LED 照明设计之脉冲调制PWM 电路详解
- 格式:pdf
- 大小:223.41 KB
- 文档页数:9
脉冲宽度控制pwm的工作原理脉冲宽度调制(PWM)是一种常用的电子调制技术,它通过调节脉冲信号的宽度来控制输出信号的平均功率。
在本文中,我们将详细介绍PWM的工作原理及其应用。
一、PWM的工作原理PWM的工作原理基于一个简单的概念:通过改变脉冲信号的占空比,可以控制输出信号的平均电压或者功率。
脉冲信号是由一个周期性的方波信号和一个可变的占空比组成的。
占空比是指方波信号中高电平部份的时间与一个周期的比值。
PWM的工作原理可以通过以下步骤来解释:1. 生成一个基准信号:首先,需要生成一个固定频率的基准信号。
这可以通过使用计数器和比较器电路来实现。
计数器将以固定的频率计数,并在达到设定值时产生一个脉冲。
2. 设定占空比:根据所需的输出信号,设定一个占空比。
占空比可以通过改变计数器的比较器值来实现。
比如,如果要求50%的占空比,计数器将在达到一半的计数值时产生一个脉冲。
3. 生成PWM信号:根据设定的占空比,将基准信号与一个可变的调制信号进行比较。
调制信号可以是一个可变的电压或者一个由微控制器生成的数字信号。
比较器将根据调制信号的值决定是否产生一个脉冲。
如果调制信号的值大于基准信号,比较器将产生一个高电平脉冲;如果调制信号的值小于基准信号,比较器将产生一个低电平脉冲。
4. 输出PWM信号:最后,将产生的PWM信号通过一个低通滤波器进行滤波,以去除高频噪声。
滤波后的信号可以用来驱动各种电子设备,如机电、LED灯等。
二、PWM的应用PWM技术在现代电子系统中有广泛的应用。
以下是一些常见的应用领域:1. 机电控制:PWM可以用来控制直流机电或者交流机电的转速和转向。
通过改变PWM信号的占空比,可以调节机电的平均电压或者功率,从而实现对机电的精确控制。
2. 照明调光:PWM可以用来调节LED灯的亮度。
通过改变PWM信号的占空比,可以控制LED灯的亮度级别,实现照明的调光效果。
3. 电源管理:PWM可以用来控制开关电源的输出电压或者电流。
详解LED恒流驱动中的PWM调光技术脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。
它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。
脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。
通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。
PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。
电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。
通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。
只要带宽足够,任何模拟值都可以使用PWM进行编码。
调制.简单点说,假如需要一个1V0.6A的输出,而实际上只有一个1V1A的输出,那么只需要把1V1A的输出接通0.6秒,再断开0.4秒,然后继续接通0.6秒断开0.4秒,得到的效果和1V0.6A输出的效果是一致的选择高性能的LED恒流源不但可以提高LED路灯的可靠性目前常见的LED调光技术有Buck,Boost,Buck-Boost调节和线性调节。
不管你用Buck, Boost,Buck-Boost还是线性调节器来驱动LED,它们的共同思路都是用驱动电路来控制光的输出。
一些应用只是简单地来实现“开”和“关”地功能,但是更多地应用需求是要从0到100%调节光的亮度,而且经常要有很高的精度。
设计者主要有两个选择:线性调节LED电流(模拟调光),或者使用开关电路以相对于人眼识别力来说足够高的频率工作来改变光输出的平均值(数字调光)。
使用脉冲宽度调制(PWM)来设置周期和占空度(图1)可能是最简单的实现数字调光的方法,并且Buck调节器拓扑往往能够提供一个最好的性能。
图1:使用PWM调光的LED驱动及其波形推荐的PWM调光模拟调光通常可以很简单的来实现。
LED驱动电路PWM电路设计LED驱动电路PWM电路设计本文主要从电子电路、热分析、光学方面阐述了如何运用LED 特性进行设计。
LED照明作为新一代照明受到了广泛的关注。
仅仅依靠LED封装并不能制作出好的照明灯具。
这次主要针对运用脉冲调制的驱动电路进行说明。
脉冲调制英文表示Pulse Width Modulation,简称PWM。
PWM调节脉冲波占空比的一种方式。
如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:占空比=On-time(脉冲的High间)/ 脉冲的一个周期(On-time +Off-time)Tsw(一周期)可以开关周期,也可以Fsw=1/Tsw的开关频率。
图1 Pulse Width Modulation (PWM)在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。
运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。
这就是接下来要介绍的PWM 控制。
PWM信号的应用PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。
图2的降压电路帮助理解PWM的控制原理。
在这个电路中,将24V的输入电压转换成12V,需要增加负载。
负载就是单纯的阻抗。
