电压比较器
- 格式:doc
- 大小:15.55 MB
- 文档页数:11
常用的电压比较器电压比较器是一种常用的电子元件,用于将输入的电压与参考电压进行比较,并输出相应的逻辑信号。
在实际电路中,电压比较器的使用场景非常广泛,例如用于电源监测、电压检测、电压自动调节等。
本文将介绍常用的电压比较器及其相关参考内容。
1. 常用电压比较器的种类常用的电压比较器有很多种类,常见的有以下几种:1) 开环比较器:是一种基本的电压比较器,具有高增益和高速度,可以将输入电压的随时间变化情况通过比较转换为输出信号。
常见的开环比较器有LM311、LM339等。
2) 窗口比较器:是一种特殊的电压比较器,具有两个参考电压,当输入电压位于两个参考电压之间时,输出为高电平;否则输出为低电平。
常见的窗口比较器有LM393、LM2903等。
3) 差分比较器:是一种用于比较两个输入电压之间差异的电压比较器,常用于模拟信号处理中。
常见的差分比较器有LM311、AD820等。
2. 电压比较器的输入电压范围和功耗不同的电压比较器具有不同的输入电压范围和功耗。
一般来说,输入电压范围是指比较器能够正常工作的输入电压范围,超出该范围的输入电压可能会引起比较器的不确定性。
而功耗则与比较器的工作电流有关,功耗较低的比较器可以减小电路的能耗。
在选择比较器时,应根据具体应用需求选择合适的输入电压范围和功耗。
3. 电压比较器的输出特性电压比较器的输出特性是指输出信号的电平和响应时间等。
常见的输出电平有两种:开漏输出和推挽输出。
开漏输出一般用于需要驱动外部负载的场合,而推挽输出则可以直接驱动数字电路。
响应时间是指比较器从接收输入信号到输出信号变化所需的时间,一般来说,响应时间越短越好,可以提高比较器的响应速度。
4. 电压比较器的应用场景电压比较器在实际应用中非常广泛,常见的应用场景有以下几种:1) 电源监测:用于检测电源电压是否在正常范围内,当电源电压低于或高于设定阈值时,电压比较器可以输出相应的信号进行报警或保护。
2) 电压检测:用于检测电路中的电压是否满足要求,当电压低于或高于设定阈值时,电压比较器可以输出相应的信号进行控制或调节。
常用的电压比较器电压比较器是电子电路中常见的一种器件或电路,通常用于比较两个电压的大小,然后输出高电平或低电平来实现对信号的控制。
在电子电路设计中,电压比较器是十分常用的电路之一,因此,本文将介绍一些常用的电压比较器。
1. LM311电压比较器LM311是一种具有高速、精度和灵敏度的电压比较器,常用于电子控制和测量系统中。
它操作电源范围广,具有高电阻输入和输出,且能够在广泛的温度范围内操作。
另外,LM311还具有可调的电压比较器和滞回比较器的特性,使其更加灵活和多功能。
2. LM339电压比较器LM339是一种低功耗、低电压操作和高精度的电压比较器。
它具有四个独立的比较器,每个比较器都有一个开放式输出引脚和一个输入电平偏置器。
LM339的功耗非常低,故它在开启多个输出时也不会对电路产生太大的负担。
3. LM393电压比较器LM393是一种专为简单应用设计的低功耗、电压操作和高精度的电压比较器。
它具有两个独立的高增益、低偏移电压比较器,具有不需要外部元件的开环电路输入抗性。
它还具有多种工作电压和温度范围,适用于多种不同的应用场合。
4. UA741电压比较器UA741是一种原始的集成电路,它是很多电路中常见的基本电压比较器模块。
它具有高增益、宽电压范围和大电流能力,因此,在许多不同应用场合中都有广泛的应用。
总的来说,以上四种电压比较器都有各自的特点和应用场合,它们都是电子电路设计中常见的器件或电路。
电压比较器在电压判断、判断两个电路是否相等等方面有广泛的应用,但需要特别注意的是在实际应用中,也需要使用外部元件来进行稳定性校正,这种校正可以提高电路的稳定性、精度和性能。
电压比较器
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;
