;摩尔分数y i :i 组分的摩尔数n i 与混合物总摩尔数n 的比值。
∑=='i i i i V VV V y ; 1='∑i y ;∑==ii i i n n n n y ; 1=∑i y 由分压定律,存在P i V= n i R M T ;P i V=n R M T 由分容定律,存在PV i = n i R M T ;PV=n R M Tppn n y i i i ==; i i i i y n n V V y ==='结论:对于理想气体混合物,任意组分的摩尔分数可以用该组分的分压与混合物总压的比值表示,且摩尔分数与容积分数相等。
三、海底天然气分子量标准状态下,1kmol 天然气的质量定义为天然气的平均分子量,简称分子量。
∑=i i M y M 四、海底天然气密度(1)平均密度混合气体密度指单位体积混合气体的质量。
按下面公式计算: 0℃标准状态 ∑=i i M y 414.221ρ; 20℃标准状态 ∑=i i M y 055.241ρ 任意温度与压力下 i i i i V y M y ∑∑=/ρ (2)相对密度在标准状态下,气体的密度与干空气的密度之比称为相对密度。
对单组分气体:a ρρ/=∆ a ρ:空气密度,kg/m 3; 在0P =101.325kPa ,0T =273.15K 时;a ρ=1.293 kg/m 3 在0P =101.325kPa ,0T =293.15 K 时;a ρ=1.206 kg/m 3。
对混合气体: ∑∆=∆i i y 五、海底天然气虚拟临界参数和对比参数(1)临界参数使气体压缩成液态的极限温度称为该气体的临界温度。
当温度等于临界温度时,使气体压缩成液体所需压力称为临界压力,此时状态称为临界状态。
混合气体的虚拟临界参数可按凯(Kay )法则计算:∑=ci i c T y T ; ∑=ci i c P y P ; ∑=ci i c y ρρ适用:各组分的临界压力和临界比容接近(<20%),且任意二组分的临界温度满足0.5< T ci /T cj <2的条件,否则,可能有很大计算误差。
(2)对比参数海底天然气的压力、温度、密度与其临界压力、临界温度和临界密度之比称为天然气对比压力、对比温度和对比密度。
c r P P P /=; c r T T T /=; c r ρρρ/=;或 c r ννν/=第二节 天然气气体状态方程一、理想气体状态方程PV=RT ;PV M =R M T ;PV=mRT=nR M T假设:分子是质点没有体积;分子间无作用力。
当压力足够低、温度足够高,可近似使用理想气体状态方程。
二、实际气体状态方程(1)范德瓦耳方程荷兰物理学家范德瓦耳考虑了分子体积和分子间吸力的影响: (P+a/V 2)(V-b )=RT (2)R-K 方程瑞得里奇-邝(Redlich-Kwong )方程是在范得瓦尔方程的基础上进行修正,于1949年提出的。
解决了实际气体性质定量计算的问题。
)(5.0b V V T ab V RT P +--=(3)SRK 方程Soave 于1972年在R-K 方程的基础上提出了另外的形式,解决在计算饱和气相密度时精度较差的问题。
)(b V V ab V RT P +--=(4)PR 状态方程为进一步提高对热力学性质和气液平衡数据预测的准确性,Peng 和Robinson 在Soave 模型基础上于1976年改进,提出PR 状态方程。
)()(b V b b V V ab V RT P -++--=(5)L-E-E 方程是一个多参数状态方程,其形式为:()))((b V b V V bcb V V a b V RT p +-++--=(6)BWRS 方程本尼迪科特-韦勃-鲁宾1940年提出了能适应气液两相的8参数BWR 状态方程,随后由Starling-Han 在关联大量实验数据的基础上,对BWR 方程进行修正,1970年提出了到目前认为用于天然气计算最精确的方程式之一的BWRS 方程。