电压转换电路的方法有很多,运用PWM信号的效果如何呢?图2 降压电路在图2的降压电路中取PWM控制电路,如图3所示。
MOSFEL作为开关设计使用。
当PWM信号的转换频率数为20kHz时,转换周期为50μs。
PWM信号为High 的时候,开关为On,电流从输入端流经负载。
当PWM信号处于Low状态时,开关Off,没有输入和输出,电流也断掉。
这里尝试将PWM信号的占空比固定在50%,施加在开关中。
开关开着的时候电流和电压施加到负载上。
开关关着的时候因为没有电流,所以负载的供给电压为零。
如图4绿色的波形、V(OUT)可在负载中看到输出电压。
pwm调光过程
PWM调光过程是一种利用脉冲宽度调制(PWM)来调节LED亮度的方法。
以下是PWM调光过程的基本步骤:
1. 系统提供脉冲:系统的控制器(如微处理器或微控制器)产生一系列的脉冲信号。
这些脉冲的宽度(占空比)可以调节,以控制LED的亮度。
2. 脉冲信号的传输:脉冲信号通过数据线或总线传输到LED驱动器。
3. 驱动器接收信号:LED驱动器接收到脉冲信号后,开始根据信号调节LED的亮度。
4. 调节LED亮度:根据脉冲的宽度(占空比),LED驱动器调节通过LED的电流,从而改变LED的亮度。
占空比越高,LED的亮度越高;占空比越低,LED的亮度越低。
5. 反馈调节:在实际应用中,这个过程可能是闭环的,即系统会根据用户的设定或者环境光线的亮度,自动调整脉冲的宽度,以保持LED亮度在设定的范围内。
PWM调光技术的优点在于,它可以实现精确、无闪烁的亮度调节,并且由于脉冲信号的快速切换,使得人眼难以察觉到亮度的变化,提高了视觉舒适性。
pwm基本原理一、引言PWM(Pulse Width Modulation)是一种通过调整脉冲信号的宽度来控制电路的一种技术。
在电子领域中,PWM广泛应用于数字调光、电机调速、音频处理等领域。
本文将从基本原理、应用场景和实现方法三个方面对PWM进行深入探讨。
二、基本原理PWM的基本原理是通过改变脉冲信号的占空比来实现电路的控制。
占空比(Duty Cycle)是指高电平信号在一个周期内所占的时间比例。
通过改变占空比,可以调整电路的输出功率或者亮度。
三、应用场景PWM广泛应用于各种电子设备中,下面将介绍几个常见的应用场景。
3.1 数字调光PWM在LED照明领域中得到广泛应用。
通过改变LED的亮度,可以实现不同场景下的照明要求。
PWM调光具有调节范围广、响应快的特点,能够实现平滑的亮度调节效果。
3.2 电机调速控制PWM在电机调速控制中也非常重要。
通过改变电机的供电脉冲宽度,可以控制电机的转速。
通过调整脉冲信号的占空比,可以实现电机的高精度控制。
3.3 音频处理PWM在音频领域中也有广泛应用。
通过调整脉冲信号的占空比,可以实现音频信号的调制。
PWM音频处理具有高保真度、低失真的优点,被广泛应用于音响设备中。
四、实现方法PWM的实现方法多种多样,下面将介绍几种常见的实现方法。
4.1 555定时器555定时器是一种常用的PWM生成器。
通过改变定时器的电阻和电容值,可以调整脉冲信号的周期和占空比。
555定时器具有结构简单、稳定可靠的特点,被广泛应用于PWM电路的设计中。
4.2 AVR单片机AVR单片机是一种常见的PWM控制器。
通过配置单片机的定时器/计数器模块,可以实现PWM信号的生成。
AVR单片机具有灵活性高、控制精度好的特点,适用于各种复杂的PWM控制场景。
4.3 离散逻辑门电路除了定时器和单片机,还可以使用离散逻辑门电路实现PWM功能。
通过组合门电路的输入,可以实现不同占空比的脉冲信号。
离散逻辑门电路具有成本低、可扩展性强的特点,适用于一些简单的PWM控制需求。
最简单PWM技术应用渐明渐暗的LED灯浅谈最简单PWM技术应用--渐明渐暗的LED灯:控制简单的LED灯貌似没什么难度~但是你会不会感觉到太单调~总是同一个频率在闪烁~总是同一个亮度在闪烁。
大家有否想过能让LED灯由暗逐渐变亮~然后再由亮变暗该从什么地方入手呢,这里就不得不提到PWM技术。
这里着重注意最后面对所给完整程序的分析。
在开始我们的工程之前,首先来了解一个概念:PWM。
PWM是脉冲宽度调制的英文单词的缩写。
脉冲宽度调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
脉宽调制是开关型稳压电源中的术语。
这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。
脉宽调制式开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。
读起来有点晦涩难懂。
其实简单的说来,PWM技术就是通过调整一个周期固定的方波的占空比,来调节输出电压的平均当电压,电流或者功率等被控量。
我们可以用个一水龙头来类比,把1s时间分成50等份,即每一个等份20ms。
在这20ms 时间里如果我们把水龙头水阀一直打开,那么在这20ms里流过的水肯定是最多的,如果我们把水阀打开15ms,剩下的5ms关闭水阀,那么流出的水相比刚才20ms全开肯定要小的多。
同样的道理,我们可以通过控制20ms时间里水阀开启的时间的长短来控制流过的水的多少。
那么在1s内平均流出的水流量也就可以被控制了。
当我们调整PWM的占空比时,就会引起电压或者电流的改变,LED的明暗状态就会随之发生相应的变化,听起来好像可以通过这种方法来实现我们想要的渐明渐暗的效果。
让我们来试一下吧。
大家都知道人眼有一个临界频率,当LED的闪烁频率达到一定的时候,人眼就分辨不出LED是否在闪烁了。
为了让我们的LED在变化的过程中,我们感觉不到其在闪烁,可以将其闪烁的频率定在50Hz以上。
