电负性表
- 格式:doc
- 大小:370.00 KB
- 文档页数:2
电负性知识点总结电负性是化学中用来描述原子或化合物对电子的亲和力的一个重要概念。
在化学反应和化学键的形成过程中,电负性起着至关重要的作用。
本文将以电负性的定义、性质、周期表上的分布和应用为主线,系统总结电负性的相关知识点。
一、电负性的定义电负性是一个描述原子或化合物对电子的亲和力的物理量。
正式的定义是:一个原子吸引其上电子的能力的相对度量。
通常来说,原子的电负性取决于其核的电荷数和电子排布在轨道中的情况。
电负性的大小决定了化学键的极性和物质的性质。
二、电负性的性质1. 电负性的大小在国际上,通常采用电负性最高的氟元素的电负性为4.0作为基准,其他元素的电负性则根据相对氟元素的吸电子能力来确定。
一般来说,电负性越大的元素,其吸引电子的能力也越强。
2. 电负性的变化元素的电负性随着元素的周期和族别的变化而变化。
通常来说,越往右和上方的元素,其电负性越大;越往左和下方的元素,其电负性则越小。
3. 化合物的电负性化合物的电负性是由组成化合物的原子的电负性来决定的。
如果两个原子的电负性相差很大,那么它们形成的化合物就会具有明显的极性。
三、电负性的周期表分布1. 周期性根据周期表来看,元素的电负性随着元素周期的变化而变化。
一般来说,原子的电负性随着周期数的增加而增加,但是每个周期的最后一个元素(惰性气体)除外。
2. 组内性在同一族别内,原子的电负性随着原子序数的增加而增加。
但是,惰性气体除外,它们是周期表上电负性最小的几个元素。
四、电负性的应用1. 化学键的类型根据化合物中原子间电负性的差异可分为离子键、共价键和极性共价键。
当两个原子的电负性差异大于1.7时,它们之间的键被认为是离子键;当两个原子的电负性差异介于0.5到1.7之间时,它们之间形成的是极性共价键;当两个原子的电负性差异小于0.5时,它们之间形成的是非极性共价键。
2. 分子极性根据分子中原子间电负性的差异,可以确定分子的极性。
具有极性共价键的分子通常是极性分子,而具有非极性共价键的分子则是非极性分子。
鲍林电负性1定义电负性综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。
它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。
元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。
2计算方法电负性的计算方法有多种,每一种方法的电负性数值都不同,比较有代表性的有3种:① .鲍林提出的标度。
根据热化学数据和分子的键能,指定氟的电负性为,计算其他元素的相对电负性。
②.密立根从电离势和电子亲合能计算的绝对电负性。
③.阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。
利用电负性值时,必须是同一套数值进行比较。
同一周期从左至右,有效核电荷递增,原子半径递减,对电子的吸引能力渐强,因而电负性值递增;同族元素从上到下,随着原子半径的增大,元素电负性值递减。
过渡元素的电负性值无明显规律。
就总体而言,周期表右上方的典型非金属元素都有较大电负性数值,氟的电负性值数大();周期表左下方的金属元素电负性值都较小,铯和钫是电负性最小的元素()。
一般说来,非金属元素的电负性大于,金属元素电负性小于。
电负性概念还可以用来判断化合物中元素的正负化合价和化学键的类型。
电负性值较大的元素在形成化合物时,由于对成键电子吸引较强,往往表现为负化合价;而电负性值较小者表现为正化合价。
在形成共价键时,共用电子对偏移向电负性较强的原子而使键带有极性,电负性差越大,键的极性越强。
当化学键两端元素的电负性相差很大时(例如大于)所形成的键则以离子性为主。
3常见元素电负性鲍林标度鲍林指定氟的电负性为,并以此为标准确定其他元素的电负性。
氢锂铍硼碳氮氧氟钠镁铝硅磷硫氯钾钙锰铁镍铜锌镓锗砷硒溴铷锶银碘钡金铅一般来说,电负性大于的是非金属元素,而小于等于的往往是金属元素(当然,其中也存在例外)电负性对应氧化性特殊元素O的电负性比N的大呀,N的第一电离需要破坏2P半充满的低能状态,O的第一电离形成了 2P半充满的低能状态,所以N的第一电离能比O的大,O的非金属性比N强,所以O的电负性比N的大4在周期表内的递变规律1.随着原子序号的递增,元素的电负性呈现周期性变化。
常见易错元素的化合价1、HCN中C的化合价?HCN分子结构式为H-C≡N,电负性(吸电子能力) N>C>H,则碳氮三键的电子对偏向原子,N为-3价,碳在这里为+3;但碳氢单键的电子偏向碳,电子指定给碳,碳就得到了1个电子,这部分碳显-1;氢就为+1.碳两部分加起来:+3+(-1)=+2,就是+2价.2、KSCN中硫为-2价,则C为多少价?C为+4价,N为-3,S为-2注:硫氰化氢H—S—C≡N,异硫氰酸H—N=C=S两种。
但元素化合价相同。
3、NaBH4中氢的化合价?NaBH4为离子化合物,BH4-为四面体结构,化合价可认为B只有+3,H为-1价。
可见,若能写出结构式,则可据电负性分析电子对的偏向与偏移,标出化合价4、FeCuS2中S的化合价?Fe5O7呢?S为-2,实际上见下面12条所示!中学生常见错误变形为FeS·CuS,Fe5O7,变形为FeO·Fe2O3,易分析。
变形法能分析陌生化合物中元素化合价,甚至能分析化合物的形成方法及分解产物。
5、SiH4中H的化合价?H为-1价,电负性:Si—1.9,H—2.2,即电子对偏向电负性大的原子一边。
