盾构机姿态人工测量方案
- 格式:doc
- 大小:46.00 KB
- 文档页数:3
盾构施工地面监测方案1、概况1.1、工程概况深圳地铁5号线土建2标盾构施工共包括三个区间,分别是:翻身站~灵芝公园站、灵芝公园站~大浪站、大浪站~同乐站。
翻身站~灵芝公园站设计起止里程CK4+196.34~CK5+461.66。
其中左右线CK4+196.34~CK4+410各213.66m为矿山法施工暗挖隧道;左线盾构区间CK4+410~CK5+461.66,长1265.32m;右线盾构区间CK4+410~CK5+461.66,长1252.68m; 灵芝公园站~大浪站起点里程为CK5+686.661,左线隧道设计终点里程为CK6+265.602,长578.941m;右线设计终点里程为CK6+109.605,长422.944m; 大浪站~同乐站区间起点里程为CK6+588.140,左线隧道设计终点里程为CK7+201.660,长613.520m;右线设计终点里程为CK7+241.200,长653.060m。
1.2、施工总体方案投入两台海瑞克复合式土压平衡盾构机(配备保压泵碴装置),两台从同乐明挖区间盾构井站先左线、后右线下井始发,由北向南沿创业路掘进;至大浪站,过站;再从大浪站南端始发、掘进,进入灵芝公园站北端头井吊出转场。
两台分别再从翻身站北端始发,通过矿山法隧道,由南向北掘进,至灵芝公园站南端头井吊处,退场。
为了确保盾构机从同乐~大浪~灵芝站和翻身~灵芝站三个区间顺利准确的进行掘进施工,对翻身~同乐站三区间的地面导线点联测控制导线测量,地面高程测量为盾构机掘进前施工奠定基础。
2、编制依据《地下铁道、轻轨交通工程测量规范GB50308-1999》《广州地铁三号线工程施工测量管理细则》《工程测量规范》(GB500026-93)《城市测量规范》(CJJ8-99)《铁路测量规范》(TBJ101-85)3、仪器设备配置4、施工测量组织机构整个区间施工中,项目经理部设测量主管一名,负责具体的施工测量工作管理及安排;专职测量工程师二名,负责现场施工测量放样及内业资料的整理;专职测量工三名。
目录一、编制及测量依据........................................................................................................ - 1 -二、工程概况.................................................................................................................... - 1 -三、测量任务和内容........................................................................................................ - 2 -四、施工测量技术方案.................................................................................................... - 2 -4.1施工首级测量控制网的检测 (3)4.2施工控制网的加密测量 (3)4.3联系测量 (6)4.4地下施工控制导线测量 (8)4.5施工放样测量 (9)4.6盾构施工测量 (10)4.7隧道贯通测量 (14)4.8隧道竣工测量 (14)4.9隧道沉降测量 (14)五、测量误差分析.......................................................................................................... - 15 -5.1隧道测量误差分析 (15)5.2隧道贯通误差预计 (16)六、测量人员和测量仪器配备...................................................................................... - 19 -6.1主要测量人员配备表及职责划分细则 (19)6.2职责划分细则 (21)6.3主要测量仪器配备 (21)七、测量工作管理.......................................................................................................... - 22 -7.1测量人员管理 (22)7.2仪器管理 (22)7.3资料管理 (22)八、测量质量保证措施.................................................................................................. - 23 -九、施工测量复核程序图.............................................................................................. - 25 -一、编制及测量依据(1)《城市轨道交通工程测量规范》(GB50308-2008);(2)《城市测量规范》(GJJ8-99);(3)《地下铁道工程施工及验收规范》(GB50299-1999)(4)《工程测量规范》(GB50026-2007);(5)《建筑变形测量规范》(JGJ/T8-2007);(6)《地下铁道设计规范》(GB50299-1999);(7)《国家一、二等水准测量规范》(GB12897-2006);(8)上海市轨道交通十三号线5标区间设计资料。
地铁盾构施工人工测量方法探讨摘要:本文结合合肥地铁项目,讲述了地面控制测量、联系测量盾构机人工测量和管片测量关键词:地铁;盾构;人工测量盾构法具有施工速度快、机械化程度高、人员配备少、不影响地面交通等优点,所以在地铁区间施工中得到广泛应用。
盾构施工测量是盾构施工中最重要的环节之一。
现以合肥市地铁一号线9标南宁路站~贵阳路站盾构区间(以下简称南贵区间)介绍盾构施工人工测量方法。
一、控制测量1、地面控制测量地面控制测量分为地面平面控制测量和地面高程控制测量,本工程控制点是合肥轨道公司提供的覆盖线路的整体控制网。
2、联系测量首先测设近井点。
根据地面控制点在贵阳路站区间布设两个近井点,形成闭合导线,导线变数4条。
高程按照二等水准进行加密。
通过近井点用两井定向把控制点加密到贵阳路站底板。
为提高精度,盾构始发点采用强制对中装置(如图1所示)。
高程传递采用吊钢尺的方法。
从始发到接收共做了三次联系测量,三次测量方位角差值不到1″(表1所示)。
3、洞内导线测量本工程隧道长度582米,则隧道导线加密采用支导线往返测的方法进行。
二、盾构机始发前测量1、在盾构机始发前利用联系测量控制点,满足盾构机组装、反力架、轨道安装的需要。
其三维坐标值测设值与设计值较差小于3毫米。
2、盾构机姿态测量。
在盾构始发前测设盾构机初始位置和盾构机姿态。
盾构机自身导向系统成果必须和人工测量结果一致。
本工程使用的是力信RMS-D导向系统。
盾构初始姿态我们利用特征点发和分中发分别独立测量了,两次结果一致。
盾构初始姿态测量,是盾构测量独有的测量。
三、盾构管片测量盾构机在推进过程中,利用力信RMS-D导向系统,控制盾构机本身姿态。
但是管片测量也不可忽视。
可以利用管片测量结果观察隧道推进情况。
做到多重复合。
人工测量管片使用的是标尺法(如图2所示),测设出反射片的三维坐标,根据隧道半径算出隧道中心。
现已310环隧道导向系统测量姿态和人工测量管片姿态为例进行比较。
盾构施工测量专项方案一、工程概况本标段包括一站两区间,即西湖公园站、西湖公园站~金星路站盾构区间、金星路站~望城坡站盾构区间。
区间全长4672.131m ,三个联络通道(其中两个带泵房)。
新购两台中轨生产的土压平衡盾构机。
199m 标段终点里程YDK3+181.0001081.6m 178m 1253.3m 265m YDK2+982.000西湖公园站起点里程YDK0+469.100标段起点里程YDK1+722.400金西区间起点里程YDK1+900.400望金区间终点里程图1-1 工程范围示意图【西湖公园站~金星路站区间】起讫里程DK1+900.400~DK2+982.000,右线隧道长度1081.6m ,左线长1073.118m (短链8.482m )。
本区间从西湖公园站始发,从龙头山脚下穿越,下穿西湖渔场、猎鹰驾校,以800m 曲线半径侧穿望麓桥、下穿龙王港河道、下穿金星路进入金星大道站。
区间设置V 型坡,出金星路站后分别以23‰及5.449‰(左线)5.66‰(右线)下坡,而后以3.8‰及23‰上坡至望城坡站。
