开关电源中常用EMI滤波器
- 格式:pdf
- 大小:575.08 KB
- 文档页数:8
开关电源的EMI滤波器设计的开题报告一、选题背景及意义随着电子产品的普及和发展,开关电源已经成为了一个十分重要和普遍的电源类型。
开关电源具有体积小、效率高、维护简单等优点,但是由于其工作方式的特点,会产生较多的电磁干扰信号,对其它电子设备的正常工作造成一定的影响。
因此,在开关电源中应用EMI(电磁干扰)滤波器是必不可少的。
EMI滤波器是一种电路组件,能够有效地降低开关电源中的EMI干扰信号,从而提高设备的抗干扰能力,保证数据的可靠性和设备工作稳定性。
它能够通过选择合适的滤波器结构和元器件,对开关电源中产生的高频噪声进行滤波和屏蔽,从而减少电磁干扰和电源的噪声。
因此,本篇论文选取开关电源的EMI滤波器设计作为课题,旨在通过对滤波器结构和元器件的选择和分析,设计出一种有效的EMI滤波器,为开关电源应用提供指导和借鉴。
二、课题研究内容本题的主要研究内容包括以下两个方面:1、EMI滤波器的基本原理与设计方法:介绍EMI滤波器的基本原理及EMI源,重点探讨滤波器的设计方法和结构特点,对滤波器元件的选取和电路拓扑进行分析和优化。
2、开关电源中EMI滤波器的设计:根据EMI滤波器的设计原理和方法,结合开关电源的特性,设计一种适合开关电源的EMI滤波器,包括滤波器的拓扑结构、元器件的选择和最终电路方案。
三、研究意义本课题的研究成果,有以下几个方面的意义:1、EMI滤波器设计的研究对于提高开关电源的抗干扰能力,保证设备的数据可靠性,工作稳定性和电磁兼容性方面具有实际意义。
2、本研究成果对于进一步完善EMI滤波器的设计方法和研究具有一定的借鉴意义,并对工程实践具有一定的指导作用。
3、本研究针对开关电源的EMI滤波器设计,未来可进行推广和应用,在电路设计和电子设备维护过程中发挥积极作用。
四、研究方法本研究采取文献调研、理论研究和电路仿真等方法进行研究。
首先通过查阅文献和咨询相关专家,了解EMI滤波器的设计原理和方法;然后针对开关电源的特性,结合EMI滤波器的设计方法,进行滤波器电路的模拟仿真分析,得到最终的方案设计。
EMI电源滤波器概述EMI(Electromagnetic Interference)电源滤波器是一种用于减小电源传导和辐射的电磁干扰的设备。
现代电子设备越来越复杂,对电源的干净和稳定的的电源要求也越来越高。
电源滤波器能够有效地滤除来自电源的噪声和干扰信号,提供清洁的电源,以确保设备的正常运行。
单相电源滤波器适用于单相电源的设备,如家用电器、电脑以及各种低功率设备等。
它由各种电容、电感、阻性以及其他元件组成。
这些元件能够滤除电源线上的高频噪声,并将其入地。
此外,在电源线上的电压上升和下降过程中,电源滤波器能够提供足够的电流以满足设备的需求,并减少电压的浪涌和尖峰。
这样一来,电器设备在使用过程中就能保持稳定可靠的电源。
三相电源滤波器适用于三相电源的设备,如工厂、医疗设备以及一些高功率设备等。
它采用多个单相滤波器的组合形式,并通过三相电源来确保设备的稳定工作。
三相电源滤波器的结构复杂,大多采用矩形外形的箱式结构,并设有进出线路和接地线路的连接端子,以防止辐射干扰。
1.吸收和衰减电源线上的高频干扰和噪声。
电源线上的高频干扰和噪声会对设备的正常工作造成很大的影响,甚至产生故障。
EMI电源滤波器能够通过电容和电感等元件,将这些干扰信号滤除,并保证设备的正常工作。
2.减少电压的浪涌和尖峰。
在电源线上的电压上升和下降过程中,会产生电压的浪涌和尖峰。
这些浪涌和尖峰会对设备的电源供应产生很大的冲击,甚至损坏设备内部的电子元件。
EMI电源滤波器通过提供足够的电流来平滑这些浪涌和尖峰,并保证设备的正常供电。
3.提供稳定可靠的电源。
EMI电源滤波器通过滤除电源线上的噪声和干扰信号,并平滑电压的浪涌和尖峰,提供清洁的电源,并保证设备的稳定工作。
稳定的电源对于现代电子设备来说非常重要,能够保证设备的正常运行和长寿命。
4.防止辐射干扰。
EMI电源滤波器通过合理设计和特殊材料的使用,能够有效地防止辐射干扰。
辐射干扰会对周围的设备和电磁环境产生不利影响,可能导致设备的干扰或者设备之间的互相干扰,甚至可能对人体健康产生危害。