当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平;
电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。
利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此我们就要对它进行改进。
改进后的电压比较器有:滞回比较器和窗口比较器。
运放,是通过反馈回路和输入回路的确定“运算参数”,比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。
而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。
电压比较器输入是线性量,而输出是开关(高低电平)量。
一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。
可用作电压比较器的芯片:所有的运算放大器。
常见的有LM324 LM358 uA741 TL081\2\3\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。
LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合,其实它们也是一种运算放大器。
LM339的引脚图如下:
LM339。
什么是电子电路中的电压比较器电子电路中的电压比较器是一种广泛应用于电子设备中的重要电子元件。
它常被用来比较两个电压输入,并输出相应的结果,用于电压判断和控制电路。
本文将介绍电压比较器的工作原理、种类及应用领域。
一、工作原理电压比较器是基于比较两个输入电压的大小而产生输出信号的电路。
它通常由一个差动放大器和一个阈值比较器组成。
差动放大器可以放大输入电压信号,而阈值比较器则将放大的信号与设定的阈值进行比较,并输出高或低电平。
在工作过程中,如果输入电压大于阈值,则输出为高电平。
反之,如果输入电压小于阈值,则输出为低电平。
通过这种方式,电压比较器可实现对电压信号的判断和控制。
二、种类电压比较器有多种不同的类型,根据其不同的特性和应用需求选择适合的类型。
以下是几种常见的电压比较器类型:1. 开环比较器:开环比较器是最简单的电压比较器类型,它具有高增益和快速响应的特点。
然而,开环比较器对输入信号的共模电压具有较高的要求,且输出波形不稳定。
因此,在一些特定的应用场合,需要使用更精确和稳定的电压比较器。
2. 集成比较器:集成比较器是目前应用最广泛的电压比较器类型之一。
它内部集成了多种功能,如偏置电源、输出驱动电路等,能够更好地适应不同的应用需求。
3. 窗口比较器:窗口比较器可以同时比较两个阈值,它在两个阈值之间的电压范围内输出高电平,而在阈值范围之外输出低电平。
窗口比较器常用于需要检测输入信号是否在特定范围内的电路。
三、应用领域电压比较器在电子电路中有广泛的应用。
以下是几个常见的应用领域:1. 电压检测与保护:电压比较器可以用于电源电压的监测与保护。
当电源电压超出设定的范围时,电压比较器会输出相应的信号,用以触发保护措施,防止电子设备受损。
2. 模拟信号处理:电压比较器可用于模拟信号处理,如模拟信号的采样、滤波和波形整形等。
通过比较不同电压水平的信号,可以实现对模拟电路的控制和调整。
3. 数字信号处理:在数字电路中,电压比较器被广泛应用于逻辑电平判断、数据的比较和选择等。
电压比较器电压比较器,三端元件(两输入端,一输出端),输入为模拟信号,输出为数字信号。
一、基本电路和相关定义1、电压(电平)比较器的身份定义电压比较器是一种用来比较两个或两个以上模拟电平,并给出比较结果(可用数字量的1、0来表示)的功能部件。
可作为模拟电路和数字电路之间接口的一种电路,即模拟-数字转换器。
所有运算放大器,均处于负反馈的闭环状态之下。
一旦处于开环,因其无穷大电压放大倍数之故,势必使其输出级处于“饱和”或“截止”的两个极端状态,而不再具备放大器的特征。