pwm控制led,产生电感电流音原因摘要:1.PWM调光原理简介2.PWM调光与恒流调光的区别3.PWM调光在LED台灯中的应用优势4.电感电流音的产生原因5.应对电感电流音的方法正文:随着科技的发展,LED台灯已经成为日常生活中常见的照明工具。
在LED 台灯的控制方式中,PWM调光和恒流调光是两种常见的调光方法。
那么,为什么LED台灯要采用PWM调光而不是恒流调光呢?接下来,我们将从PWM 调光原理、PWM调光与恒流调光的区别以及PWM调光在LED台灯中的应用优势等方面进行详细解析。
首先,我们来了解一下PWM调光原理。
PWM(脉冲宽度调制)是一种通过改变脉冲宽度来调节电压或电流的方法。
在LED台灯中,PWM调光通过改变LED的驱动电压来实现亮度的调节。
当PWM信号的占空比增加时,LED 的驱动电压也随之增加,从而使LED的亮度增加;反之,占空比减小时,LED 的亮度降低。
接下来,我们来探讨一下PWM调光与恒流调光的区别。
PWM调光主要是通过改变电压来实现亮度的调节,因此在一定程度上受到电压调节的限制,很难实现0到最大的亮度调节。
而恒流调节则是通过控制电流来实现亮度的调节,相对来说,恒流调节的电路更为复杂。
但在LED台灯中,由于LED的电压-电流特性曲线非线性,恒流调节可以更好地保证LED的使用寿命和稳定性。
那么,为什么LED台灯要采用PWM调光呢?原因在于PWM调光在LED台灯中的应用具有以下优势:1.电路设计相对简单:与恒流调节相比,PWM调光的电路设计相对简单,有利于降低成本和提高可靠性。
2.响应速度快:PWM调光的响应速度较快,可以实现瞬间亮度调整,满足用户快速调节亮度的需求。
3.兼容性好:PWM调光技术广泛应用于各种电子设备中,具有较好的兼容性,便于实现不同设备间的统一调控。
然而,PWM调光也存在一定的不足,就是在某些情况下会产生电感电流音。
电感电流音的产生原因是,当PWM信号改变时,电感中的电流也会随之改变,从而产生磁场变化。
EDA技术基础PWM调整LED亮度选做试验电子信息科学与技术物电学院2011-06-24PWM调整LED亮度设计一.实验任务学习PWM原理,用Verilog硬件描述语言设计PWM逻辑电路,实现PWM信号占空比可调,通过按键调整PWM信号的占空比,将此PWM信号输出驱动发光二极管,观察不同占空比时发光二极管的亮度如何变化。
在实验箱上实现按键调整发光二极管亮度,数码管显示PWM信号的占空比。
具体要求:将输入数字信号转化为输出模拟信号,利用脉宽调制来实现二极管的亮度调节。
按下s1(不松手),二极管逐渐变暗,暗到一定程度,突然变亮,再循环,按下s2(不松手),二极管逐渐变亮,亮到一定程度,突然变暗,再循环。
二.方案论证实验原理图为三、实验思路调节时钟脉冲的占空比,输出脉冲频率一定,输出脉冲的占空比越大相当于输出的有效电平越大,可将数字量转化为模拟量。
基于这种思路可先将输入的一定计数周期T(相当于一个常量)的标准时钟脉冲变为一个高低电平占空比不一致的非标准脉冲(包含一个高电平、一个低电平),可用另外一个计数器Q来控制高低电平的占空比,随着Q的增大高电平的占空比随时间逐渐增大(或减小),而低电平随时间逐渐减小(或增大)。
但这个脉冲周期T是一定的。
随着T个数的增加便能得到一个高电平的占空比随时间逐渐增大(或减小),而低电平随时间逐渐减小(或增大)的非标准的时钟脉冲。
由于时钟脉冲的高低电平的占空比随时间有规律、有方向的变化,这样可实现二极管的亮度缓慢变化。
四、实验步骤及代码99计数器的计数模块代码为module counter(clk,clr,Q);input clk,clr;output [7:0]Q;reg [7:0]Q;always @(posedge clk or negedge clr)begin if(!clr) begin Q=0;endelse beginif(Q[3:0]==9) begin if(Q[7:4]<9)begin Q[7:4]=Q[7:4]+1; Q[3:0]=0;end else begin Q[7:0]=0;endendelse begin Q[3:0]=Q[3:0]+1;endendendendmodule而通过按键可调的计数器模块的代码为:module c9(clk,clr,kup,kdw,Q,clk); input clr,clk;input kup,kdw;output [7:0]Q;reg [7:0]Q;wire clka,clkb,clkc,clkd,newclk; assign clka = clk;LCELL AA(clka,clkb);LCELL BB(clkb,clkc);LCELL CC(clkc,clkd);LCELL DD(clkd,newclk);always @(posedge newclk or negedge clr)beginif(!clr) begin Q[3:0]=4'H0;Q[7:4]=4'H5;endelse beginif(kup)beginif(Q[3:0]==4'H9)if(Q[7:4]==9) begin Q[7:4]=4'H0;Q[3:0]=4'H0;end else begin Q[7:4]=Q[7:4]+4'H1;Q[3:0]=4'H0;endelse Q[3:0]=Q[3:0]+4'H1;endelse begin Q[3:0]=Q[3:0];Q[7:4]=Q[7:4];endif(kdw)beginif(Q[3:0]==4'H0)if(Q[7:4]==4'H0) begin Q[7:4]=4'H9;Q[3:0]=4'H9;end else begin Q[7:4]=Q[7:4]-1;Q[3:0]=4'H9;endelse Q[3:0]=Q[3:0]-4'H1;endelse begin