机械动力学大作业
- 格式:docx
- 大小:76.31 KB
- 文档页数:4
机械动力学大作业
一、问题及要求
建立单自由度杆机构(有无滑块均可)动力学模型,由静止启动,选择一个固定驱动力矩,绘制原动件在一周内的运动关系线图,具体
机构及参数自拟。
、建立模型
建立如图一所示机构:已知驱动力矩M=20Nm阻力矩M=10 Nm 杆1长120mm转动惯量为J i=0.16kgm2 ;杆3质量为1kg,转动惯量为
j3=0.16kgm2;杆2质量、转动惯量忽略,其他参数如图所示。
求:建立系统运动方程。
二、求解过程
M3图一
方法:利用等效力学模型法进行动力学分析
解:取杆1为等效件,有
f w3
M v= Mi - M3—(1)
jv=ji+02+j3)(—y ⑵
< XWj/
w3120 3
—二—=一=0.75 Wi 160 4
又有(2)可知J V为常数则可知:
Ki
M v=J v i
则错误!未找到引用源。
四、采用ADAMS软件或Matlab/Simulink 环境,建立机械系统的动力学模型,借助软件进行求解计算和结果分析。
(1)利用Adams软件,建模后如图:
图2
图3
(2)当杆1由图1所示位置开始运动一周,机构运动时间为0.03秒, 利用Adam漱件分析杆件1角加速度错误!未找到引用源。
随时间的变化关系图,如图4所示:
图 线系关动运的内周一在件动原
4
图
uoqB 」曰|总3。
\/」e[n6uv
0/SS3
y
s s C6唾
二 N 2
I 」善E。
机械原理大作业——牛头刨床大作业,一,平面连杆机构的运动分析题号: 6班级 : 姓名 : 学号 : 同组者 :成绩 :完成时间 :目录题目、原始数据及要求 ..................................................................... .......................1 一平面连杆机构运动分析方程 ..................................................................... . (1)1.1速度计算公式 ..................................................................... .. (2)1.2加速度计算公式 ..................................................................... ..............2 二程序 ..................................................................... (3)2.1计算程序框图 ..................................................................... (3)2.2计算源程序 ..................................................................... .........................4 三 3.1 (一组数据 Lab =200mm)计算结果 (9)3.2运动线图 ..................................................................... . (10)3.3 体会 ..................................................................... .................................... 12 四 4.1(第二组数据 Lab =150mm)计算结果 . (12)4.2 运动线图 ..................................................................... .. (13)4.3 体会 ..................................................................... .................................... 15 五 5.1(第三组数据 Lab =220mm)计算结果 . (16)5.2 运动线图 ..................................................................... (17)5.3 体会 ..................................................................... ...................................... 21 六参考资料 ..................................................................... (21)题目、原始数据及要求:图所示为一牛头刨床(?级机构)。