EMI滤波器适用范围与应用要求选择该类合适的型号与参数的EMI滤波器可用于吸收古瑞瓦特生产的小功率光伏逆变器的交流输出回路产生的浪涌与尖峰谐波电压标准的EMI滤波器通常由串联电抗器和并联电容器组成的低通滤波电路,其作用是允许设备正常工作时的频率信号进入设备,而对高频的干扰信号有较大的阻碍作用。
一、基本信息模块中文名称:EMI滤波器输出阻抗:50(kΩ)输入阻抗:40(kΩ)总频差:343(MHz)二、序言:电源线是干扰传入设备和传出设备的主要途径,通过电源线,电网的干扰可以传入设备,干扰设备的正常工作,同样设备产生的干扰也可能通过电源线传到电网上,干扰其他设备的正常工作。
因此:必须在设备的电源进线处加入EMI滤波器。
三、EMI滤波器的基本技术参数:输出阻抗:50(kΩ)输入阻抗:40(kΩ)阻带衰减:30(dB)插入损耗:50(dB)基准温度:70(℃)激励电平:50(mW)负载谐振电阻:430(Ω)负载电容:53.5(pF)总频差:343(MHz)温度频差:54(MHz)调整频差:554(MHz)标称频率:50(MHz)工作频率:工频50/60Hz或者中频400Hz种类:滤波器型号:SH-100四、典型结构1、低通滤波器:EMI滤波器是一种由电感和电容组成的低通滤波器,它能让低频的有用信号顺利通过,而对高频干扰有抑制作用。
EMI滤波器的典型结构如图所示。
EMI滤波器的作用,主要体现在以下两个方面:1.1、抑制高频干扰抑制交流电网中的高频干扰对设备的影响;1.2、抑制设备干扰抑制设备(尤其是高频开关电源)对交流电网的干扰。
2、性能指标任何一种产品都有它特定的性能指标,或者是客户所期望的,或者是某些标准所规定的。
EMI滤波器最重要的技术指标是对干扰的抑制能力,常常用所谓的插入损耗(Insertion Loss)来表示。
它的定义是:没有接入滤波器时从干扰源传输到负载的功率P1和接入滤波器后从干扰源传输到负载的功率P2之比,用分贝(dB)表示。
开关电源EMI滤波器原理1 EMI滤波器设计原理在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。
所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。
设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。
基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。
在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。
简言之,EMI滤波器设计可以理解为要满足以下要求:1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减);2)对电网频率低衰减(满足规定的通带频率和通带低衰减);3)低成本。
1.1 常用低通滤波器模型EMI滤波器通常置于开关电源与电网相连的前端,是由串联电抗器和并联电容器组成的低通滤波器。
如图1所示,噪声源等效阻抗为Z source、电网等效阻抗为Z sink。
滤波器指标(f stop和H stop)可以由一阶、二阶或三阶低通滤波器实现,滤波器传递函数的计算通常在高频下近似,也就是说对于n阶滤波器,忽略所有ωk相关项(当k<n),只取含ωn相关项。
表1列出了几种常见的滤波器拓扑及其传递函数。
特别要注意的是要考虑输入、输出阻抗不匹配给滤波特性带来的影响。
图1 滤波器设计等效电路表1 几种滤波器模型及传递函数1.2 EMI滤波器等效电路传导型EMI噪声包含共模(CM)噪声和差模(DM)噪声两种。
共模噪声存在于所有交流相线(L、N)和共模地(E)之间,其产生来源被认为是两电气回路之间绝缘泄漏电流以及电磁场耦合等;差模噪声存在于交流相线(L、N)之间,产生来源是脉动电流,开关器件的振铃电流以及二极管的反向恢复特性。
开关电源EMI滤波器的正确选择与使用(连载二)2额定电流与环境温度EMI滤波器一般采用高导磁率软磁材料锰锌铁氧体,初始导磁率μi=700~10000,但其居里点温度不高,优质的仅为130℃左右。