Q[3:0]=Q[3:0];Q[7:4]=Q[7:4];endendendendmodule同时要用实验箱上的50MHZ晶体震荡器作为计数器1的输入时钟代码为module fenpin2(clk,clr,clko);input clk,clr;output clko;reg [25:0]c;reg clko;always @(posedge clk or negedge clr)beginif(!clr) begin c=26'H0;clko=1'H0;endelse if(c==26'D50_000_000)begin c=26'H0;clko=1'H1;end else begin c=c+26'D100;clko=1'H0;endendendmodule由于数码关于二极管的频率不一样,因此对他们时钟信号的分频的大小也应不同,因此对二极管的输入时钟也应进行分频,其代码为:module div_clk(clk,clr,ck0);input clk,clr;output ck0;reg [19:0]c;always @(posedge clk or negedge clr)beginif(!clr)c=20'H0;else c=c+20'H1;endassign ck0=c[5];endmodule为了使数码管上能显示出占空比,我们还应加一个比较模块,其代码:module compare(a,b,led);input [7:0]a;input [7:0]b;output led;reg led;always @(a or b)beginif(a<b)led=1;else led=0;endendmodule数码管显示模块module deled(num,a,b,c,d,e,f,g);input [3:0]num;output a,b,c,d,e,f,g;reg a,b,c,d,e,f,g;always @(num)begincase(num)4'H0 :{a,b,c,d,e,f,g} = 7'b1111110; 4'H1 :{a,b,c,d,e,f,g} = 7'b0110000;4'H2 :{a,b,c,d,e,f,g} = 7'b1101101;4'H3 :{a,b,c,d,e,f,g} = 7'b1111001;4'H4 :{a,b,c,d,e,f,g} = 7'b0110011;4'H5 :{a,b,c,d,e,f,g} = 7'b1011011;4'H6 :{a,b,c,d,e,f,g} = 7'b1011111;4'H7 :{a,b,c,d,e,f,g} = 7'b1110000;4'H8 :{a,b,c,d,e,f,g} = 7'b1111111;4'H9 :{a,b,c,d,e,f,g} = 7'b1111011;default:{a,b,c,d,e,f,g}=7'b0000000;endcaseendendmodule相应的数码管引脚、二极管引脚及按键的引脚排列图为:五、实验分析及实验总结1、由于时钟脉冲的高低电平的占空比随时间有规律、有方向的变化,这样可实现二极管的亮度缓慢变化。
PWM(脉冲宽度调制PulseWidthModulation)原理1、 PWM原理2、调制器设计思想3、具体实现设计⼀、 PWM(脉冲宽度调制Pulse Width Modulation)原理:脉冲宽度调制波通常由⼀列占空⽐不同的矩形脉冲构成,其占空⽐与信号的瞬时采样值成⽐例。
图1所⽰为脉冲宽度调制系统的原理框图和波形图。
该系统有⼀个⽐较器和⼀个周期为Ts的锯齿波发⽣器组成。
语⾳信号如果⼤于锯齿波信号,⽐较器输出正常数A,否则输出0。
因此,从图1中可以看出,⽐较器输出⼀列下降沿调制的脉冲宽度调制波。
通过图1b的分析可以看出,⽣成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语⾳信号幅度值。
因⽽,采样值之间的时间间隔是⾮均匀的。
在系统的输⼊端插⼊⼀个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<(1)其中,x{t}是离散化的语⾳信号;Ts是采样周期;是未调制宽度;m是调制指数。
然⽽,如果对矩形脉冲作如下近似:脉冲幅度为A,中⼼在t = k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波x p(t)可以表⽰为:(2)其中,。
⽆需作频谱分析,由式(2)可以看出脉冲宽度信号由语⾳信号x(t)加上⼀个直流成分以及相位调制波构成。
当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进⾏解调。
⼆、数字脉冲宽度调制器的实现:实现数字脉冲宽度调制器的基本思想参看图2。
图中,在时钟脉冲的作⽤下,循环计数器的5位输出逐次增⼤。
5位数字调制信号⽤⼀个寄存器来控制,不断于循环计数器的输出进⾏⽐较,当调制信号⼤于循环计数器的输出时,⽐较器输出⾼电平,否则输出低电平。
循环计数器循环⼀个周期后,向寄存器发出⼀个使能信号EN,寄存器送⼊下⼀组数据。
在每⼀个计数器计数周期,由于输⼊的调制信号的⼤⼩不同,⽐较器输出端输出的⾼电平个数不⼀样,因⽽产⽣出占空⽐不同的脉冲宽度调制波。
pwm插值调光算法c-概述说明以及解释1.引言1.1 概述概述在现代照明系统中,调光功能是非常重要的。
随着LED技术的快速发展,PWM(脉宽调制)调光算法被广泛应用于LED照明系统中。
这种调光算法能够通过控制LED的亮度,实现灯光的变换和调节,以满足不同环境和需求下的照明需求。
PWM调光算法是一种基于亮度调整的算法,它通过控制LED灯的亮度来实现灯光效果的变化。
通过调节PWM信号的脉宽,可以改变LED灯的亮度,从而实现灯光的强弱变化。
在实际应用中,通过改变PWM信号的周期和占空比,可以实现更加精确和流畅的调光效果。