一、牛头刨床机构的运动分析下图为一牛头刨床(Ⅲ级机构)。
假设已知各构件的尺寸如表2所示,原动件1以等角速度w1=1rad/s沿着逆时针方向回转,试求各从动件的角位移、角速度和角加速度以及刨头C点的位移、速度和加速度的变化情况。
二、牛头刨床机构的运动分析方程 1)位置分析建立封闭矢量多边形建立一直角坐标系,并标出各杆矢量及其方位角,其中共有4个未知量3θ(θ2=3θ)、4θ、3S 、5S 。
利用两个封闭图形ABDEFA 和EDCGE ,建立两个封闭矢量方程,由此可得:3125DE AB DE CD l s h h l l l h s →→→→→→→→→⎧+=++⎪⎨⎪+=+⎩(1)把(1)写成投影方程得:433214331143543cos *cos *cos *sin *sin *sin *cos *cos 0*sin *sin DE AB DE AB DE CD DE CD l s h l l s h l l l s l l h θθθθθθθθθθ*+=+⎫⎪+=+⎪⎬+-=⎪⎪+=⎭(2) 由以上各式用型转化法可求得4335s s θθ、、、,滑块2的方位角23θθ=2111*cos *sin b AB b AB x h l y h l θθ=+⎧⎨=+⎩ 44*cos *sin d DE d DE x l y l θθ=⎧⎨=⎩3s =3)*sin *()/*cos *(/c d CD d CD b d c d CD d CD b d s x x l x l x x s y y l y l y y s αα=+=+-⎧⎪⎨=+=+-⎪⎩ 3tan c dc dy y x x θ-=- 5c s x =()ae AE =44()tan *cos d c DE y h y l θθ+-=高斯消去法求解 2)速度分析对(2)求一次导数得:44333331144333331144334433*sin *s '*cos *sin **sin **cos *'*sin *cos **cos **sin **sin *0*cos **cos *0DE AB DE AB DE CD c DE CD l s l l s s l l l v l l θωθθωθωθωθθωθωθωθωθωθω-+-=-⎫⎪++=⎪⎬---=⎪⎪+=⎭(3)矩阵式:3334313334313443cos *sin *sin 0'*sin sin *cos *cos 0*cos 0*sin *sin 100*cos *cos 00DE AB DE AB CD DE CD DE c s l s l s l l l l l l v θθθθθθθθθθωθθ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ω⎢⎥⎢⎥⎢⎥=ω1⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (4)采用高斯消去法可求解(4)可解得角速度ω2,ω3; 3)加速度分析把(4)对时间求导数得:333433334334434cos *sin *sin 0''sin *cos *cos 00*sin *sin 10*cos *cos 0DE DE CD DE CD DE c s l s s l l l l l a θθθθθθθθαθθ--⎡⎤⎡⎤⎢⎥⎢⎥α⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦33333444433333343443334443344*sin '*sin **cos **cos 0'*cos '*cos **sin **sin 00**cos **cos 00**sin **sin 0DE DE CD DE CD DE c s s l s s s l l l l l v ωθθωθωθωθθωθωθωθωθωωθωθ----⎡⎤⎡⎤⎢⎥⎢⎥--ω⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦1111**cos **sin 00AB AB l l ωθωθ-⎡⎤⎢⎥-⎢⎥+ω1⎢⎥⎢⎥⎣⎦(5)采用高斯消去法可求解(5)可解得角加速度α2,α3,α5,α6三、程序流程图四、计算源程序#include<stdio.h>#include<stdlib.h>#include<math.h>/* 定义变量*/const double PI = 3.14159265358979;const int N = 4;const double EPSILON = 0.0001;const int T = 1000;/* 