导磁率越高,居里点温度越低,典型曲线如图10所示。
除特殊说明外,EMI滤波器说明书给出的额定电流均指室温+25℃的值;同样,给出的典型插入损耗或曲线也均指室温+25℃的值。
随着环境温度的升高,主要由电感导线的损耗、磁芯损耗以及周围环境温度等原因导致温度高于室温,结果难于确保插入损耗的性能,甚至烧坏滤波器。
由于滤波电容的最高工作温度受到限制也是+85℃。
我们应该根据实际可能的最大工作电流和工作环境温度来选择滤波器额定电流。
图10 居里点温度曲线图11额定电流与温度的关系工作电流、额定电流与环境温度之间存在如下关系:式中:Ip——容许的最大工作电流;IR——室温+25℃时的额定电流;Tmax——容许的最高工作温度,+85℃;Ta——环境温度;TH——室温(+25℃)。
也可用曲线表示(参见图11)。
曲线表示Ip/IR∝Ta。
举例说明:+25℃Ip=IR;+45℃Ip=0.816IR;+55℃Ip=0.5IR;+85℃Ip=0.0因此,要根据工作温度来正确选择滤波器的额定电流;或者用改善滤波器的散热条件(工作环境)来确保滤波器的安全使用。
这样,滤波器务必安装在有散热作用的机架、机壳上,切忌安装在绝缘材料上。
3耐压、泄漏电流与安全3.1耐压与安全由于EMI滤波器安装在AC电网的输入端,所以除了承受开关电源(滤波器的负载)产生的尖峰脉冲干扰电压外,还要承受来自电网的浪涌电压(电流),特别是浪涌电压,其持续时间长(ms级),能量大(2000伏浪涌电压是经常出现的)。
这些干扰电压由滤波器的Cx、Cy承受。
因此,要求使用专为EMI滤波器设计的Cx、Cy。
目前,据了解,因内尚没有这类电容器生产厂家。
电容Cx或Cy被浪涌电压击穿产生的后果,是Cx被击穿短路,相当于AC电网被短路,至少造成设备停止工作;Cy击穿短路,相当于将AC电网的电压加到设备的外壳,它直接威胁人身安全的同时,波及所有与金属外壳为参考地的电路安全,往往导致某些电路的烧毁。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
www�ele169�com | 7电子科技开关电源本身拥有质量和效率双高的特点,而且能使电能多样变换。
得到工业和民用领域的双重青睐,但由于开关电源和功率开关器件所带来的电磁干扰,使得电磁影响在电源内部愈演愈烈,同时使得其他电子设备及电源自身工作越发不利。
除此之外,为顺应高频化的发展趋势,开关电源必然迈向小型化发展的道路,随之而来却是更加强烈的电磁干扰。
为了解决这一问题,最行之有效的办法就是加装EMI 滤波器,由于其应用的广泛性,EMI 滤波器显得越来越重要。
1 MI 滤波器简介 ■1.1 开关电源简介一个高频开关电源主要是由下面的几个电路构成,它的基本结构如图1所示。
(1)功率电路:指的是开关电源的主电路部分,由交流电输入端口到直流电输出端口的电路通道,包含了四个方面:① 输入滤波器; ② 整形滤波电路; ③ 逆变; ④ 输出的整形滤波电路。
(2)检测电路:对系统工作的状态进行监测,将得到的数据传送给保护模块,并且提供个给显示模块输出。
(3)保护电路与控制电路:保护模块依据检测模块检测到的参数,和电路的限制相比较,将数据结果传送到控制模块,再由控制模块对系统或设备实施各类保护措施;控制电路是把输出由反馈电路采集的数据与标准值做差,然后将差值放大去控制功率开关管的占空比,以调整输出的大小。
(4)辅助电源:为电路除功率电路以外的模块提供电源。
■1.2 EMI 滤波器简介EMI 滤波器广泛存在于电源开关中,长期以来,科研人员一直在不懈坚持研究对抗干扰的方法与途径,在传统的长期工程实践中,人们归纳总结出屏蔽、系统布局、合理接地以及滤波等行之有效的对抗电磁干扰的举措。
在实际运用中,比较好的手段是在屏蔽室控制电磁干扰所带来的辐射信号,减少电磁干扰信号的传导EMI 则需依靠滤波技术,由于传导方式是电磁干扰的主要方式,所以主要依靠EMI 滤波器来隔阻开关电源EMI [1]。
EMI 滤波器本质上都是低通滤波器,理想情况下按照阻抗最大不匹配原则:当源阻抗是高阻时,滤波器的输入阻抗应为低阻,反之亦然。