本篇文章将重点介绍PWM插值调光算法的原理、设计和实现。
通过对PWM信号的插值处理,可以实现更加平滑和连续的灯光调节,提高照明系统的稳定性和效果。
同时,我们将探讨该算法在实际应用中的优势和不足,并展望其未来的发展方向。
通过深入了解PWM插值调光算法,我们可以更好地理解其工作原理和优势,从而在实际应用中更加灵活和高效地利用该算法来实现照明系统的调光功能。
本文的目的是为读者提供关于PWM插值调光算法的全面介绍和指导,以帮助读者更好地了解和应用这一算法。
在接下来的章节中,我们将先介绍PWM调光算法的基本原理,然后详细阐述插值算法的原理和设计方法。
随后,我们将介绍如何实现插值调光算法,并对其效果进行评估和讨论。
最后,我们将总结PWM插值调光算法的优势和不足,并展望其未来的研究和发展方向。
通过本文的阅读,读者将能够了解到PWM插值调光算法的工作原理和实现方法,同时也能够进一步探索该算法在实际应用中的潜力和发展空间。
本文将为读者提供有关PWM插值调光算法的全面知识和应用指导,帮助读者更好地理解和应用这一算法,提高照明系统的调光效果和用户体验。
文章结构部分是对整篇文章的整体安排和组织进行介绍和概述。
主要包括文章的章节划分和每个章节的主要内容。
在本文中,文章结构如下:1. 引言- 1.1 概述:介绍PWM插值调光算法的背景和意义。
PWM调光技术详解在现代照明系统中,PWM调光技术是一种常见的调光方法。
PWM即脉宽调制(Pulse Width Modulation),是一种通过改变信号的脉冲宽度来控制电路的工作方式的技术。
在照明系统中,PWM调光技术通过控制LED灯的亮度,实现灯光的调光效果。
本文将详细介绍PWM调光技术的原理、优势和应用。
一、PWM调光技术的原理。
PWM调光技术是通过控制LED灯的通断时间比例来实现调光的。
具体来说,就是通过改变LED灯的工作周期和占空比来控制LED灯的亮度。
工作周期是指脉冲信号一个完整的周期所包含的时间,而占空比则是指脉冲信号中高电平(LED 灯亮)所占的时间比例。
通过改变脉冲信号的占空比,可以实现LED灯的亮度调节。
以一个简单的例子来说明PWM调光技术的原理。
假设LED灯的工作周期为100ms,而我们需要将LED灯的亮度调节为50%。
那么在这种情况下,LED灯的亮度将为50ms亮,50ms灭。
如果需要将LED灯的亮度调节为25%,那么LED灯的亮度将为25ms亮,75ms灭。
通过改变LED灯的通断时间比例,可以实现LED 灯的亮度调节。
二、PWM调光技术的优势。
1. 高效节能,PWM调光技术可以根据实际需求来控制LED灯的亮度,避免了传统调光方法中产生的能量浪费。
通过PWM调光技术,可以实现LED灯的精确调光,从而实现节能的效果。
2. 良好的调光效果,PWM调光技术可以实现LED灯的无级调光,可以满足不同场景下的光照需求。
而且,PWM调光技术可以避免LED灯在低亮度下出现闪烁的问题,提供了良好的调光效果。
3. 长寿命,由于PWM调光技术可以实现LED灯的精确调光,LED灯的工作温度相对较低,从而延长了LED灯的使用寿命。
4. 可靠稳定,PWM调光技术可以实现LED灯的快速响应和稳定调光,不会出现频闪和抖动的问题,提供了可靠稳定的照明效果。
三、PWM调光技术的应用。
PWM调光技术在照明系统中有着广泛的应用。
详解LED PWM调光技术及设计注意点加速调光频率实现精准调光无论LED是经由降压、升压、降压/升压或线性稳压器驱动,衔接每一个驱动最频繁的线程就是必要控制光的输出。
现今仅有很少数的应用只需要开和关的容易功能,绝大多数都需要从0~100%去微调亮度。
目前,针对亮度控制方面,主要的两种解决计划为线性调整LED的(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间往返切换(数字调光)。
利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最容易的办法,缘由是相同的技术可以用来控制大部分的开关转换器。
PWM调光能调配精确色光普通来说,模拟调光比较简单采取,这是由于LED驱动器的输出电流变幻与控制成比例,而且模拟调光也不会引发额外的电磁兼容性()/电磁干扰(EMI)潜在频率问题。
然而,大部分设计采纳PWM调光的理由都是基于LED的基本特性,即发射光的位移是与平均驱动电流的大小成比例(图1)。
对于单色LED来说,主要光波的波长会发生变幻,而在白光LED方面,浮现变幻的是相对色温(CCT)。
对于人们的肉眼来说,很难察觉出红、绿或蓝光LED中的奈米波长变幻,尤其是当光的强度也同样在转变,但是白光的色温变幻则比较简单察觉出来。
大多数的白光LED都包含一片可发射出蓝光频谱光子的晶圆,这些光子在撞击磷光涂层后便会发射出各种可见光范围内的光子。
在较小的电流下,磷光会成为主导并使光芒偏向黄色;而在较大电流下,LED发射出来的蓝光则较多,使得光芒偏向蓝色,同时也会产生较高的CCT。
对于用法超过一个白光LED的应用,在两个相邻LED之间浮现的CCT差异会很显然,且视觉令人不悦,此概念可以进一步延长将多个单色LED光芒混和在一起的光源。
一旦超过一个光源,任何浮现在它们之间的CCT 差异都会令人感到耀眼。
第1页共6页。
白光LED的PWM驱动原理时间:2010-11-22 20:44:05 来源:西安科技大学作者:程安宁,王晋,尚相荣本文设计一种基于PWM的可调光LED驱动电路,可提供LED所需的电压和电流,且具有色温高、经济实用、寿命长的特点。
白光LED的电学特性具有很强的离散性,而且白光LED是一种同态电光源,是一种半导体照明器件。
它具有体积小、机械强度大、功耗低、寿命长,便于调节和控制以及无污染等特征,是一种有极大发展前景的新型光源产品。