代入已知量*/double Lab=160,Lcd=1020,Lde=250,h=900,h1=460,h2=120,Omega1=1;/* 声明子函数*/void AngleDisplacement(double[12],double);/* 角位移函数*/void AngleVelocity(double[N][N],double[N],double[12],double);/* 角速度函数*/void AngleAcceleration(double[N][N],double[N][N],double[N],double [12]);/* 角加速度函数*/void GaussE(double [N][N],double [N],double [N]);/* 高斯消去法函数*/void ModulusMatrixA(double [12],double [N][N]);/* 矩阵A函数*/void ModulusMatrixB(double [12],double ,double [N]);/* 矩阵B函数*/void MatrixDA(double [12],double [N][N]);/* 矩阵DA函数*/void MatrixDB(double [12],double ,double [N]);/* 矩阵DB函数*//* 主函数*/void main(){int i,j;FILE *fp;double data[36][12];double value[12],a[N][N],da[N][N],b[N],db[N],Phi1;char flag;/* 打开文件*/if((fp = fopen("Data","w")) == NULL){printf("文件打开错误!\n");exit(0);}fprintf(fp,"Lab =%lf \n",Lab);fprintf(fp,"s3\tPhi3\tPhi4\ts5\t");fprintf(fp,"s3'\tOmega3\tOmega4\ts5'\t");fprintf(fp,"s3''\tEpsilon3\tEpsilon4\ts5''");printf("\n\n 牛头刨床机构运动分析程序\n\n\n");printf("\n");printf(" 是否开始计算(Y/N):");scanf("%c",&flag);if(flag =='Y'){/*计算并写入文件*/value[0] = 480;value[1] = 65 * PI / 180;value[2] = 10 * PI / 180;value[3] = 500;for(i = 0;i < 36; i++){Phi1 = i * PI / 18;AngleDisplacement(value,Phi1);ModulusMatrixB(value,Phi1,b);ModulusMatrixA(value,a);AngleVelocity(a,b,value,Phi1);MatrixDA(value,da);MatrixDB(value,Phi1,db);AngleAcceleration(a,da,db,value);for(j = 1;j < 3; j++)value[j] = value[j] * 180 / PI;for(j = 0;j < 12; j++)data[i][j] = value[j];fprintf(fp,"\n");for(j = 0;j < 12; j++)fprintf(fp,"%12.3f\t",data[i][j]);}fclose(fp);/* 输出数据*/printf("\n\n\n计算结果如下:\n");for(i = 0;i < 36; i++){Phi1=i * PI / 18;printf("\n输出Phi1=%d时的求解\n",i*10);printf(" S3 Phi3 Phi5 S5\n");for(j = 0;j < 4; j++)printf("%lf\t",data[i][j]);printf("\n");printf(" S3' Omega3 Omega5S5'\n");for(j = 4;j < 8; j++)printf("%lf\t",data[i][j]);printf("\n");printf(" S3'' Epsilon3 Epsilon5 S5''\n");for(j = 8;j < 12; j++)printf("%lf\t",data[i][j]);printf("\n");}printf("\n程序运行结束,计算结果已写入Date文件中,请打开查看。
大作业1 连杆机构运动分析1、运动分析题目如图所示机构,已知机构各构件的尺寸为280mm AB =,350mm BC =,320mm CD =,160mm AD =,175mm BE = 220mm EF =,25mm G x =,80mm G y =,构件1的角速度为110rad/s ω=,试求构件2上点F 的轨迹及构件5的角位移、角速度和角加速度,并对计算结果进行分析。