区间最低点YDK2+447.500处设联络通道兼泵房图1-2 西湖公园站~金星路站区间平面图区间穿越龙王港最小覆土厚度2.6m ,下穿西湖渔场段覆土厚度3.5~4.0m ,最大覆土厚度19m。
穿越的地层主要为淤泥质粘土、粉质粘土、强风化、中风化板岩。
图1-3 西湖公园站~金星路站区间纵断面图【金星路站~望城坡站区间】起讫里程DK1+722.400~DK0+469.100,右线隧道长度1253.3m,左线长1264.113m(长链10.813m)。
本区间从金星路站始发,以450m曲线半径进入枫林一路,侧穿财专望舒1、2号楼进入财专高等专科学校,而后下穿密集的城乡居民区,以1500曲线穿越望兴锦园、望城坡老干所,穿越西二环后进入望城坡站。
区间设置V型坡,出西湖公园站后分别以27.475‰(右线)27.73‰(左线)及6‰下坡,而后以3‰及28‰上坡至金星路站。
盾构机姿态人工测量方案由于ELS靶被送往德国进行例行的检修,大汉盾构区间右线暂时无法使用SLS-T 导向系统,为保证盾构日常掘进的需要,确保盾构机按设计轴线前进,拟采用人工测量的办法测量出盾构机当前的姿态,以指导盾构机的掘进。
以下对盾构机姿态的人工测量方案进行说明:§1原理盾构机在出厂时,开发SLS-T导向系统的VMT公司就根据盾构机的设计与加工尺寸,在盾构机中体的隔板上布置了12~16个测点,所有的测点都在出厂前详细测设了每一个测点与刀盘中心的相对位置。
盾构机姿态人工测量就是利用人工直接采用控制导线的测量办法详细测出这些测点中的部分点位的绝对坐标,然后根据测点与刀盘中心的空间关系,反算出刀盘中心坐标,最后根据设计线路参数与刀盘中心的绝对坐标的空间关系推算出盾构机的三维控制姿态。
§2适用范围2.1盾构机始发姿态测量盾构机始发姿态便是由人工测量出的盾构机姿态。
盾构机始发定位时需精确测定ELS靶相对于盾构机主机的相对位置关系,其方法便是根据人工测量出的盾构机姿态,在SLS-T导向系统的微机中调整ELS靶的位置参数,以改变微机上显示的盾构机姿态,当盾构机上显示的姿态与人工测量出的盾构机姿态一致时,便可认为当前ELS靶的位置参数是正确的,ELS靶始发定位调试顺利完成。
2.2对S L S-T导向系统的复核在掘进施工中,利用人工测量的办法测量出盾构机当前的姿态,与SLS-T导向系统显示的盾构机姿态进行比较,来复核导向系统的测量成果。
2.3盾构掘进施工测量利用人工测量出的盾构机姿态可指导盾构机的掘进施工,保证盾构机按设计轴线前进。
盾构掘进施工中,人工测量盾构机姿态的测量频率为每环1次。
§3实例以大汉盾构区间右线所用的S180盾构机为例,盾构机中体的隔板上布置了12个测点,这些测点与刀盘中心的相对位置如下表:3.1右线始发姿态测量在始发姿态测量时利用控制导线测出的测点绝对坐标见下表:根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机始发姿态如下:刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)水平方向-12.7 43.4 12 15883.9569竖直方向31.7 31 0旋转:0.6mm/m 坡度:-1.9mm/m3.2当前盾构机姿态测量利用控制导线测出的当前测点的绝对坐标见下表:根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机当前姿态如下:刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)水平方向27 26 0 15705.102竖直方向11 4 1旋转:-4 mm/m 坡度: 5 mm/m§4测量仪器与测量精度所用仪器为徕咔TCA1103全站仪采用此方法进行人工测量,测量精度可以达到如下标准:平面偏差±5mm;高程偏差±5mm;纵向坡度偏差1‰;盾构机旋转偏差1‰;盾构机刀盘里程偏差±10mm。
盾构施工测量施工方案一、引言在盾构施工过程中,测量是一项非常重要的工作。
盾构施工测量旨在确保隧道的准确位置和尺寸,以便保证隧道的安全和质量。
本文档将详细介绍盾构施工测量的方案和流程。
二、测量设备和工具在盾构施工测量中,需要使用以下设备和工具:1.全站仪:用于进行地面控制点的测量,可以实现高精度的角度和距离测量。
2.探测器:用于检测盾构机的推进位置,并确定盾构机的准确位置。