但由于白光LED正向伏安特性非常陡,为其供电比较困难,白色LED工作电压的较小波动就会导致工作电流的急剧变化,甚至可能烧坏LED。
为了保持LED工作电流稳定,保证LED 能正常可靠的工作,驱动电路设计至关重要。
1 白光LED的电特性1.1 LED发光强度与电流的关系LED器件在极限工作电流范围内发光强度随正向电流的增加而增加,但不同半导体材料制成的LED器件,其发光强度与正向电流的变化关系有所不同。
从总体上看,发光强度Ir都是随着正向电流If的增加而增加的。
Ir与If的关系曲线描述为达到所需的发光强度,LED应该用多大的电流来驱动。
LED发光强度与正向电流的关系如图l所示。
图1中的曲线以红色发光LED为例,当正向电流约40 mA时,红色LED的发光强度几乎不再发生变化。
也就是说,只要控制红色LED 阵列的正向电流达到一定值,其发光强度也就趋向饱和。
1.2 温度对白光LED正向电流的影响白光LED的正向电流的大小也随温度的变化而变化的,图2是常用白光LED的允许正向电流随温度的变化曲线。
2 LED的PWM驱动方式2.1 PWM信号的原理和形成PWM调光基于人眼对亮度闪烁不够敏感的特性,使负载LED时亮时暗,如果亮暗的频率超过100 Hz,人眼看到的就是平均亮度,而不是LED的闪烁。
PWM调光通过调整亮和暗的时间比例实现调整亮度。
这种方法通过把可调占空比和固定频率的数字信号加到调整亮和暗时间比例的引脚即可实现调光,但调光的范围取决于器件内部电路软启动或恢复正常工作的速度,因而范围不是很宽。
led灯pwm调光电路芯片
LED灯的PWM调光电路芯片是用来控制LED灯的亮度的关键元件。
PWM(脉冲宽度调制)调光是一种常见的LED调光方法,通过控制LED的通电时间来实现亮度的调节。
以下是一些常见的用于LED 灯PWM调光的电路芯片:
1. 555定时器芯片,555定时器是一种常用的集成电路,可以被用于产生PWM信号。
它可以被配置成单稳态或者多谐振荡器,用来产生PWM信号以控制LED的亮度。
2. 专用LED驱动芯片,一些厂商生产了专门用于LED灯PWM调光的驱动芯片,例如TI的TLC5940等。
这些芯片通常集成了PWM调光控制电路和LED驱动电路,能够提供更精确和稳定的调光效果。
3. 微控制器,一些带有PWM输出引脚的微控制器也可以用来控制LED的亮度。
通过编程,可以实现各种复杂的PWM调光算法,以满足不同的应用需求。
4. 电容和电阻,除了使用专门的芯片外,一些简单的LED调光电路也可以通过电容和电阻来实现PWM调光。
这种方法成本低廉,
但通常只适用于简单的应用场景。
总的来说,选择合适的LED灯PWM调光电路芯片取决于应用的需求,包括亮度调节范围、精度要求、成本考虑等因素。
在选择时需要综合考虑这些因素,以找到最适合的解决方案。
pwm调光原理PWM调光原理。
PWM(Pulse Width Modulation)调光技术是一种常见的LED灯光调光方式,通过控制LED灯的通断时间比例来实现亮度的调节。
PWM调光技术在LED照明领域得到了广泛的应用,它具有调光范围广、调光效果好、调光稳定等优点,因此备受青睐。
PWM调光原理是基于人眼视觉暂时性特性而设计的。
人眼对光线的感知是有一定惯性的,当光线发生快速变化时,人眼很难察觉到这一变化,因此可以通过快速的灭亮变化来模拟不同亮度的效果。
PWM调光技术利用这一原理,通过控制LED灯的通断时间比例来实现亮度的调节。
PWM调光技术的工作原理是在一个固定的时间周期内,通过控制LED灯的通断时间来实现亮度的调节。
通断时间比例越大,LED灯的亮度就越高;通断时间比例越小,LED灯的亮度就越低。
在每个时间周期内,LED灯都会以一定的频率快速地闪烁,而人眼无法感知到这一闪烁,从而实现了亮度的调节。
PWM调光技术的调光范围广,可以实现从0%到100%的亮度调节,而且调光效果非常好。
由于LED灯的亮度调节是通过控制通断时间来实现的,所以在调光过程中LED灯的色温和色彩饱和度都能得到很好的保持,不会出现色温偏差或色彩失真的情况。
除了调光范围广和调光效果好之外,PWM调光技术还具有调光稳定的特点。
由于LED灯的亮度调节是通过控制通断时间来实现的,所以LED灯的亮度调节不会受到外界环境的影响,不会因为温度、电压等因素而导致亮度的波动,保持了良好的稳定性。
总的来说,PWM调光技术是一种非常成熟和可靠的LED灯光调光方式,具有调光范围广、调光效果好、调光稳定等优点。
在LED照明领域得到了广泛的应用,可以满足不同场景的亮度调节需求,是一种非常值得推广和应用的调光技术。
希望通过本文的介绍,读者对PWM调光原理有了更深入的了解,对LED照明领域的发展有所帮助。
同时也希望LED照明领域的从业者能够更加深入地研究和应用PWM调光技术,为LED照明技术的发展做出更大的贡献。
LED 照明 PWM 调光技术 文章出处:来自互联网 发布时间: 2011/09/04 | 283 次阅读 | 0次推荐 | 0条留言 Samtec 连接器 完整的信号来源开关,电源限时折扣最低45折每天新产品 时刻新体验 ARM Cortex-M3内 核微控制器最新电子元器件资料免费下载完整的15A 开关模式电源首款面向小型化定向照明应用代替LED 光源的单纯控制需要设计的初始阶段就要非常小心。
光源越复杂,就越要用 PWM 调 光。
这就需要系统设计者谨慎思考 LED 驱动拓扑。
Buck 调节器为 PWM 调光提供了很多优势。
如果调光频率必须很高或者信号转换率必须很快,或者二者都需要,那么 Buck 调节器就是 最好的选择。
PWM 调光是利用一个 PWM 信号来调节 LED 的亮度 LED 的调光控制 传统上, 的调光是利用一个 DC 信号或滤液 PWM 对 LED 中的正向电 LED 流进行调节来完成的。