注:NH3中N-3,H+1;N中N-3,H+1;CH4中C-4,H+1.6、Na2S2O8中硫的化合价?7、草酸中碳的化合价?其实,无机物与有机物是相通的,分析方法可借用。
8、关于碳元素的化合价碳原子的最外层上的电子数目为4,最多有四次成键的机会。
有机物中的碳原子能且只能成键4次。
(1)碳元素只有同氢元素结合时才显负价,即C—H中C为-1价,故甲烷中碳为-4价。
(2)碳元素同其它非金素元素结合时都显正价,如:C—X中C为+1价,C—O中C为+1价,C—N中C为+1价,C=O中C为+2价,C≡N中C为+3价。
所以,H-C≡N中C为+2价。
(3)碳原子与碳原子相结合时均为0价,即C—C、C=C、C≡C中全为0价。
形成CH3CH3、CH2=CH2、CH≡CH后,碳的化合价分别为:-3、-2、-1.总结归纳:根据有机物的分子结构确定C元素的化合价。
电负性本页解释何谓电负性、周期表中元素电负性的变化规律及原因;元素电负性差异对成键造成的影响、极性键和极性分子的意义。
什么是电负性定义电负性是原子对成键电子吸引倾向的量化(相对标度);元素的电负性愈大,吸引成键电子对的倾向就愈强。
鲍林标度(Pauling scale)是使用最广泛的电负性标度。
其标度值的范围从电负性最强的元素氟(F)——标度值为3.98,到电负性最弱的元素钫(Fr)——标度值为0.7。
两个电负性相同的原子成键会发生什么?如下图,原子A和原子B之间存在一个成键。
当然除了这个成键以外,每个原子可以同时与更多的原子之间存在着成键——不过这与我们所要讨论的问题无关。
如果原子的电负性相同,那么它们对成键电子对的吸引能力也相同。
因而电子出现在两个原子附近的概率相等,电子在平均意义上会出现在两个原子间的正中。
此类成键,A 和B通常为同一种原子,例如H2分子或Cl2分子。
注意: 上边的示意图表示的是电子在平均意义上的位置。
电子实际上存在于分子轨域当中,并且其位置在不断的变换。
此类成键被看作是"纯粹" 的共价键——电子均匀的为两个原子所共享。
如果B的电负性稍强于A呢?B对电子对的吸引能力会比A稍强一些。
这意味着在成键的B端电子密度会更高一些,因此略微带负电。
同时,A 端(有点缺乏电子)略微带正电。
图中,"" (读做"delta") 的意思为"略微的","+" 表示"略微带正电"。
什么是极性键?我们用极性键一词形容成键两端电荷不均匀分布的共价键——换一句话说就是成键的一端略微带正电荷而另一端略微带负电荷。
大多数共价键为此类成键。
HCl中的氢—氯成键以及水分子中的氢—氧成键皆为典型的极性键。
如果B的电负性远远超过了A呢?电子对会被吸引到成键的B端。
A失去了它对成键电子对的控制权,而B 完全控制住了这两个电子。
鲍林电负性1定义电负性综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。
它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。
元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。
2计算方法电负性的计算方法有多种,每一种方法的电负性数值都不同,比较有代表性的有3种:① L.C.鲍林提出的标度。
根据热化学数据和分子的键能,指定氟的电负性为3.98,计算其他元素的相对电负性。
②R.S.密立根从电离势和电子亲合能计算的绝对电负性。
③A.L.阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。
利用电负性值时,必须是同一套数值进行比较。
同一周期从左至右,有效核电荷递增,原子半径递减,对电子的吸引能力渐强,因而电负性值递增;同族元素从上到下,随着原子半径的增大,元素电负性值递减。
过渡元素的电负性值无明显规律。
就总体而言,周期表右上方的典型非金属元素都有较大电负性数值,氟的电负性值数大(4.0);周期表左下方的金属元素电负性值都较小,铯和钫是电负性最小的元素(0.7)。
一般说来,非金属元素的电负性大于2.0,金属元素电负性小于2.0。
电负性概念还可以用来判断化合物中元素的正负化合价和化学键的类型。
电负性值较大的元素在形成化合物时,由于对成键电子吸引较强,往往表现为负化合价;而电负性值较小者表现为正化合价。
在形成共价键时,共用电子对偏移向电负性较强的原子而使键带有极性,电负性差越大,键的极性越强。
当化学键两端元素的电负性相差很大时(例如大于1.7)所形成的键则以离子性为主。
3常见元素电负性鲍林标度鲍林指定氟的电负性为4.0,并以此为标准确定其他元素的电负性。
氢 2.1 锂 0.98 铍 1.57 硼 2.04 碳 2.55 氮 3.04 氧 3.44 氟 3.98 钠 0.93 镁 1.31 铝 1.61 硅 1.90 磷 2.19 硫 2.58 氯 3.16钾 0.82 钙 1.00 锰 1.55 铁 1.83 镍 1.91 铜 1.9 锌 1.65 镓 1.81 锗2.01 砷 2.18 硒 2.48 溴 2.96铷 0.82 锶 0.95 银 1.93 碘 2.66 钡 0.89 金 2.54 铅 2.33一般来说,电负性大于1.8的是非金属元素,而小于等于1.8的往往是金属元素(当然,其中也存在例外)电负性对应氧化性特殊元素O的电负性比N的大呀,N的第一电离需要破坏2P半充满的低能状态,O 的第一电离形成了 2P半充满的低能状态,所以N的第一电离能比O的大,O的非金属性比N强,所以O的电负性比N的大4在周期表内的递变规律1.随着原子序号的递增,元素的电负性呈现周期性变化。