开关电源EMI滤波器的正确选择与使用2额定电流与环境温度EMI滤波器一般采用高导磁率软磁材料锰锌铁氧体,初始导磁率μi=700~10000,但其居里点温度不高,优质的仅为130℃左右。
导磁率越高,居里点温度越低,典型曲线如图10所示。
除特殊说明外,EMI滤波器说明书给出的额定电流均指室温+25℃的值;同样,给出的典型插入损耗或曲线也均指室温+25℃的值。
随着环境温度的升高,主要由电感导线的损耗、磁芯损耗以及周围环境温度等原因导致温度高于室温,结果难于确保插入损耗的性能,甚至烧坏滤波器。
由于滤波电容的最高工作温度受到限制也是+85℃。
我们应该根据实际可能的最大工作电流和工作环境温度来选择滤波器额定电流。
图10 居里点温度曲线图11额定电流与温度的关系工作电流、额定电流与环境温度之间存在如下关系:式中:Ip——容许的最大工作电流;IR——室温+25℃时的额定电流;Tmax——容许的最高工作温度,+85℃;Ta——环境温度;TH——室温(+25℃)。
也可用曲线表示(参见图11)。
曲线表示Ip/IR∝Ta。
举例说明:+25℃Ip=IR;+45℃Ip=0.816IR;+55℃Ip=0.5IR;+85℃Ip=0.0因此,要根据工作温度来正确选择滤波器的额定电流;或者用改善滤波器的散热条件(工作环境)来确保滤波器的安全使用。
这样,滤波器务必安装在有散热作用的机架、机壳上,切忌安装在绝缘材料上。
3耐压、泄漏电流与安全3.1耐压与安全由于EMI滤波器安装在AC电网的输入端,所以除了承受开关电源(滤波器的负载)产生的尖峰脉冲干扰电压外,还要承受来自电网的浪涌电压(电流),特别是浪涌电压,其持续时间长(ms级),能量大(2000伏浪涌电压是经常出现的)。
这些干扰电压由滤波器的Cx、Cy承受。
因此,要求使用专为EMI滤波器设计的Cx、Cy。
目前,据了解,因内尚没有这类电容器生产厂家。
电容Cx或Cy被浪涌电压击穿产生的后果,是Cx被击穿短路,相当于AC电网被短路,至少造成设备停止工作;Cy击穿短路,相当于将AC电网的电压加到设备的外壳,它直接威胁人身安全的同时,波及所有与金属外壳为参考地的电路安全,往往导致某些电路的烧毁。
开关电源EMI滤波器典型电路开关电源EMI滤波器典型电路开关电源为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图1所示。
图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。
图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。
图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。
R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。
图(d)则是把共模干扰滤波电容C3和C4接在输出端。
EMI滤波器能有效抑制单片开关电源的电磁干扰。
图2中曲线a为加EMI滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。
曲线b是插入如图1(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~70dBμV。
显然,这种EMI滤波器的效果更佳。
电磁干扰滤波器电路电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。
电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
L的电感量与EMI滤波器的额定电流I有关,参见表1。
需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。
此外,适当增加电感量,可改善低频衰减特性。
C1和C2采用薄膜电容器,容量范围大致是0.01μF~0.47μF,主要用来滤除串模干扰。
C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。