减小 LED 电流将起到调节 LED 光输出强度的作用,然而,正向电流的 变化也会改变 LED 的彩色,因为 LED 的色度会随着电流的变化而变化。
许多应用(例如汽车 和 LCD TV 背光照明)都不能允许 LED 发生任何的色彩漂移。
在这些应用中,由于周围环境 中存在不同的光线变化, 而且人眼对于光强的微小变化都很敏感, 因此宽范围调光是必需的。
通过施加一个 PWM 信号来控制 LED 亮度的做法允许不改变彩色的情况下完成 LED 的调光。
人们常说的真正彩色( Color) 的亮度。
人们常说的真正彩色(True Color)PWM 调光是利用一个 PWM 信号来调节 LED 的亮度。
亮度有三种常用方法: 调节 LED 亮度有三种常用方法: (1)使用 SET 电阻,在 LED 驱动控制 IC 引脚 RSET 两端并联不同的转换电阻,使用一 个直流电压设置 LED 驱动控制 IC 引脚 RSET 的电流, 从而改变 LED 的正向工作电流, 达到调 节 ALED 发光亮度的目的。
pwm波控制led灯的原理PWM(Pulse Width Modulation)波是一种通过调节信号的脉冲宽度来控制电子设备的技术。
在电子领域中,PWM波被广泛应用于LED灯的控制。
本文将介绍PWM波控制LED灯的原理。
首先,我们需要了解LED灯的工作原理。
LED灯是一种半导体器件,当电流通过LED时,半导体材料中的电子与空穴结合,产生光能。
LED灯的亮度与电流的大小成正比关系。
因此,通过控制电流的大小,我们可以调节LED灯的亮度。
PWM波控制LED灯的原理是利用了人眼对光的感知特性。
人眼对光的感知是一种暂态感知,即人眼对光的亮度变化有一定的延迟。
利用这一特性,我们可以通过调节PWM波的脉冲宽度来控制LED灯的亮度。
PWM波是一种方波信号,由高电平和低电平组成。
高电平表示LED灯亮起,低电平表示LED灯熄灭。
脉冲宽度指的是高电平的持续时间。
当脉冲宽度较长时,LED灯亮度较高;当脉冲宽度较短时,LED灯亮度较低。
通过改变PWM波的脉冲宽度,我们可以实现对LED灯亮度的调节。
当脉冲宽度为0时,LED灯熄灭;当脉冲宽度为最大值时,LED灯亮度最高。
在两者之间,通过不同的脉冲宽度,LED灯的亮度可以连续调节。
PWM波控制LED灯的原理可以通过微控制器或专用的PWM控制芯片实现。
这些芯片可以根据输入的控制信号,生成相应的PWM波。
通过调节控制信号的幅值,我们可以改变PWM波的脉冲宽度,从而控制LED灯的亮度。
除了亮度调节,PWM波还可以实现LED灯的闪烁效果。
通过改变PWM波的频率,我们可以实现不同的闪烁效果,如快速闪烁、慢速闪烁等。
这种闪烁效果在一些应用场景中非常有用,如警示灯、节日装饰等。
总结起来,PWM波控制LED灯的原理是通过调节信号的脉冲宽度来控制LED灯的亮度。
利用人眼对光的感知特性,我们可以通过改变PWM波的脉冲宽度来实现对LED灯亮度的连续调节。
同时,通过改变PWM波的频率,我们还可以实现LED灯的闪烁效果。
漫谈“独臂神通”PWM(3):用PWM点灯调光今天LED满眼都是,几乎每个电路板上都要至少装一个用做状态指示(其实发光数码管也是多个LED组成)、各种显示器的背光、已经深入我们生活各个角落的LED台灯、路灯,几乎所有城市的夜景都是用各种颜色的LED灯来装点的。
把LED点亮太简单了,只要让其流过一定的电流就可以亮了,电流越大亮度越大,电流小则亮度小。
那这些灯都是如何调光(控制亮度)的呢?大家最容易想到的,也是在很多电路板上状态指示灯最常用的一种方式就是通过串联一个电阻,改变电阻的值就可以改变LED的亮度,这种调光方式被称为模拟调光。
一般来讲只需要LED灯点亮就可以,至于亮度的大小,也就是串联电阻值的大小关系并不大。
当然不同颜色的LED灯其前向导通电压也不同,即便达到同样的亮度,在同样的供电电压下串联的电阻值也可能不同,因此一般都不用纠结,装一个330还是510还是1k其实都可以,觉得太暗就把电阻值弄小点,觉得太亮就把电阻值弄大点。
通过串联不同值的电阻可以调节电流而实现对LED亮度的调节模拟调光存在很大的缺点就是电阻上会消耗功率变成热量,LED 对电流的响应是非常非线性的,LED灯的亮度调节范围也比较低。
因此在很多需要调光的场合都采用PWM的方式(又被称为“数字调光”),也就是在固定流经LED的电流大小的情况下,通过占空比可调节的PWM脉冲来反复控制LED的导通和关断- 导通的时候LED按照设定好的电流值发出相应亮度的光,关断的时候LED不亮,如果PWM脉冲的重复周期高于我们人眼视觉暂留需要的频率,尤其是达到50Hz以上后,我们一般人就觉察不出LED的闪烁了,从而认为LED没有闪烁,改变PWM脉冲的占空比就能够改变LED的亮度,如下面的图。
PWM调光的电路不同的占空比产生不同的亮度:50%中等亮度、10%很暗、90%很亮改变PWM脉冲的占空比就可以改变LED的发光亮度PWM调光的优点是简单、效率高、其亮度随PWM占空比变化可以做到非常高的线性度,更符合人们对于LED调光精度、效率以及效果的要求。
LED照明设计之脉冲调制PWM电路详解 LED照明作为新一代照明受到了广泛的关注。
仅仅依靠LED封装并不能制作出好的照明灯具。
本文主要从电子电路、热分析、光学方面阐述了如何运用LED特性进行设计。
在上一期的“LED驱动电路设计-基础篇”中,介绍了LED的电子特性和基本的驱动电路。
遗憾的是,阻抗型驱动电路和恒电流源型驱动电路,大范围输入电压和大电流中性能并不强,有时并不能发挥出LED的性能。
相反,用脉冲调制方法驱动LED电路,能够发挥LED的多个优点。
这次主要针对运用脉冲调制的驱动电路进行说明。
PWM是什么?