2、建立坐标系建立以点A 为原点的固定平面直角坐标系图 13、对机构进行结构分析该机构由I级杆组RR(原动件1)、II级杆组RRR(杆2、杆3)和II级杆组RPR(滑块4及杆5)组成。
I级杆组RR,如图2所示;II 级杆组RRR,如图3所示;II级杆组RPR,如图4所示。
图2图 3图 44、各基本杆组运动分析的数学模型(1)同一构件上点的运动分析:图 5如图5所示的构件AB,,已知杆AB 的角速度=10/rad s ω,AB 杆长i l =280mm,可求得B 点的位置B x 、B y ,速度xB v 、yB v ,加速度xB a 、yB a 。
=cos =280cos B i x l ϕϕ; =sin =280sin B i y l ϕϕ;==-sin =-BxB i B dx v l y dt ωϕω; ==cos =;B yB i B dyv l x dt ωϕω222B 2==-cos =-BxB i d x a l x dt ωϕω;2222==-sin =-ByB i B d y a l y dtωϕω。
(2)RRRII 级杆组的运动分析:图 6如图6所示是由三个回转副和两个构件组成的II 级组。
已知两杆的杆长2l 、3l 和两个外运动副B 、D 的位置(B x 、B y 、D x 、D y )、速度(xB yB xD yD v v v v 、、、)和加速度(xB yB xD yD a a a a 、、、)。
求内运动副C 的位置(C C x 、y )、速度(xC yC v 、v )、加速度(xC yC a 、a )以及两杆的角位置(23ϕϕ、)、角速度(23ϕϕ、)和角加速度(23ϕϕ、)。
机械原理大作业范文摘要:机械传动是机械学中的基础内容之一,广泛应用于各个行业和领域。
本文将对机械传动的原理、类型以及应用进行系统的介绍和探讨。
首先介绍了机械传动的定义和作用,然后详细介绍了各种常见的机械传动类型,包括齿轮传动、皮带传动、链传动等,并分别对其工作原理进行了分析。
最后列举了一些机械传动的应用案例,证明了机械传动在现实生活中的重要性和广泛性。
一、引言机械传动是将动力从一个地方传递到另一个地方的机械装置。
它作为机械工程学的基础内容,广泛应用于工业、农业、建筑等各个领域。
机械传动具有传递力量的功能,并能实现运动的改变、平衡、变速等目的。
本文将对机械传动的类型、原理以及应用进行详细介绍。
二、机械传动的类型机械传动可以分为多种类型,常见的有齿轮传动、皮带传动、链传动等。
齿轮传动是利用齿轮间的啮合来传递扭矩和运动的一种传动方式,具有传动效率高、传动比稳定等优点。
皮带传动则是通过绕在两个轮子上的带子来传递力量,常用于需要减速的场合。
链传动与皮带传动类似,但是链传动的传动效率更高,扭矩传递更稳定。
三、机械传动的工作原理1.齿轮传动:齿轮传动采用齿轮之间的啮合来实现传动的目的。
主要通过齿轮的大小、齿数来调整传递的速度和扭矩。
其中,齿轮的齿数比称为传动比,可以实现速度的改变。
齿轮传动通常包括齿轮轴、轴承、齿轮齿廓等组成部分。
2.皮带传动:皮带传动通过绕在轮子上的带子来传递力量。
常见的皮带传动有平行轴带传动和交叉轴带传动。
通过调整轮子的直径和材料来改变传递效果。
皮带传动具有传递动力平稳、减震效果好的特点。
3.链传动:链传动与皮带传动类似,也是通过绕在轮子上的链条来传递力量。
链传动具有噪音低、传动效率高等优点,广泛应用于自行车、摩托车等交通工具中。
四、机械传动的应用1.工业应用:机械传动在工业制造中有广泛的应用。
例如,齿轮传动被广泛应用于机床、起重机械、输送设备等,实现力量的传递和工作的协调。
皮带传动常用于风机、泵等需要平稳传递动力的设备中。
机械动力学大作业含弹性摆杆的铰链四杆机构动力学仿真学号:院系名称:机电工程学院专业:机械工程学生姓名:本次进行设计和分析的对象为平面铰链四杆机构,在Adams的环境下,通过对四杆机构进行建模以及运动仿真,绘制出摆杆的相关曲线图。
为了形成有效的对比,先建立含有刚性摆杆的四杆机构,进行运动仿真,绘制出摆杆的相关曲线。
再建立含有柔性摆杆的铰链四杆机构,所有参数设置均和刚性摆杆一样。
考虑到弹性摇杆可能发生较大的形变,不利于观测,绘制摇杆运动曲线时选择摇杆的质心作为参考点。
在Adams中主要有三种方法创建柔性构件,第一种是将刚性构件离散化后采用柔性梁连接;第二种是直接将刚体替换为柔性体;第三种是运用有限元分析的方法建立柔性构件。
本次建模,主要采用前两种方法建立柔性摆杆。
运用有限元建立柔性构件,等以后再进行深入研究。
同时两种方法建立的柔性杆可以形成对比。
通过本次设计,主要学习了Adams 软件建模以及运动仿真、图形处理、刚柔混合建模的操作方法,对自己也是一个很大锻炼和提升。