C3和C4亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。
常用在开关电源中做EMI滤波器的安规电容1.安规电容的概念安规电容是指电容器失效后,不会导致电击,不危及人身安全的安全电容器。
安规电容通常只用于抗干扰电路中的滤波作用。
它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模干扰起滤波作用。
出于安全考虑和EMC考虑,一般在电源入口建议加上安规电容。
2.安规电容与普通电容的异同点安规电容的放电和普通电容不一样,普通电容在外部电源断开后电荷会保留很长时间,如果用手触摸就会被电到,而安规电容则没这个问题。
在交流电源输入端,一般需要增加3个安全电容来抑制EMI 传导干扰。
图1 安规电容应用在开关电源中3.安规电容的分类安规电容分为x 型和y 型。
交流电源输入分为3 个端子:火线L/零线N/地线G,(L=Line,N=Neutral, G=Ground)。
跨于“L-N”之间,即“火线-零线”之间的是X 电容;跨于“L-G/N-G”之间,即“火线-地线或零线-地线”之间的是Y 电容。
火线与零线之间接个电容就像是“X”,而火线与地线之间接个电容像个“Y”4.安规电容应用在开关电源的EMI滤波器电路如下图所示为EMI电路,该EMI滤波器应用在220V交流电与整流电路之间,用来滤除市电中的电压瞬变和高频干扰,同时也防止开关电源中的器件产生的高频干扰传输到市电中。
安规电容应用在开关电源的EMI滤波器5.安规电容的安全等级安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)X1 >2.5kV ≤4.0kV ⅢX2 ≤2.5kV ⅡX3 ≤1.2kV ——安规电容安全等级绝缘类型额定电压范围Y1 双重绝缘或加强绝缘≥ 250VY2 基本绝缘或附加绝缘≥150V ≤250VY3 基本绝缘或附加绝缘≥150V ≤250VY4 基本绝缘或附加绝缘<>。
开关电源应用最为广泛,但EMI最为严重。
开关电源EMI主要来源:其一:在整流环节中,由于滤波电容器容量很大,整流管仅在交流电压峰值附近导通,此时电容器流经较大的充电尖峰电流,产生了丰富的谐量分量;其二:由于DC/DC变换器开关频率在几十KHZ至几百KHZ之间,开关管电流含有丰富的谐波分量,而且是开关电源主要电磁干扰源。
由于开关电源EMI主要是传导干扰,采用滤波器来抑制是最主要的手段。
EMI滤波器设计与一般信号滤波器设计完全不同,必须采取特殊设计方法。
本文采用完全有别于信号滤波器的设计方法,采用“三点频率法”设计了双级LC滤波器,滤波器效果令人满意。
1 滤波器设计双级LC网络插入开关电源电路中的位置如图1所示。
图1 LC网络在开关电源电路中的位置假定直流电源侧为低阻抗电压源Us,DC/DC变换器输入端为高阻抗电流源i(t)。
那么LC滤波器只能选择“ Γ”型结构,最简单的双“ Γ”型LC网络如图2所示。
其频域传递函数为图2 双级LC网络由于LC网络谐振时,会产生很大的电流(电压)峰值,这个网络有3个频率点的谐振峰值是必须限制,否则,会产生更大的EMI。
限制这3个频率点的峰值是设计这个滤波器的主要指导思想。
这3个频率点分别是:由于LC网络谐振时,会产生很大的电流(压)峰值,这个网络有3个频率点的谐振峰值是必须限制,否则,会产生更大的EMI。
限制这3个频率点的峰值是设计这个滤波器的主要指导思想。
这3个频率点分别是:第一级滤波器的谐振频率:第二级滤波器的谐振频率:第3个频率点就是DC/DC 变换器的开关频率f。
下面具体讨论滤波器设计方法,即选取LC 网络中元件参数的方法。
由上面3个式子,3个频率点对应的传递函数的幅值分别为:元件参数选取方法讨论如下:为了限制1 f 点的谐振峰值,要求插入衰减20logH1=20logC1/C2<0,即C1/C2<0。
根据经验,它们的比值范围为C1/C2=0.1~0.5 (7)为了限制f2点的谐振峰值,同理选取L1/L2=0.1~0.5 (8)为了限制f 点的谐振峰值,要求20logH3=-20~-150dB,即H3=0.1~0.5 (9)元件参数选取步骤归纳如下:(1)由(7)~(9)式确定了比值,这样只有二个参数是独立的;(2)由于滤波器负载侧(开关电流i(t)侧)谐波分量较大,C2应选一个大容量电容器;(3)由(1)、(2)步结果代入(9)式,就可以确定另一个独立参数。