但在某些应用场合,恰恰需要利用放大器开环时输出级所表现出的这种极端状态,如将两个或两个以上模拟量输入量进行比较,将两者(或两者以上)的大小分别用高电平(逻辑1)和低电平(逻辑0)表示,以完成将电平差转换为数字表的转换。
其输入、输出已不存在线性关系。
如果有一种器件,是专业从事输入电压比较而输出开关量信号的,该器件就叫做电压比较器。
因而该类器件既不归属于线性(模拟)电路类别,也不归属于数字电路类别。
从输入看,尚具备线性电路特点;从输出看,已为典型的数字电路特点。
其身份尴尬:非线性模拟电路(又是一个矛盾性定义,既为模拟,又何来非线性?)。
比较器有模拟和数字电路的两重特性,是集成了二者之长吗?与二者相比,各有什么特点?它们能否相互替代呢?12+-ININO UTVREFO UT+-INVREFO UT321321RPN1N2RPa 、反相器b 、运放电路c 、比较器电路图1-1 比较器和数字电路、运放电路1)反相器以数字电路中的TTL 产品中的反相器为例。
反相器是如何识别输入信号的高、低电平呢?肯定有一个潜在的比较基准。
器件典型供电Vcc 为+5V ,当输入电压低于1.5V (30%Vcc 以下,比较基准之一)时,为输入低电平信号,此时输出端为高电平状态;当输入电压高于3.5V (60%Vcc 以上,比较基准之二)时,为高电平信号输入,此时输出端为代电平状态;当输入信号在低于3.5V 高于1.5V 的范围之内,会引起识别混乱或无法识别,从而不能确定输出状态(因此这一输入电压范围也被称为非法信号)。
实验十集成运放基本应用之三——电压比较电路
姓名:班级:学号:实验时间:
一、实验目的
1、掌握比较器的电路构成及特点
2、学会测试比较器的方法
二、实验原理
1、图1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。
图1(b)为(a)图比较器的传输特性。
(a) 图1 电压比较器(b)
当Ui<UR时,运放输出高电平,稳压管Dz反向稳压工作。
输出端电位被其箝为在稳压管的稳定电压Uz,即:Uo=Uz。
当Ui>UR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。
因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。
高电位和低电位。
2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。
(1)、图2过零比较器
D1D2为幅稳压管。
信号从运放的反相端输入,参考电压为零。
当u1>0时,u0=-(Uz+U),当
u1<0时,u0=+(Uz+U)
(a) 图2 过零比较器(b)
(2)、图3为滞回比较器。
过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。
为此就需要输出特性具有滞回现象。
如图3所示:
(a) (b)
图3 滞回比较器
从输出端引入一个电阻分压支路到同相输入端,若Uo 改变状态,U点也随着改变点位,使过零点离开原来位置。
当Uo 为正(记作U )U R/(R+ R)]* U,则当UD> U后,Uo 再度回升到UD,于是出现图(b)中所示的滞回特性。
- U与
U的差别称为回差。
改变R2 的数值可以改变回差的大小。
三、实验设备与器件
1、±12V直流电源
2、直流电压表
3、函数信号发生器
4、交流毫伏表
5、双踪示波器
6、运算放大器μA741×2
7、稳压管2CW231×1 8、二极管4148×2
9、电阻器等
四、实验内容
1、过零电压比较器
(1)如图5所示在运放系列模块中正确连接电路,并接通±12V电源。
图5 过零比较器
(2)测量当Ui 悬空时,Uo 的值。
(3)调节信号源,使输出频率为500Hz,峰峰值为2V 的正弦波信号,并输入至Ui 端,用示波器观察比较器的输入Ui 与输出Uo 波形并记录.