设计的为平面曲柄摇杆机构。
相关参数如:曲柄长L=200mm,宽W=60mm,高D=30mm;连杆长L=427mm,宽W=30mm,高D=20mm;摇杆长L=403mm,宽W=40mm,高D=20mm;机架长L=600mm,宽W=40mm,高D=20mm;曲柄角速度为40deg/sec。
经过验证,最短杆长度加上最长杆长度小于中间两根杆的长度之和,满足曲柄存在的条件,且最长杆为机架,故为曲柄摇杆机构。
一、建模过程1、建立四个标记点,这四个点依次连接就可以确定一个铰链四杆机构。
2、建立四根杆的模型3、在杆件之间添加转动副4、选择最长杆为机架并固定5、给曲柄添加驱动,使曲柄角速度为40deg/sec。
6、使模型的显示方式为实体显示7、进行运动仿真,主要通过时间和步长来控制仿真运动的快慢。
8、载入动画,进行图像处理,绘制曲线图。
9、将刚性摇杆换成柔性的摇杆并添加转动副和驱动10、进行运动仿真11、载入动画,进行图像处理,绘制曲线。
机械动力学大作业——基于ADAMS的单自由度六杆复合式组合机构动力学分析及仿真学号:专业:学生姓名:任课教师:2012年10月18日一、题目要求:采用ADAMS软件或Matlab/Simulink 环境,建立简单机械系统的动力学模型,借助软件进行求解计算和结果分析。
建立单自由度杆机构(有无滑块均可)动力学模型,由静止启动,选择一固定驱动力矩,绘制原动件在一周内的运动关系线图,具体机构及参数自拟。
二、所选题目:在下图所示的六杆复合式组合机构,已知l AB=150mm,l BC=500mm,l DC=260mm,l BE=250mm,l AF=600mm,l AD=410mm,杆2和杆2'固结,BE垂直于BC,AF垂直于AD,曲柄1的驱动力矩为2000NM,构件质量m1=20kg,m2=40kg,m2’=20kg,m3=30kg,m4=70kg,滑块5质量忽略不计,构件6为机架;质心位置l CS1=75mm,l CS3=130mm,质心S5在点E,构件1、3绕质心的转动惯量J S1=0.0375kg·m2,J S3=0.176kg·m2;曲柄1的驱动力矩M1=2000N·m,方向为逆时针,作用在A 点;该机构在工作行程时滑块受到摩擦力作用,静摩擦系数0.5,动摩擦系数0.3,试分析曲柄回转一周过程中:(1)曲柄1与X轴正方向夹角Φ1随时间变化的关系,曲柄1转动的角速度ω1以及角加速度a1随时间变化的关系;(2)杆3与Y轴反方向夹角Φ2随时间变化的关系,杆3转动的角速度ω3以及角加速度a3随时间变化的关系;(3)滑块5与杆4的相对速度V5与加速度a5随时间变化的关系。
三、建立模型:运用Link命令创建杆1、2、2'、3、4构件。
运用Box命令创建滑块5构件和机架6。
根据各杆长度,运用辅助Marker点、Move 、Rotate 等命令调整各构件的相对位置,并在各构件上单击右键,在修改命令中添加构件的质量信息,以及杆1、3绕质心的转动惯量,其中滑块5的质量为0,创建完成后的机构模型如图下所示。
《机械系统动力学》课程作业小组成员:王凌飞 20150702081t王毅 20150702041 指导教师:***学院:机械工程学院专业:机械工程重庆大学机械工程学院二〇一五年十一月机械系统动力学大作业一、 问题描述图1为汽车结构简化模型:图1 汽车结构简化模型图2为汽车结构受力分析:图2 受力分析图已知22120.64m 4000kg 2000N s/m r m c c ====⋅121220000N/m0.9m1.4m k k l l ====r :车辆的回转半径。
初始条件为:0x x θθ====。
外部冲击力矩:)(10t δ。
试用MATLAB 中的ode45函数求解并画出0-5s 内的位移x 和转角θ的响应。
单位冲击函数()t δ的定义:1,()0,t t t δ=⎧=⎨≠⎩,其图像如图3所示。
00.511.5tδ图3 单位冲击函数图像二、求解过程1.系统运动方程不考虑冲击力矩,由图2机构受力分析得到系统运动方程如下:0)()()()(112221112221=-+++-+++θθk l k l x k k c l c l x c c x m (1) 0)()()()(222121112212122211222=++-+++-+θθk l k l x l k l k c l c l x l c l c x mr (2) 考虑t=0时刻,系统受到一个冲击力矩)(10t δ,此时运动学方程表示为:0)()()()(112221112221=-+++-+++θθk l k l x k k c l c l x c c x m (3) 222222211221122112211()()()()10()mr c l c l x l c l c k l k l x l k l k t θθθδ+-+++-++= (4)2.