开关电源输入EMI滤波器设计与仿真(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)开关电源输入EMI滤波器设计与仿真曹丽萍张勋陈晨刘韬摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。
三端电容器在抑制开关电源高频干扰方面有良好性能。
文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。
并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。
关键词:开关电源;EMI滤波器;三端电容器;插入损耗1、开关电源特点及噪声产生原因随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。
开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。
开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。
开关电源干扰主要来源于工频电流的整流波形和开关操作波形。
这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。
考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。
文中主要研究的是开关电源输入端的EMI滤波器。
2、EMI滤波器的结构开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。
开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。
差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。
抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。
EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。
共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。
contents •开关电源EMI滤波器概述•EMI滤波器的工作原理•EMI滤波器的设计方法•EMI滤波器的制造工艺•EMI滤波器的测试与验证•EMI滤波器的应用与案例分析目录在开关电源中,EMI滤波器对于保护电源免受外部电磁干扰以及防止内部干扰影响其他电路具有重要意义,保证了电源的稳定性和可靠性。
EMI滤波器的定义与重要性EMI滤波器的重要性EMI滤波器定义EMI滤波器的分类EMI滤波器的特点EMI滤波器的分类与特点发展趋势技术挑战EMI滤波器的发展趋势EMI滤波器通常由电感、电容和电阻等元件组成,根据需要还可以加入铁氧体磁珠、二极管等其他元件。
其中,电感和电容的作用是阻止特定频率的电磁波通过,而电阻则可以吸收电磁波的能量。
EMI滤波器的电路设计需要根据开关电源的工作频率、电磁干扰的频率和幅度、以及所需的滤波效果等因素来确定元件的参数和电路结构。
插入损耗共模抑制比频带宽度耐压等级确定滤波器的性能指标包括滤波器的插入损耗、反射损耗、阻抗匹配等指标,根据应用场景和电磁兼容标准来确定。
包括电容器、电感器、电阻器等,根据设计需求来选择适当的元件类型和规格。
根据设计需求和元件参数,设计出满足性能指标的滤波器电路。
利用仿真软件对所设计的滤波器电路进行仿真验证,确保其性能指标符合要求。
将所设计的滤波器电路制作成样品,并进行测试,确保其实际性能符合设计要求。
选择适当的滤波器元件仿真验证制作与测试设计滤波器电路设计流程与步骤确定反射损耗反射损耗是指滤波器对信号的反射量,也是衡量滤波器性能的重要指标之一。
反射损耗的计算方法包括反射系数法和导纳变换法等。