3.激光测距仪:用于测量隧道的长度和宽度。
4.水准仪:用于确定隧道的坡度和高程。
5.GPS定位系统:用于测量盾构机的实时位置和导航数据。
三、测量流程盾构施工测量的流程如下:1.建立地面控制点:根据设计要求,在施工现场周围建立地面控制点。
使用全站仪测量地面控制点的坐标,并将其记录在施工测量控制表中。
2.盾构机的起始位置确定:在盾构机开始推进之前,需要确定盾构机的起始位置。
使用探测器对盾构机进行测量,并确定盾构机的准确位置。
记录盾构机的起始位置坐标。
3.推进位置测量:在盾构机推进过程中,需要定期对盾构机的位置进行测量,以确保盾构机推进的准确性。
使用探测器对盾构机的位置进行测量,并将测量结果记录在施工测量控制表中。
4.隧道尺寸测量:在盾构施工过程中,隧道的尺寸是非常关键的。
使用激光测距仪对隧道的长度和宽度进行测量,并记录在施工测量控制表中。
5.坡度和高程测量:使用水准仪对隧道的坡度和高程进行测量,并将测量结果记录在施工测量控制表中。
6.盾构机位置监控:使用GPS定位系统对盾构机的实时位置进行监控,并实时记录盾构机的位置。
四、施工测量控制表样例测量项目起始位置(坐标)推进位置(坐标)长度(米)宽度(米)坡度高程1 (X1, Y1, Z1) (X2, Y2, Z2) 100 10 1/100 02 (X2, Y2, Z2) (X3, Y3, Z3) 200 12 1/150 23 (X3, Y3, Z3) (X4, Y4, Z4) 300 15 1/200 5 …………………五、安全注意事项在进行盾构施工测量时,需要注意以下安全事项:1.使用测量设备和工具时,需要严格按照使用说明进行操作,并遵守相关安全规定。
关于盾构(TBM)施工测量的若干技术要求各盾构(TBM)项目部(工区):近年来,随着盾构(TBM)法施工的工地不断增多,与其相配套的施工测量技术也逐渐成熟,但因测量人员经验及素质原因和导向系统设备原因、加上洞内施工和环境的影响、盾构(TBM)和导向系统之间设计配套、以及隧道平纵线形设计因素、地质因素等客观原因,部分工地出现了导向系统故障多、误差大、影响掘进时间长、一些工地甚至多次出现了较大的掘进偏差等现象。
为使施工测量工作更好地服务于现场,高可靠性、高精度地实时提供盾构(TBM)姿态数据,使盾构(TBM)按照设计轴线精确掘进,各项建筑能够满足设计、限界要求,现根据相关测量规范、导向系统工作特点及各工地施工测量经验总结,列出以下盾构(TBM)施工测量若干要求,请各项目部根据本工地实际情况参照执行:一、盾构(TBM)初始姿态测量与人工导向1、机器初始位置测量盾构(TBM)组装完成/始发前,必须用人工测量方法测定机器盾壳或内部精密结构件特征点,计算机器姿态数据:包括刀盘切口里程、切口处平面、高程偏差、盾尾处平面、高程偏差、偏航角、俯仰角、滚动角等。
对于新机器,需要自行安装或要求导向系统技术服务人员安装若干个人工测量点,然后测量、计算人工测量点在盾构独立坐标系中的坐标并妥善保存,建立掘进过程中的人工导向系统。
对于旧机器,也需恢复、测量并计算复核人工检查点既有数据。
人工测量点位布置原则:(1)人工测量点位应布置在与TBM掘进轴线相对位置不会发生变动的地方,能够真实反应机器姿态;(2)点位之间尽可能拉大距离,提高推算刀盘切口姿态数据的精度. (3)在掘进过程中,置镜同一地方应至少能够观测到三个以上符合以上两条要求的点位,可多设几个检查点以备选择;同时根据掘进时通视条件,在机器上合适位置焊接仪器强制对中钢板(保证在人工测量过程中不发生移动即可)。
2、导向系统导向系统测量结果与人工测量结果进行对比,较差不大于导向系统中误差的2倍(导向系统中误差由项目部测量组根据不同的机器和导向系统,以及设计文件和相关规范规定的掘进偏差中误差确定),如超出限差时应查找原因。
地铁盾构施工测量技术在进行盾构机组装时,VMT公司的测量工程师就已经在盾体上布置了盾构姿态测量的参考点(共21个),如图9。
并精准测定了各参考点在TBM坐标系中的三维坐标。
咱们在进行盾构姿态的人工检测时,能够直接利用VMT公司提供的相关数据来进行计算。
其中盾体前参考点及后参考点是虚拟的,实际是不存在的):图9 S267盾构机参考点的布置盾构姿态人工检测的测站位置选在盾构机第一节台车的连接桥上,此处通视条件超级理想,而且专门好架设全站仪。
只要在连接桥上的中部焊上一个全站仪的连接螺栓就能够够了。