(4)改变信号发生器的输出电压Ui 幅值,用示波器观察Uo 变化,测出电压传输特性曲线。
实验得Ui 悬空时,Uo= ;
Ui 与输出Uo 波形(输入峰峰值为10V)
Ui 与输出Uo 波形(输入峰峰值为2V)
Ui 与输出Uo 波形(输入峰峰值为1V)
由以上三图可得传输特性曲线为
分析:
当Ui<0 时,由于集成运放的输出电压Uo'=+Uom,使稳压管D2 工作在稳压状态(两只稳压管的稳定电压均小于集成运放的最大输出电压Uom),所以输出电压Uo=Uz;
当Ui>0 时,由于集成运放的输出电压Uo'=-Uom,使稳压管D1工作在稳压状态,所以输出电压Uo=-Uz。
电路图中所选的稳压管的稳压电压为6V,但实际测出的电压输出值,略大于此值。
当Ui<0 时,稳压管D2 工作在稳压状态,稳压管D1 工作在正向导通状
态,所以使输出电压Uo=Uz+UD(UD 为稳压管的正向导通电压,约为),因而实际测量值略高于稳压管的稳压值。
2、反相滞回比较器
(1)如图6所示正确连接电路,打开直流开关,U i接(+5/-5)V,以双踪示波器同时观察U i, Uo的直流电位,细心调节U i电压,测出Uo由+Uomax跳变为-Uomax时U i的临界值,此为下门限电平。
(2)同上,测出测出Uo由-Uomax跳变为+Uomax时U i的临界值,此为上门限电平。
(3)U i接500Hz,峰峰值为2V的正弦信号,用双踪示波器观察U i—Uo波形。
(4)将分压支路100k欧电阻改为200k欧,重复上述实验,测定传输特性
图6 反相滞回比较器
由实验可得(其中Uz约为)
误差(200K)%%Ui 与输出Uo 波形(100K Uo=)
Ui 与输出Uo 波形(200K Uo=)
其电压传输特性如下图所示(100K)
分析:
集成运放的反向输入端电位U N=Ui,同向输入端电位U P=R2Uz/(R2+R f),令
U N=U P 得到阈值电压U TH=R2Uz/(R2+R f)。
假设Ui< U TH,那么U N 一定小于
U P,因而Uo=+Uz,所以U P=+U TH。
只有当输入电压Ui 增大到+ U TH,再增大
一个无穷小量时,输出电压Uo 才会从+ U TH 跃变为U TH。
同理,假设Ui>U TH,那么U N 一定大于U P,因而Uo=Uz,所以U P=U TH。
只有当输入电压Ui 减小到U TH,再减小一个无穷小量时,输出电压Uo 才会从U TH 跃变为+U TH。
所以得到如上图所示的电压传输特性曲线。
3、同向滞回比较器
(1)连接图7 所示实验电路,接通直流电源,测出Uo 由高电平变为低电平时的阈值(2)参照2,自拟实验步骤及方法
(3)将结果与2比较
图7 同相迟滞比较器
由实验可得(Rf=100K,Uz=)
上门限电平(U i/V)下门限电平(U i/V)
反相迟滞比较器
同相迟滞比较器
理论值(同相)
(U i=R1Uz /Rf)
误差% %
Ui 与输出Uo 波形(100K Uo=)
其电压传输特性如下图所示
分析:
集成运放的反向输入端电位U N=0,阈值电压U TH=R1Uz/R f。
假设Ui< U TH,那么U N 一定大于U P,因而Uo=Uz,当输入电压Ui 增大到+ U TH,再增大一个无穷小量时,输出电压Uo 才会从U TH 跃变为+U TH。
同理,假设Ui>U TH,那么U N一定小于U P,因而Uo=+Uz,当输入电压Ui 减小到U TH,再减小一个无穷小
量时,输出电压Uo 才会从+U TH 跃变为U TH。
所以得到如上图所示的电压传输特性曲线。
五、实验总结
1、过零比较器
过零比较器被用于检测一个输入值是否是零。
原理是利用比较器对两个输入电压进行比较。
两个输入电压一个是参考电压Vr,一个是待测电压Vu。
一般Vr从正相输入端接入,Vu从反相输入端接入。
根据比较输入电压的结果输出正向或反向饱和电压。
当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。
用比较器构造的过零比较器存在一定的测量误差。
当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。
例如,开环放大倍数为106,输出
阈值为6v时若两输入级电压差小于6微伏探测器输出零。
这也可以被认为是测量的不确定度。
2、迟滞比较器
迟滞比较器是一个具有迟滞回环传输特性的比较器。
在反相输入单门限电压比较器的基础上引入正反馈网络,就组成了具有双门限值的反相输入迟滞比较器。
由于反馈的作用这种比较器的门限电压是随输出电压的变化而变化的。
它的灵敏度低一些,但抗干扰能力却大大提高。
3、窗口比较器
电路由两个幅度比较器和一些二极管与电阻构成,电路及传输特性图如图。
高电平信号的电位水平高于某规定值VH的情况,相当比较电路正饱和输出。
低电平信号的电位水平低于某规定值VL的情况,相当比较电路负饱和输出。
该比较器有两个阈值,传输特性曲线呈窗口状,故称为窗口比较器。
比较器应用:
可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。