脉冲调制英文表示是Pulse Width Modulation,简称PWM。
PWM 是调节脉冲波占空比的一种方式。
如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:
占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time)Tsw(一周期)可以是开关周期,也可以是Fsw=1/Tsw的开关频率。
图1 Pulse Width Modulation (PWM)
在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。
运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。
这就是接下来要介绍的PWM控制。
PWM信号的应用
PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。
图2的降压电路帮助理解PWM的控制原理。
在这个电路中,将24V的输入电压转换成12V,需要增加负载。
负载就是单纯的阻抗。
电压转换电路的方法有很多,运用PWM信号的效果如何呢?
图2 降压电路
在图2的降压电路中取PWM控制电路,如图3所示。
MOSFEL作为开关设计使用。
当PWM信号的转换频率数为20kHz时,转换周期为50μs。
PWM信号为High的时候,开关为On,电流从输入端流经负载。
当PWM信号处于Low状态时,开关Off,没有输入和输出,电流也断掉。
这里尝试将PWM信号的占空比固定在50%,施加在开关中。
开关开着的时候电流和电压施加到负载上。
开关关着的时候因为没有电流,所以负载的供给电压为零。
如图4绿色的波形、V(OUT)可在负载中看到输出电压。
图3 运用PWM信号的降压电路
图4 解析结果 占空比:50%
输入电压是直流,通过脉冲信号得到输出电压在负载的前端(开关的后端)插入平滑电路,就可以得到如图4所示的茶色的波形。
输出脉冲的平均值约12V时,直流电压可以供给负载。
但如果不是12V,而是想得到6V的输出电压时,应该怎么做?PWM控制的优点实际就在此。
只需改变脉冲幅度就可以了。
实际上,只需设定占空比为25%就可以得到平均输出6V的电压。
图5和图6表示的是这种情况下的电路和解析结果。
图5 运用PWM信号的降压电路
图6 解析结果 占空比约25%
以上结果标明,降压电路中,输入输出电压的关系可以表示为:输出电压=PWM信号的占空比×输入电压
也就是说只要改变PWM信号的占空比,就可以得到任意的输出电压。
接下来介绍在实际产品设计中运用降压转换器电路驱动LED 的方法。
PWM驱动电路例子
如图7所示,在前述的降压电路中追加线圈、电容、二极管的电路。
在这里没有考虑反馈电路。
这里使用的是飞利浦照明的LUXEON 系列的LXM3-PW71 LED。
LED(负载)的前端插入的线圈和电容构成平滑电路,通过转换使得脉冲输出平均化。
线圈前端的二极管即使在开关关着的时候也能持续向线圈供给电流。
降压转换器通常作为
电压转换电路使用,但是在驱动LED时,则需要控制电流而不是电压。
图7 PWM驱动电路降压转换的例子
认图7的电路构成。
当脉冲信号处于On的状态,也就是开关设计处于On的状态时,电流按照输入信号-开关-线圈-负载的顺序流动。
当开关设计处于Off的状态时,电流按照二极管-线圈-负载的顺序流动。
因此要控制线圈中的电流实际上等同于控制LED中的电流。
在正极和负极间施加3.0V的电压的话,可以从数据库中看到,LXM3-PW71的电流约350mA。
输入电压为12V时,设定脉冲波的占空比为25%(12V×0.25=3V),就能得到3V的电压。
当转换频率数为100kHz时,转换周期为10μs,脉冲幅度为2.5μs。
但是,负载只在顺阻抗的情况下成立,实际在负载中运用LED时,根据电流大小负载特性也有变化,电流约为350mA时,脉冲幅度调制约为3.36μs。
验证电路的结果如图8所示。
图8 PWM驱动电路的验证结果
LED中的电流发生变化,线圈中的电流也变化。
通过传感电路检测线圈电流的变化,只要控制开关的打开时间,就能够使得LED 负载中的电流恒定。
增加PWM的占空比,就能增加LED中的电流,也能增加亮度。
比较阻抗驱动型电路和恒定电流源型驱动电路,改变PWM的占空比比改变阻抗值和电路常量更高效,也因此能了解PWM 控制的便利性。
这次介绍的降压转换器运用于LED驱动中需要电压比输入电压低的情况。
根据照明灯具、用途不同,有时需要同时驱动多个LED,这样会出现所有的LED驱动中的必需电压比输入电压高。
这种情况下,就需要使用能够制作比输入电压高的电压的升压转换器。
在LED照明中,有效利用电力的同时还需要小型化。
照明灯具中,将输入电压转为LED驱动电压的时候,会出现转换损耗,转换损耗越大越容易引起热的问题。
同时,如果开关频率数增加,变压
器和线圈会变小,虽然整个线路板能够实现小型化,但由于高开关频率数会导致转换损耗,出现高次谐波问题。
因此,在LED的PWM 驱动电路中,力争实现高效和少零部件。
为了保持照明灯具的亮度稳定或者调节亮度,需要在传感器中检测负载电流、进行控制演算、调整脉冲的占空比的反馈控制电路。
本文没有对反馈控制电路进行介绍,但是值得注意的是,反馈控制电路包含电压控制、迟滞控制、类似迟滞控制、电流控制等多种。
各种控制方式有优点也有缺点,需要我们根据照明灯具的作法和适用的电路方式选择最佳的控制方式。