确定插入损耗插入损耗是指滤波器插入前后信号电平的差值,是衡量滤波器性能的重要指标之一。
插入损耗的计算方法包括频域法和时域法等。
阻抗匹配为了使信号能够顺利传输,滤波器需要与信号源和负载阻抗进行匹配。
阻抗匹配的计算方法包括欧姆定律法和奇偶模分析法等。
参数选择与计算例如,设计一个针对某开关电源的EMI滤波器,需要考虑到该开关电源的工作频率、输出电压、输出电流等因素,以及所连接的负载特性和电磁兼容标准等。
摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。
三端电容器在抑制开关电源高频干扰方面有良好性能。
文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。
并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。
1 开关电源特点及噪声产生原因
随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。
开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。
开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。
开关电源干扰主要来源于工频电流的整流波形和开关操作波形。
这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。
考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。
文中主要研究的是开关电源输入端的EMI滤波器。
2 EMI滤波器的结构
开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。
开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。
差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。
抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。
EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。
共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。
两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。
为了更好地抑制共模噪声;
共模扼流圈应选用磁导率高,高频性能好的磁芯。
共模扼流圈的电感值与额定电流有关。
差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。
Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。
常选
用自谐振频率较高的陶瓷电容。
由于接地,共模电容Cy上会产生漏电流Ii-d。
因为漏电流会对人体安全造成伤害,所以漏电流应尽量小,通常<1.0 mA。
共模电容取值与漏电流大小有关,所以不宜过大,取值范围一般为2200~4700 pF。
R为Cx的泄放电阻。
电源滤波器的性能很大程度上取决于其端阻抗,根据信号传输理论,滤波器输入端与电源端的端接、滤波器输出端与负载端的端接应遵循阻抗极大不匹配原则。
因此,滤波器设计时应遵循:(1)源内阻是高阻(低阻)的,滤波器输入阻抗就应该是低阻(高阻);(2)负载是高阻(低阻)的,则滤波器输出阻抗就应该是低阻(高阻)。
对EMI信号来说,电感是高阻,电容是低阻,则有图1中的4种滤波器选用类型。
电源滤波器一般用来抑制30 MHz以下频率范围的噪音,但对30 MHz以上的辐射发射干扰也有一定的抑制作用。
根据开关电源共模、差模干扰的特点。
可以按干扰的分布大概划分为3个频段:0.15~0.5 MHz差模干扰为主;0.5~5 MHz差模、共模干扰共存;5~30 MHz共模干扰为主。
3 插入损耗