3240302000)()(ρρρT d a bRT T E T D T C A RT B RT P --+-+--+=)exp()1()(22235γργρρρα-++++Tc T b a三、带压缩因子的状态方程Z 压缩因子或压缩系数:表示实际气体与理想气体的差别。
Z 是一个状态参数,通过实验来确定。
但对理想气体,在任何状态下都有Z=1。
),(1r r r T P f =ρc c c c RT P Z ρ=rr c c c c r ZT P Z ZRTP P RT Z ==ρ ),,,(r c r r Z T P f Z ρ'= ; ),,(2c r r Z T P f Z =c Z 在0.23~0.31范围内,化为:),(3r r T P f Z =表达式叫修正的对比态原理。
第三节 海底天然气的物理性质、热力性质和燃烧性质一、海底天然气物理性质 (一)粘度1.粘度分为动力粘度和运动粘度。
动力粘度μ,单位Pa ·S ,常用泊(P )、厘泊(cp )。
1 Pa ·S =10P=1000cP在常压下混合动力粘度:()()∑∑=iiii iiM yM yμμ在不同温度下的粘度:5.10273273⎪⎭⎫⎝⎛++=T C T C T μμ2.运动粘度ν,单位m 2/S ,常用托(St)、厘托(cst )。
1m 2/S=104 St =106 cst3.动力粘度与运动粘度的关系为: ν=μ/ρ(二)湿度 1.海底天然气含水量及水露点天然气中含水汽多少用湿度或含水量来描述,与压力、温度和组成条件有关。
饱和含水量:一定条件下,天然气与液态水达到相平衡时气相中的含水汽量。
绝对湿度:单位体积天然气中含有的水汽质量,单位为kg/m 3或mg/m 3。
饱和湿度:在一定温度和压力下,天然气含水汽量若达到饱和,则这个饱和时的含水汽量。
相对湿度:指同温度下,天然气实际的绝对湿度和饱和湿度之比。
水露点温度:在一定压力下,逐渐降低温度,天然气中水蒸气开始冷凝结露的温度,是表征天然气含水量的参数之一。
2.海底天然气的烃露点海底天然气烃露点:指一定组成的天然气,在一定压力下冷凝,当析出第一滴烃类液珠时的温度。
二、海底天然气的热力性质 1.比热和比热容比热:在不发生相变和化学变化的条件下,加热单位质量的物质时,温度升高1℃所吸收的热量。
单位为KJ/(kg ·K )或KJ/(kg ·℃)。
比热容:同样条件下,加热单位体积的物质时,温度升高1℃所吸收的热量,称为此物质的比热容,单位为KJ/(m 3·K )或KJ/(m 3·℃)。
气体的比热还分为质量定容热容C V 和质量定压热容C P 。
V V T u C )(∂∂=;P P ThC )(∂∂=; (1) 对于理想气体而言,这两种比热之差等于气体常数 R C C V P =-0纯组分理想气体:43205432T F T E T D T C B C i i i i i Pi ++++= 混合物质量定压热容: 00Piii P C y C ∑= (2)实际气体比热容1)计算法 2)查图法ρρρ)()(222TP T C T V ∂∂-=∂∂或ρρρρd T P T C C V V )(22020∂∂-+=⎰2.焓气体内能和体积与压力乘积之和称为气体的焓,H=U+pV 或h=u+pv 。
(1)理想气体焓单组分:h i 0=A i +B i T+C i T 2+D i T 3+E i T 4+F i T 5 混合气体: 00i ii h y h ∑=(2)实际气体焓1)计算法 2)查图法 3.熵熵是状态参数,随状态变化而变化,只决定于初始状态与终了状态。
与路径无关。
熵的变化表征了可逆过程中热交换的方向与大小。
(1)理想气体熵单组分:s i 0=B i lnT+2C i T+3/2D i T 2+4/3E i T 3+5/4F i T 4+G i 混合气体:s 0=∑y i s i 0 (2)实际气体熵1)计算法 2)查图法 4.导热系数物质导热能力的特性参数,指沿着导热方向上温度梯度为1K/m 时,单位时间内通过单位面积的热量,物质的基本性质之一,单位J/(m ·s ·k)或W/(m ·k)。