测量时,应依照现场条件尽可能使所选参考点之间连线距离大一些,以保证计算时的精度,最好保证左、中、右各测量一两个点,如此就能够够提高测量计算的精度。
例如在咱们在选择S267盾构机的参考点时,即是选择的一、10、21三点作为盾构姿态人工检测的参考点。
盾构姿态的计算盾构姿态的计算原理盾构机作为一个近似的圆柱体,在开挖掘进进程中咱们不能直接测量其刀盘的中心坐标,只能用间接法来推算出刀盘中心的坐标。
图10盾构姿态计算原理图如图A 点是盾构机刀盘中心,E 是盾构机中体断面的中心点,即AE 连线为盾构机的中心轴线,由A 、B 、C 、D 、四点组成一个四面体,测量出B 、C 、D 三个角点的三维坐标(x i ,y i , z i ),依照三个点的三维坐标(x i , y i , z i )别离计算出L AB , L AC , L AD , L BC , L BD ,L CD , 四面体中的六条边长,作为以后计算的初始值,在盾构机掘进进程中L i 是不变的常量,通过对B 、C 、D 三点的三维坐标测量来计算出A点的三维坐标。
同理,B 、C 、D 、E 四点也组成一个四面体,相应地求得E 点的三维坐标。
由A 、E 两点的三维坐标就能够计算出盾构机刀盘中心的水平偏航,垂直偏航,由B 、C 、D 三点的三维坐标就能够确信盾构机的仰俯角和转动角,从而达到检测盾构机姿态的目的。
盾构机姿态人工测量方案
由于ELS靶被送往德国进行例行的检修,大汉盾构区间右线暂时无法使用SLS-T 导向系统,为保证盾构日常掘进的需要,确保盾构机按设计轴线前进,拟采用人工测量的办法测量出盾构机当前的姿态,以指导盾构机的掘进。
以下对盾构机姿态的人工测量方案进行说明:
§1原理
盾构机在出厂时,开发SLS-T导向系统的VMT公司就根据盾构机的设计与加工尺寸,在盾构机中体的隔板上布置了12~16个测点,所有的测点都在出厂前详细测设了每一个测点与刀盘中心的相对位置。
盾构机姿态人工测量就是利用人工直接采用控制导线的测量办法详细测出这些测点中的部分点位的绝对坐标,然后根据测点与刀盘中心的空间关系,反算出刀盘中心坐标,最后根据设计线路参数与刀盘中心的绝对坐标的空间关系推算出盾构机的三维控制姿态。
§2适用范围
2.1盾构机始发姿态测量
盾构机始发姿态便是由人工测量出的盾构机姿态。
盾构机始发定位时需精确测定ELS靶相对于盾构机主机的相对位置关系,其方法便是根据人工测量出的盾构机姿态,在SLS-T导向系统的微机中调整ELS靶的位置参数,以改变微机上显示的盾构机姿态,当盾构机上显示的姿态与人工测量出的盾构机姿态一致时,便可认为当前ELS靶的位置参数是正确的,ELS靶始发定位调试顺利完成。
2.2对S L S-T导向系统的复核
在掘进施工中,利用人工测量的办法测量出盾构机当前的姿态,与SLS-T导向系统显示的盾构机姿态进行比较,来复核导向系统的测量成果。
2.3盾构掘进施工测量
利用人工测量出的盾构机姿态可指导盾构机的掘进施工,保证盾构机按设计轴线前进。
盾构掘进施工中,人工测量盾构机姿态的测量频率为每环1次。
§3实例
以大汉盾构区间右线所用的S180盾构机为例,盾构机中体的隔板上布置了12个测点,这些测点与刀盘中心的相对位置如下表:
3.1右线始发姿态测量
在始发姿态测量时利用控制导线测出的测点绝对坐标见下表:
根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机始发姿态如下:
刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)
水平方向-12.7 43.4 12 15883.9569
竖直方向31.7 31 0
旋转:0.6mm/m 坡度:-1.9mm/m
3.2当前盾构机姿态测量
利用控制导线测出的当前测点的绝对坐标见下表:
根据这些测点与刀盘中心的位置关系,推算出刀盘中心的绝对坐标,然后根据刀盘中心绝对坐标和隧道设计中线的空间关系推算出盾构机当前姿态如下:
刀盘(mm) 后体(mm) 趋势(mm/m) 里程(m)
水平方向27 26 0 15705.102
竖直方向11 4 1
旋转:-4 mm/m 坡度: 5 mm/m
§4测量仪器与测量精度
所用仪器为徕咔TCA1103全站仪
采用此方法进行人工测量,测量精度可以达到如下标准:
平面偏差±5mm;
高程偏差±5mm;
纵向坡度偏差1‰;
盾构机旋转偏差1‰;
盾构机刀盘里程偏差±10mm。