插入损耗是*价滤波器性能的主要指标,它是频率的函数。
插入损耗的定义为,没有滤波器接入时,从噪声源传输到负载的功率P1和接入滤波器后噪声源传输到负载的功率P2之比,用dB 表示。
插入损耗越大,说明滤波器抑制干扰的能力越强。
滤波器接入前后的电路图,如图3(a)和图3(b)所示。
滤波器的插入损耗由式(1)表示。
4 三端电容器
在高频线路中,因为一般电容器的引线具有电感分量,所以影响了其高频特性。
而三端电容器在结构上可以做到与电容器串联的剩余电感分量很小,因此其插入损耗特性优于两端电容器,从而改善了电容器的高频特性。
三端电容器有引线式和片状式两种。
通常采用旁路电容抑制高频噪声。
实际的电容器不仅具有电容C,还有等效串联电阻ESR和等效串联电感ESL。
由于寄生电感的影响,对于一个实际的电容存在着自谐振频率。
在这个频率以上时,电容呈感性。
元件的寄生参数也会极大地影响滤波器的高频特性。
电容的寄生电感是主要的寄生参数,而对于电感来说,寄生电容是主要的寄生参数。
电容器用作旁路电容时,如图4(a)所示,两端电容器一端接地,另一端与信号线连接。
三端电容器一端接地,其余两端与电容器的一个电极相连并串联到信号线上,如图4(b)所示。
一般的两端电容器由于与其电路连接的引线电感或电极所产生的等效串联电感较大,所以自谐振点较低,旁通效应也随之降低。
采用三端电容器可有效改善此缺陷。
原因在于三端电容器中流入地的电流与信号线中电流方向正交,所以其寄生电感比两端电容降低约50%,
并且其中70%以上的寄生电感转移到信号线上。
因此提高了三端电容器的自谐振频率,也可以将它作为T形滤波器使用,更好地抑制高频噪声。
三端电容器的地线电感起着不良作用,作为旁路电容抑制高频噪声时,宜采用无引线的片式陶瓷电容器。
图5为两端电容器与三端电容器插入损耗的比较。
5 改进型结构
线路旁通电容Cy是用来消除高频噪声的组件,基于对今后开关操作频率的高频化考虑,宜选用能消除频率高达1000MHz噪声的电容器。
而一般的两端结构的旁通电容器仅能消除30MHz左右的噪声。
由以上介绍可知,相对两端电容器来说,三端电容器能更好地抑制高频噪声。
以EMI滤波器的一般结构为基础,用三端电容器替代其中的两端旁通电容Cy,电路图,如图6所示。
其中ESL为三端电容器信号线上的等效串联电感。
6 PSpice仿真
(1)使用三端电容的电路的插损与以往电路插损的比较。
取差模电容Cx为0.1μF,共模电容Cy为2200pF,共模电感L取8mH。
三端电容的等效串联电感ESL取0.36nH。
在50 Ω/50 ΩQ系统中分别对一般结构的EMI滤波器和使用了三端电容器的EMI滤波器的插入损耗进行PSpice仿真。
如图7所示,EMI滤波器在使用三端电容时,谐振点之后的插损效果明显好于在滤波器中使用两端电容的插损。
提高了滤波器在高频段的性能。
(2)不同Cy值,固定ESL。
在使用三端电容的滤波器电路中,输入阻抗和输出阻抗都取50时,分别取共模电容Cy为4700pF,3300pF和2200pF,其他参数不变,观察共模电容
Cy变化时对插入损耗的影响。
通过图8的仿真结果看出,随着共模电容的增大,在高频段插入损耗有所提高,并且滤波器谐振点降低;而在低频段基本没有变化。
因此可以通过选择较大的共模电容来提高滤波器高频段的插入损耗。
由于共模电容需要接地,有漏电流,Iid的存在,对人身安全存在威胁。
而共模电容越大,漏电流越大,所以选择共模电容时需要在漏电流满足安全条件的情况下取值。
(3)固定Cy值,不同ESL。
考察三端电容器与信号线串联的等效串联电感ESL对插入损耗的影响。
取共模电容Cy为3 300 pF,取ESL分别为0.03 nH,0.36 nH和0.72 nH,其他参数值不变。
从图9的仿真结果可以看出,随着ESL降低,谐振点提高,谐振点之后的插入损耗下降。
7 结束语
在一般性能EMI滤波器的基础上,使用三端电容器作为共模电容对原滤波器加以改进,仿真结果表明,在高频段有较好的插损效果。
由于实际使用时设备的阻抗大小以及在高频时元件的寄生效应均会对EMI滤波器的插损产生影响,因此还需根据实际情况对滤波器进行具体优化设计。
(电子科技作者:曹丽萍,张勋,陈晨,刘韬)。