运动方程一阶常微分方程组形式令,,,,4321x x x x x x ====θθ 则t=0时:12212222114121221133422222422112221142211111223()/()/()/()/[10()/()()()]/x x x c c x m l c l c x m k k x m l k l k x m x x x l c l c x l c l c x l k l k x l k l k x mr =⎧⎪=-+---+--⎪⎨=⎪⎪=---+---+⎩ t>0时:12212222114121221133422222422112221142211111223()/()/()/()/[()/()()()]/x x x c c x m l c l c x m k k x m l k l k x m x x x l c l c x l c l c x l k l k x l k l k x mr =⎧⎪=-+---+--⎪⎨=⎪⎪=---+---+⎩ 3. MATLAB 程序求解运动方程ode45函数主程序文件solution.m ,如下所示: clc;clear;r=0.8; m=4000; c1=2000; c2=2000; k1=20000; k2=20000; l1=0.9; l2=1.4; t0=0; tf=5;x0=[0,0,0,0];[t,x]=ode45('f1',[t0 tf],x0); subplot(3,1,1) plot(t,x);subplot(3,1,2) plot(t,x(:,1)); subplot(3,1,3) plot(t,x(:,3));ode45函数微分关系函数文件f1.m ,如下所示:function xdot=f1(t,x) r=0.8; m=4000; c1=2000; c2=2000; k1=20000; k2=20000; l1=0.9; l2=1.4; t0=0; tf=5;xdot=zeros(4,1); xdot(1)=x(2);xdot(2)=-(c1+c2)/m*x(2)-(l2*c2-l1*c1)/m*x(4)-(k1+k2)/m*x(1)-(l2*k2-l1*k1)/m*x(3);xdot(3)=x(4); if t<=0xdot(4)=10/(m*r*r)-(c2*l2-c1*l1)/(m*r*r)*x(2)-(c2*l2*l2+c1*l1*l1)/(m*r*r)*x(4)-(k2*l2-k1*l1)/(m*r*r)*x(1)-(l1*l1*k1+l2*l2*k2)/(m*r*r)*x(3); elsexdot(4)=-(c2*l2-c1*l1)/(m*r*r)*x(2)-(c2*l2*l2+c1*l1*l1)/(m*r*r)*x(4)-(k2*l2-k 1*l1)/(m*r*r)*x(1)-(l1*l1*k1+l2*l2*k2)/(m*r*r)*x(3); end在MATLAB 中运行以上两个程序,即可得0~5s 内汽车系统的位移x 与转角θ的响应。
单自由度杆机构的Adams动力学仿真
摘要:文章分析了单自由度的铰链机构的动力学问题,已知原动件曲柄的转矩,绘制输出件摆杆的运动曲线。
首先在Adams软件中构造连杆,添加三个连杆,使其成一定角度,相互连接。
再在两杆之间添加转动副,并且头尾连杆与地相连。
并在曲柄处加转矩,最后进行仿真,并绘出相应图表。
关键词:铰链机构;Adams仿真
1、机构模型的建立
根据题目要求,选择一个铰链四杆机构——曲柄摇杆机构为模型,其结构简图如图1所示。
其中,曲柄1为原动件。
图1曲柄摇杆机构简图
在Adams软件中,建立该曲柄摇杆机构的模型如图2所示。
图2 Adams中的曲柄摇杆机构模型
曲柄摇杆机构各连杆的惯性参数参考表1。
杆件的材料均选择钢材(密度ρ=7.801×10-6 kg•mm-3,杨氏模量E=2.07×105 N•mm-2,泊松比μ=0.29)。
表1 传动导杆机构各部件惯性参数
2、利用Adams软件添加约束和力矩
杆1和地之间有转动副,杆1和杆2、杆2和杆3之间有转动副,杆3和地之间有转动副。
杆1为原动件,在杆1上添加转矩。
转矩大小为30。
图3约束与转矩
3、进行仿真
点击仿真按钮,开始仿真,选择仿真时间为2s,可以观察到该机构各个时间的运动状态如图4和图5所示。
(a)T=0时刻(b)T=1时刻
图4仿真过程中机构模型的运动状态
(a)T=1.2时刻(b)T=2时刻
图5仿真过程中机构模型的运动状态
结论
当原动件曲柄的转矩取为30时,点击“后处理”,可以绘制出输出件摆杆的位移曲线、角速度曲线、加速度曲线分别如图10、图11和图12所示。
图10输出件摆杆的位移曲线
图11输出件摆杆的角速度曲线
图12输出件摆杆的角加速度曲线
参考文献
[1]陈立平,张云清,任卫群.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社.2005.。